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Abstract

Inspired by notions of intrinsic motivation (Schmidhuber, 2010)
and play as proposing and solving arbitrary problems (Chu and
Schulz,|2020b), we report initial progress toward computational
modeling of playful goal generation. We create an embodied,
3D environment resembling a child’s room, and ask study par-
ticipants to play in the environment and then create a scorable
game. We propose to model games using a domain-specific
language, which represents each game as a computer program.
These programs act as reward-generating functions, mapping
states visited by an agent as they play a game to the score they
should receive. We then analyze our corpus of program repre-
sentations to highlight four key aspects of human games that
would contribute to constructing effective computational mod-
els of game generation: creativity, compositionality, common
sense, and context sensitivity.

Keywords: goals, play, intrinsic motivation, exploration, pro-
gram synthesis, domain-specific language, program induction

Introduction

People are internally motivated to establish their own goals and
then act to fulfill them (see Schmidhuber, 2010, on intrinsic
motivation). This behavior is readily evident in children —
depicts a child playing in a room full of toys, where
they may continue stacking blocks in a tower, or perhaps
throw objects at the tower in attempt to knock it over. Chu and
Schulz (2020b) characterize these types of play as creating
and solving arbitrary and unusual problems, hypothesizing
such play aids in generating new ideas and exploring novel
search spaces. However, the computational basis of this ability
remains poorly understood. In this paper, we take the first
steps towards developing a computational model of creative,
playful goal generation for the purpose of both understanding
these human abilities and driving exploration in Al systems.

Our modeling is informed by a novel data set we collected
of humans creating games for themselves to play. Inspired by
work on structured imagination (Ward, [1994) and conceptual
combination (Murphy, 1988)), we sought an experimental ap-
proach that allows us to capture the rich, playful, and creative
nature of how children and adults can generate goals in every-
day scenarios. Using AI2-THOR (Kolve et al.,[2017)—a rich,
embodied, 3D platform—we set up a children’s bedroom-like
environment full of blocks, balls, and other objects (Figure TB).
We invited (adult) participants to explore the room environ-
ment through an interactive, web-based platform, and then
describe (in natural language) a game that could be played in
the room (Figure TIC). We posed few constraints on the games
our participants created, in an attempt to simulate the scenario
of a child playing with a collection of available objects.

Our modeling approach operationalizes games as reward-
generating functions. Here we model the underlying structure
of these functions, rather than automatically generating them
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Setup: N/A (C)
Gameplay: “Create a tower

with the largest number of
figures available.”

Scoring: “Each level of the
tower will count as 1 point”

(:setup ) (D)
(:constraints
(forall ( - building)
(preference blockInTower
o (exists (71 - block)
(at-end (in ))
1))

B e
' Jﬁ (:scoring maximize

(count-maximal-once-per—objects
blockInTower)
)
Figure 1: Overview. Inspired by playful goal generation (A), we
designed an interactive environment (B), used to collect games from
our participants in natural language (C), enabling the creation of a
novel domain-specific language for games (D).

or finding policies to solve them (both focuses of future work).
Formally, we represent games as short computer programs in
a domain-specific language (DSL), which receive as input a
series of environment states, generated as an agent is playing
a game, and return as an output the score the person receives—
as a person acting as a scorekeeper would do (Figure 1D).
This approach relates to a growing body of work in cognitive
science that considers program-like knowledge representation
(Rule et al.,|2020). We constructed our DSL using an empiri-
cal, bottom-up approach: we studied the games participants
created, and designed a representation that captured as much
as possible of the semantics of games in our dataset. In the
longer term, we hope the structured representation in the DSL
(as opposed to unstructured natural language) facilitates gener-
ating new goals and automatically evaluating how well agents
(human and artificial) can learn to play games.

In the shorter term, these structured representations are
amenable to statistical analyses, revealing several key at-
tributes of human cognition in the context of proposing new
games. For one, we observed a high degree of reuse and recom-
bination (i.e., compositionality) across games created by inde-
pendent participants. In addition, games reflected a substantial
degree of creativity (high variability across subjects) and relied
heavily on common sense via intuitive physics (throwing balls
and stacking blocks, rather than vice versa). Participants also
demonstrate context sensitivity, creating games using salient
objects in different rooms, rather than trivial games that would
work regardless of the affordances of the environment.

