Brenden Lake

Assistant Professor of Psychology and Data Science
Department of Psychology and Center for Data Science (joint)
Department of Computer Science and Center for Neural Science (affiliate)
Human & Machine Learning Lab and CILVR Lab (research groups)
New York University

Research Scientist
Facebook AI Research

Contact

Email: brenden@nyu.edu
Phone: (212) 998-3059
Data Science office: 60 5th Ave., Room 610, New York, NY 10011
Psychology office: 6 Washington Place, Room 858, New York, NY 10003
Curriculum Vitae (as of Aug. 2020)
Lab website
Google Scholar
Twitter

Computational Cognitive Science at NYU -- please see this page to learn more!

Interested in joining the lab? Please see this this page for details about open positions.

Research

I build computational models of everyday cognitive abilities, focusing on problems that are easier for people than they are for machines. The human mind is the best known solution to a diverse array of difficult computational problems: learning new concepts, learning new tasks, understanding scenes, learning language, asking questions, forming explanations, amongst many others. Machines also struggle to simulate other facets of human intelligence, including creativity, curiosity, self-assessment, and commonsense reasoning.

In this broad space of computational challenges, my work has addressed a range of questions: How do people learn a new concept from just one or a few examples? How do people act creatively when designing new concepts? How do people learn qualitatively different forms of structure? How do people ask questions when searching for information?

By studying these distinctively human endeavors, there is potential to advance both cognitive science and machine learning. In cognitive science, building a computational model is a test of understanding; if people outperform all existing algorithms on certain types of problems, we have more to understand about how people solve them. In machine learning, these cognitive abilities are both important open problems as well as opportunities to reverse engineer the human solutions. By studying the human solutions to difficult computational problems, I aim to better understand humans and to build machines that learn in more powerful and more human-like ways.

Teaching

PSYCH-GA 3405.002 / DS-GS 3001.005 : Computational cognitive modeling (last taught Spring 2020)
PSYCH-GA 3405.001 : Categories and Concepts (last taught Fall 2019)
PSYCH-GA 3405.001 / DS-GA 3001.014 : Advancing AI through cognitive science (last taught Spring 2019)

Preprints

Check out our lab page for a potentially more recent list.

Lake, B. M. and Murphy, G. L. (2020). Word meaning in minds and machines. Preprint available on arXiv:2008.01766.

Vedantam, R., Szlam, A., Nickel M., Morcos, A., and Lake, B. M. (2020). CURI: A Benchmark for Productive Concept Learning Under Uncertainty. Preprint available on arXiv:2010.02855.

Feinman, R. and Lake, B. M. (2020). Learning Task-General Representations with Generative Neuro-Symbolic Modeling. Preprint available on arXiv:2006.14448. [Code]

Vong, W. K. and Lake, B. M. (2020). Learning word-referent mappings and concepts from raw inputs. Preprint available on arXiv:2003.05573.

Wang, Z. and Lake, B. M. (2019). Modeling question asking using neural program generation. Preprint available on arXiv:1907.09899.

Orhan, E. and Lake, B. M. (2019). Improving the robustness of ImageNet classifiers using elements of human visual cognition. Preprint available on arXiv:1906.08416.

Publications

Orhan, A. E., Gupta, V. B., and Lake, B. M. (2020). Self-supervised learning through the eyes of a child. Advances in Neural Information Processing Systems 33. [Code and pre-trained models]

Ruis, L., Andreas, J., Baroni, M. Bouchacourt, D., and Lake, B. M. (2020). A Benchmark for Systematic Generalization in Grounded Language Understanding. Advances in Neural Information Processing Systems 33. [Supporting Info.] [Benchmark] [Baseline model]

Nye, M., Solar-Lezama, A., Tenenbaum, J. B., and Lake, B. M. (2020). Learning Compositional Rules via Neural Program Synthesis. Advances in Neural Information Processing Systems 33. [Code]

Gandhi, K. and Lake, B. M. (2020). Mutual exclusivity as a challenge for deep neural networks. Advances in Neural Information Processing Systems 33.

Feinman, R. and Lake, B. M. (2020). Generating new concepts with hybrid neuro-symbolic models. In Proceedings of the 42nd Annual Conference of the Cognitive Science Society. [Short video] [Supporting Info.]

Davidson, G. and Lake, B. M. (2020). Investigating simple object representations in model-free deep reinforcement learning. In Proceedings of the 42nd Annual Conference of the Cognitive Science Society. [Short video]

Lewis, M., Cristiano, V., Lake, B. M., Kwan, T., and Frank, M. C. (2020). The role of developmental change and linguistic experience in the mutual exclusivity effect. Cognition, 198.

Lake, B. M. and Piantadosi, S. T. (2020). People infer recursive visual concepts from just a few examples. Computational Brain & Behavior, 3(1), 54-65. [Supporting Info.] [Experiments]

Lake, B. M. (2019). Compositional generalization through meta sequence-to-sequence learning. Advances in Neural Information Processing Systems 32. [Code]

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2019). The Omniglot challenge: a 3-year progress report. Current Opinion in Behavioral Sciences, 29, 97-104.