Related Work

We build on a tradition of studying children’s play and ex-
ploratory behavior (Chu and Schulz, 2020b; Sim and Xu,



Buchsbaum et al., Siegel et al.,[2021; Chu and

Schulz, 2020a; Pelz and Kidd, 2020), but in a more open-
ended environment than most experiments (and instead with

adults). Our ultimate aim is to provide goal representations
that drive exploratory behavior in unrewarded environments. It
has been long recognized that unstructured play aids children’s
learning. For example, exploration is highlighted as one of a
variety of proposed developmental roles for play (see Chu and
Schulz,[2020b] for a review). Siegel et al. directly study
exploratory play, finding that children play longer when adjudi-
cating between less discriminable hypotheses. Chu and Schulz
(20204a) study children performing the same goals during and
outside of play, and find that they take on costs during play
that they avoid when more directly fulfilling the goal. They
remark that for children, play involves “setting up problems
where they incur needless costs to achieve arbitrary rewards.”

How can we formalize this notion of self-constructed prob-
lems? In reinforcement learning (RL), the reward function
specifies the external, environmentally-defined signal the agent
attempts to maximize: formally, it maps each state and each
action to the scalar reward the agent experiences for taking
an action at a particular state. Agent-generated goals are
used to supplement the environment’s reward function and
provide an alternative signal that can guide exploration (see
Colas et al., we will omit discussion of other explo-
ration approaches, see Weng, 2020 for a review). Most current
approaches generate goals that can be evaluated on only a
single world state, and as such, fall far short of the richness
of real-world goals (Colas et al., section 7.1). Some
approaches consider goals comprised of (X, y) positions in the

environment (e.g., Florensa et al., Campero et al.,[2021),

while others construct richer goals by sampling from limited
grammars (Colas et al., Akakzia et al.,[2021). While
these grammars enable some compositionality, they express
only a small number of conditions on a single state, without
capturing the temporally-extended nature of human goals that
we study. We represent temporally-extended goals as pro-
grams operating over sequences of world states, not unlike
reward machines (Toro Icarte et al., , using a domain-
specific language designed by modeling human games.

Data Collection

In our task, participants were virtually placed in an unfamiliar
room full of objects and asked to propose a single-player game
to be played in the room. We use game generation as a means
of studying how children, or adults playing alongside children,
can produce playful goals, in the context of a specific set of
objects and affordances. The concreteness of game-based
goals, as opposed to more abstract goals, offers the advantage
of a more tractable setting for formal specification.
Environment. We built our experiment using the AI2-
THOR (Kolve et al., framework, which offers an embod-
ied, first-person environment including various room scenes
and household objects (Figure 1B). We modified a bedroom
scene by adding some toys, such as various balls and blocks,

When answering the questions
below, please make sure to use the
names of the objects in the game.
Optional: please describe any setup
in the room (from its initial state)
required for your game:

To prepars theroom for the game ‘

Game Creation Experiment

Please describe a game you could
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Figure 2: Interactive experiment platform. The main part of the
screen presents the AI2-THOR-based experiment room. Below it, we
depict the available controls. To the right, we show the text prompts
for creating a new game. Our experiment is available online herel

in place of some of the furniture to offer more playful objects.
We created three versions of this room, varying both the variety
and quantity of objects available, to examine how an environ-
ment’s richness impacts game generation. We also changed
the controls and affordances available to human participants
from the AI2-THOR defaults: agents can move in the room,
look around, crouch and stand up, pick up objects, rotate held
objects, freeze objectsﬂ and put them down or throw them.
Items such as lights and blinds can also be toggled on and off,
and other items such as drawers can be opened and closed.

Interactive Experiment Procedure. The interactive, web-
based experiment took place in several phases:
Instructions: we presented participants with detailed instruc-
tions and an attention check quiz. Tuforial: we provided a
tutorial on the controls and the various affordances different
objects offer. To continue to the experiment, participants had
to successfully use all actions introduced by the tutorial. Ex-
ploration: we placed participants in one of the three variations
of the environment (randomly assigned), and allowed them
to explore in the room. Creation: once the participant indi-
cated they had a game ready, they described their game in a
form that opened next to the environment screen (Figure 2}
right-hand side). Participants optionally provided any setup
required to prepare the room for their game to be played, and
then specified the gameplay of their game and how it is scored.
Participants were also asked to imagine how many points
they would score on their first time playing their game, and
to rate its difficulty on a five-point Likert scale. Gameplay:
participants played their game at least once to experience it
for themselves. Edit and debrief: participants were offered a
chance to edit their game after playing it, before answering
several debrief questions.

Constraints on Games. Participants were informed that
games should be for a single player, require no space beyond
the room or additional objects, and include a scoring system.

! An option provided to help participants perform dexterous ma-
nipulations without knocking over other objects.


https://game-generation-public.web.app/

The scoring constraint may seem limiting, but any arbitrary
goal can be scored by rewarding the achievement of the goal.

Participants. We contacted 192 participants through Pro-
lific, of whom 114 finished the experiment and another 12
were paid due to technical difficulties. Participants were paid a
base rate of $10, and received $2 bonus if their game satisfied
the required constraints. Successful participants took 44.4
minutes on average, with a standard deviation of 23.3 minutes.

Translation to the DSL. We manually translated the games
from the natural language descriptions to the DSL. We made
minimal assumptions, and tried to use participants’ gameplay
replays to clarify their intentions. After excluding 8 games that
did not satisfy the constraints, 6 duplicates, and 6 unclear or
underconstrained games, we arrived at a dataset of 98 gamesﬂ

Dataset Variety. Considering that participants were neither
prompted to nor compensated for their creativity, we were
encouraged by the variety and creativity displayed by our
participants. While most games in our dataset include some el-
ement of throwing, participants varied what was thrown, what
it was thrown to, where it was thrown from, and instantiated
other constraints (bouncing off a wall or ramp, placing objects
on other objects, and many others). We also observed different
structure-building games (for height or for number of objects),
all manner of different organization games (sorting objects to
predetermined locations), and various other games that defy
classification (for example, dropping blocks one at a time and
adjacent to each other to build a path from the rug to the desk).

Goals as Reward-Generating Programs

We represent games as reward-generating functions, mapping
sequences of environment states generated by an agent playing
a game to the score received. While this representation is
unlikely to perfectly match the cognitive primitives humans
use to reason about goals, it allows us to formalize people’s
productive capacity to generate goals and evaluate progress
towards them. The specification of our DSL is available herel

Motivation. The decision to translate games described
in natural language to a domain-specific language (DSL) is
inspired by both the cognitive science literature as well as
artificial intelligence research. On the cognitive science side,
we subscribe to the benefits of program representations as
outlined by Rule et al. (2020). Programs are compositional,
allowing them to reuse elements of previous examples when
tackling new challenges. Programs are also expressive, allow-
ing a small number of base types and primitives to solve a
wide array of problems. Simultaneously, we draw inspiration
from the use of structured description languages in the Al com-
munity, and specifically, in representing planning problems
using PDDL (Ghallab et al.,|{1998)). PDDL specifies initial and
terminal conditions to a planning problem, as well as optional
preferences that encourage solving the planning problem in
particular fashions. Whereas in planning problems preferences
are optional and terminal conditions are mandatory, games are

2We did not model two games due to their complexity, and are
missing data from several other participants due to technical issues.

the opposite—key gameplay details are captured by prefer-
ences and scoring rules (see sections below), and under 50%
of our participants chose to specify an exact end to the game.

We will now briefly outline the different components of our
representations, and see for two worked examples of
how participants’ games can be expressed in the DSL.

Gameplay Preferences. Gameplay preferences capture
how games should be played by specifying temporal con-
straints over sequences of states. Each is named
(e.g. throwBallToBin in [Figure 3)), allowing to refer to it as
part of the scoring rules or terminal conditions. A gameplay
preference can quantify (existentially — , or universally
- ) over one or more object types (the dodgeball and
the bin in the first preference in on the right, and
the dodgeball in the second preference). Using the quantified
variables, a preference then specifies one of two temporal op-
tions. A preference could include a series of temporal modals
expressed in our syntax under the operator. Temporal
reasoning is required because most goals cannot be expressed
over single world-states, using a trivial state representation
(e.g., the positions and velocities of all objects at a given
timestep). Consider the throwing games described in [Figure 3}
given only a single state, we can check that a ball is currently
stationary and in the bin—but we would not know if it was
thrown or placed there, and from what distance it might have
been thrown. We support a variety of temporal modals, such
as (a predicate happens for a single world state) and

(a predicate holds for a sequence of world states). These
temporal modals can be mapped onto linear temporal logic
(LTL) operators acting on the same predicateﬂ LTL (Manna
and Pnueli, |1992) is a temporal modal logic allowing to reason
about the validity of prepositions over time, using modal oper-
ators such as next (a preposition holds at the next timestep),
until (a preposition holds until another holds), and always (a
preposition holds for all remaining timesteps). A preference
could also consist of a predicate that must hold at the end of
gameplay, expressed using the operator.