Feinman, R. and Lake, B. M. (2019). Learning a smooth kernel regularizer for convolutional neural networks. In Proceedings of the 41st Annual Conference of the Cognitive Science Society.

Lake, B. M., Linzen, T., and Baroni, M. (2019). Human few-shot learning of compositional instructions. In Proceedings of the 41st Annual Conference of the Cognitive Science Society.

Rothe, A., Lake, B. M., and Gureckis, T. M. (2019). Asking goal-oriented questions and learning from answers. In Proceedings of the 41st Annual Conference of the Cognitive Science Society.

Rothe, A., Lake, B. M., and Gureckis, T. M. (2018). Do people ask good questions? Computational Brain & Behavior, 1(1), 69-89.

  • Outstanding paper award.

Loula, J., Baroni, M., and Lake, B. M. (2018). Rearranging the familiar: Testing compositional generalization in recurrent networks. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP.

Lake, B. M. and Baroni, M. (2018). Generalization without systematicity: On the compositional skills of sequence-to-sequence recurrent networks. International Conference on Machine Learning (ICML). [Supporting Info.] [Data set]

Feinman, R. and Lake, B. M. (2018). Learning inductive biases with simple neural networks. In Proceedings of the 40th Annual Conference of the Cognitive Science Society.

Lake, B. M., Lawrence, N. D., and Tenenbaum, J. B. (2018). The emergence of organizing structure in conceptual representation. Cognitive Science, 42(S3), 809-832. [Supporting Info.] [Code]

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2017). Building machines that learn and think like people. Behavioral and Brain Sciences, 40, E253.

Rothe, A., Lake, B. M., and Gureckis, T. M. (2017). Question asking as program generation. Advances in Neural Information Processing Systems 30. [Supporting Info.]

Rothe, A., Lake, B. M., and Gureckis, T. M. (2016). Asking and evaluating natural language questions. In Proceedings of the 38th Annual Conference of the Cognitive Science Society.

Cohen, A. and Lake, B. M. (2016). Searching large hypothesis spaces by asking questions. In Proceedings of the 38th Annual Conference of the Cognitive Science Society.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350(6266), 1332-1338. [Supporting Info.] [visual Turing tests] [Omniglot data set] [Bayesian Program Learning code]

Monfort, M., Lake, B. M., Ziebart, B. D., Lucey, P., and Tenenbaum, J. B. (2015). Softstar: Heuristic-Guided Probabilistic Inference. Advances in Neural Information Processing Systems 28. [Supporting Info.]

Lake, B. M., Zaremba, W., Fergus, R. and Gureckis, T. M. (2015). Deep Neural Networks Predict Category Typicality Ratings for Images. In Proceedings of the 37th Annual Conference of the Cognitive Science Society. [Data]

Lake, B. M. (2014). Towards more human-like concept learning in machines: Compositionality, causality, and learning-to-learn. Ph.D. thesis, MIT.

Lake, B. M., Lee, C.-y., Glass, J. R., and Tenenbaum, J. B. (2014). One-shot learning of generative speech concepts. In Proceedings of the 36th Annual Conference of the Cognitive Science Society. [Supporting Info.]

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2013). One-Shot Learning by Inverting a Compositional Causal Process. Advances in Neural Information Processing Systems 26. [Supporting Info.]

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2012). Concept learning as motor program induction: A large-scale empirical study. In Proceedings of the 34th Annual Conference of the Cognitive Science Society. [Supporting Info.]

Lake, B. M., Salakhutdinov, R., Gross, J., and Tenenbaum, J. B. (2011). One shot learning of simple visual concepts. In Proceedings of the 33rd Annual Conference of the Cognitive Science Society. [Videos]

Lake, B. M. and McClelland, J. L. (2011). Estimating the strength of unlabeled information during semi-supervised learning. In Proceedings of the 33rd Annual Conference of the Cognitive Science Society.

Lake, B. M. and Tenenbaum, J. B. (2010). Discovering Structure by Learning Sparse Graphs. In Proceedings of the 32nd Annual Conference of the Cognitive Science Society.

Lake, B. M. (2009). Unsupervised and semi-supervised perceptual category learning. Master's thesis, Stanford University.

Lake, B. M., Vallabha, G. K., and McClelland, J. L. (2009). Modeling unsupervised perceptual category learning. IEEE Transactions on Autonomous Mental Development, 1(1), 35-43.

Lake, B. M., Vallabha, G. K., and McClelland, J. L. (2008). Modeling unsupervised perceptual category learning. In Proceedings of the 7th International Conference on Development and Learning.

  • Best paper award. Expanded version directly above.

Lake, B. M. and Cottrell, G.W. (2005). Age of acquisition in facial identification: A connectionist approach. In Proceedings of the 27th Annual Conference of the Cognitive Science Society.