Scoring. The scoring specification describes how to count
the different preferences, how much satisfactions of the dif-
ferent preferences are worth, and how to combine these into
a final score. The most commonly used counting method
( ) is to count how many times each
preference is fulfilled over the entire state trace generated as
an agent plays the game. Other counting methods include
counting a preference at most once ( ), or counting
a preference once for each unique set of objects used to fulfill
it ( ). Once preferences are counted,
the rest of the scoring specification describes the arithmetic to
combine the counted preferences to a final score.

Terminal Conditions. A game can specify terminal condi-
tions. These usually take the place of a comparison between
a preference counting, as used in the scoring, and a target

3See Section 3 of our full DSL specification here for the mapping.
We provide the mapping to facilitate reasoning about the expressivity
of preferences in our DSL and to relate to existing work using similar
LTL variations to represent RL tasks (e.g., Littman et al.,|2017)


https://mfr.osf.io/render?url=https://osf.io/dmt9f/?direct%26mode=render%26action=download%26mode=render
https://mfr.osf.io/render?url=https://osf.io/dmt9f/?direct%26mode=render%26action=download%26mode=render

Second Throwing Game Example

Setup: N/A
Gameplay: “Throw a dodgeball into the bin to score points.”
Scoring: “Everytime you score a dodgeball into the bin you get

First Throwing Game Example

Setup: N/A
Gameplay: “Throwing w Dogball to the can form 1 meter distance”
Scoring: “1 Dogball in the bin = 1 point.”

01: (:setup ) 1 point and you lose 1 point every 5 throws.”
02: (
03: (preference throwBallToBinFromOneMeter 01: (:setup )
04: (exists (/¢ - dodgeball - hexagonal_bin) 02: ( (and
05: (then 03: (preference throwBallToBin
06: (once (and (agent_holds ') (= (distance agent 1) 1))) 04: (exists (70 - dodgeball - hexagonal_bin)
07: (hold (and (not (agent_holds <)) (in_motion '<))) 05: (then
08: (once (and (not (in_motion /<)) (in ))) 06: (once (agent_holds /1))
29: )))) 07: (hold (and (not (agent_holds '«)) (in_motion '<)))
10: (:scoring maximize 08: (once (and (not (in_motion )) (in )))
11: (count-nonoverlapping throwBallToBin) 09: )))
. 10: (preference throwAttempt
11: (exists (¢ - dodgeball)
12: (then
13: (once (agent_holds "))
= 14: (hold (and (not (agent_holds <)) (in_motion '<)))
15: (once (not (in_motion ')))

16:  )))
17: 1))
18: (:scoring maximize (+

19: (count-nonoverlapping throwBallToBin)
(- (/ (count-nonoverlapping throwAttempt) °)

21: 1))

. £
b [

Figure 3: Example games. We provide two participant-generated games to illustrate our DSL and how a more complex game (right) can
be built compositionally from a simpler one (left). The images (bottom) illustrate the creator of the more complex game playing their game,
showing a ball being held and then successfully thrown into the bin. We reference line numbers in square brackets. Left: The game specifies no
setup [01]. The game requires specifying a single preference [02-09], named throwBallToBinFromOneMeter [03] which quantifies a dodgeball
and the bin (“can”) [04]. It quantifies sequences of states using the then operator [05], starting from a single state (once) in which the agent
holds the dodgeball, and is a distance unit away from the bin [06]. It then seeks a contiguous sequence of states (hold), immediately following
the previous one, in which the ball is in motion and unheld by the agent [07]. The sequence ends with a single state (or more) in which the ball
is stationary and in the bin [08]. The scoring [10-12] seeks to maximize the number of times the preference occurs, counting non-overlapping
sequences of states [11]. Right: We focus on deviations from the previous game. The throwBallToBin preference is slightly simpler in this
case, since the participant did not provide a throwing distance constraint [06]. However, they count attempts, which requires specifying a
second preference, named throwAttempt [10-16], to count attempts regardless of whether or not they land in a bin (compare [15] to [08]). The

scoring also requires counting both preferences, dividing the counting of the throwAttempt preference by 5 and negating it [20].

number. For example, to specify “You get 5 chances to shoot
the dodgeball into the bin from the same location,” we would
create a preference for a throw attempt (regardless of whether
it landed in the bin or not), and terminate after the fifth one.

Setup. In many cases, participants provided instructions
for how to set up for their game, in terms of repositioning
objects. In the DSL, the setup consists of quantifications
over objects, predicates over objects, and marking of these
predicates as game—optional (can be changed during play) or
game—conserved (cannot be changed)ﬂ

Results and Analysis

We report three analyses highlighting four aspects of human
games we believe would aid developing computational models
of game generation: common sense, compositionality, cre-
ativity, and context sensitivity. Our analyses operate over the
DSL representations of the games we collected, leveraging
the grammar to systematically extract types, predicates, and
repeated structures, all of which would be arduous to ana-
lyze from natural language. To contextualize the analyses, we
attempted to categorize the types of games our participants
created into high level classes. We observe three types of
gameplay elements participants reused: throwing (handheld

4Consider a setup with “the bin on the bed and the two dodge-
balls on the table,” with the goal of throwing balls into the bin. The
first clause, placing the bin on the bed, should be conserved during
gameplay—if a player moved the bin off the bed, they would be vio-
lating the game described. The second clause, putting the dodgeballs
on the table, must be violated when the agent throws them.

objects into or onto other objects), building (stacking objects),
and organizing (moving objects to predetermined positions
92 of the 98 games in our dataset only use one element, mostly
throwing (75), followed by organizing (10), and building (8).
Five games combine multiple types of elements, and a single
game does not fall into any of these categories.

Common Sense

We begin our analyses by investigating the roles common
sense and intuitive physics play in game creation. In our ex-
periment environment, all handheld objects provide the same
affordances—they can be picked up, dropped, or thrown—a
priori making throwing games involving balls as likely as
throwing games involving blocks, for example. To systemati-
cally explore this notion, we examine what sorts of objects are
used with which predicates across different types of games.
We analyze every predicate in the DSL representations of our
games, and count how many times it appears with each object
typeﬁ We then categorize objects into higher level types, such
as balls, blocks, furniture, buildings constructed by the agent,
and several others. depicts these object-predicate
co-occurrence counts, separating between games involving
throwing and games not involving throwing.

SWe categorize games based on their scoring preferences. For
instance, a game whose setup includes moving items around to enable
playing the game, but only scores successful throws, would be labeled
as a throwing game, rather than a throwing and organizing game.

5For example, line [08] in the examples in would count
the predicate in_motion appearing with the type dodgeball, and the
predicate in appearing with the types dodgeball and hexagonal_bin.
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Figure 4: Common sense through object and predicate usage. We categorize object and predicate co-occurrence across games in our dataset,
splitting between games with throwing elements and games without them. We coarsen objects types to the categories plotted in the legend,
where the ‘building’ category refers to structures of touching objects created by the participant. For clarity, we omit rare predicates and object
categories: types appearing under 10 times are omitted from the non-throwing panel (left), and types appearing under 20 times are omitted
from the throwing panel (right). We threshold the panels differently as 18 games contribute to the left-hand panel and 80 to the right-hand one.

First, we observe markedly different distributions of object
categories between games types: throwing games tend to in-
volve balls and receptacles, whereas building and organizing
games make relatively more use of blocks, small objects, and
room features (such as the walls and doors). As all moveable
objects present the same affordances, a model that sampled ob-
jects uniformly by their affordances would arrive at a distinctly
different distribution than the on we observed. Participants
seem to rely on their intuitive physical understanding that
some objects have straight edges, and so are easier to stack,
while other objects are round, and so are easier to throw.

Second, we find a difference in the object-predicate co-
occurrence distributions between game types. Throwing
games concern themselves with the position of the agent (the
black bar segments for adjacent and on in[Figure 4)), often to
specify constraints on where the agent should throw from to
modulate game difficulty). Non-throwing games never refer
to the agent’s position, instead focusing the constraints on
how and where objects should be stacked, as evidenced by the
higher frequencies of the in and on predicates in relation to
blocks (green) and room features (yellow). We do not find
this application of common sense by our participants to be
particularly surprising, but we note that models sampling ob-
jects and predicates from a uniform distribution would fail to
recreate such patterns. Thus, a model equipped with a rich
description language for goals is unlikely to be sufficient on its
own; it will also need to represent and utilize basic principles
of physical reasoning.

Compositionality and Creativity

Next, we study reuse of recurring motifs (to probe for com-
positionality) and unique motifs (to quantify creativity) as a
means of analyzing the generative structure of games. To that
end, we examine all predicate structures that appear in our
dataset under temporal operators (once, hold, etc.), coarsen-
ing out the specific variables or referent objects in the predi-
cates to examine the abstract structures (e.g., the expressions
(once agent_holds ?d) and (once agent_holds ?b) would
be equivalent, even if the variables ?d and ?b are bound to

Compositionality in Gameplay Preferences
01: (preference throwBallToBinFromDesk

02: (exists ( — dodgeball - hexagonal_bin)

03: (then

04: (once (and (agent_holds ') (adjacent agent desk)))
05: (hold (and (not (agent_holds )) (in_motion '7)))
06: (once (and (not (in_motion ")) (in )))

07: ))))

09: (preference throwBallFrom0ffRugToRug

10: (exists (/¢ — dodgeball)

11: (then

12: (once (and (agent_holds ') (not (on rug agent))))
13: (hold (and (not (agent_holds ‘<)) (in_motion ')))
14: (once (and (not (in_motion "©)) (on rug )))

15: ))))

17: (preference throwOrBounceFromEdgeOfRug

18: (exists (¢ — dodgeball - hexagonal_bin)

19: (then

20: (once (and (agent_holds ') (adjacent rug agent)))
21: (hold (and (not (agent_holds )) (in_motion )))
22: (once (in ))

23:))))

25: (preference blockFromRugToDeskWithoutBreaking

26: (exists (' — cube_block)

27: (then

28: (once (and (agent_holds ') (on rug agent)))

29: (hold (and

30: (not (agent_holds '<)) (in_motion ') (on rug agent)

31: (not (exists (o — (either lamp laptop desktop)) (broken ©)))
32: ))

33: (once (and (on rug agent) (on desk =) (not (in_motion "))))

34: ))))

Figure 5: Constructing modified preferences through minimal
compositional changes. These example preferences, taken from vari-
ous games in our corpus, build on the structure of the throwBallToBin
and throwAttempt preferences in (right). The throwBallTo-
BinFromDesk preference adds a constraint that the ball is thrown with
the agent next to the desk [04], while the throwBallFromOffRugToRug
preference indicates the agent should throw from off the rug [12] and
land the ball on the rug [14]. throwOrBounceFromEdgeOfRug omits
the requirement that the ball end up not in motion in the bin [22],
allowing for it to either land inside or bounce in and out. Finally,
blockFromRugToDeskWithoutBreaking requires the agent to throw a
block from the rug [28], avoid leaving the rug while the block is in
motion [30], not break any of the objects on the desk [31], and also
requires that the block lands and stops on the desk [33].

different types). We then counted how many times each such
abstract structure occurs over our entire dataset, and sort by
the number of occurrences descending. depicts the
cumulative proportion covered by the most common struc-
ture, the two most common ones, the four most common ones,
and so forth. Compositionality: we discover that four re-
curring structures, including the ones used in lines [07] and
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Figure 6: Abstract structure COU'I\IItS highlight compositionality
and creativity. We coarsen out variable types from predicate argu-
ments to extract structures, and count the occurrences of each abstract
structure across our dataset. Each bar indicates the cumulative pro-
portion covered by the N most common structures.

[08] in (right), cover 47.9% of all occurrences in
our dataset. We take that as evidence of a heavily compo-
sitional structure: combining these recurring structures with
varying objects and additional preferences comes up quite of-
ten, far more often than would be expected if predicates were
drawn arbitrarily from the DSL. depicts the capac-
ity of compositionality in our DSL, offering four examples
of how minimal changes to a gameplay preference can alter
its semantic meaning, enabling different games. Creativity:
conversely, we find evidence of creativity on the other end
of the count distribution. 56.9% of unique structures appear
exactly once in our dataset, and combine to account for al-
most one in seven occurrences in the entire dataset. We take
this as evidence of creativity—just as people are capable of
being endlessly creative in play (in our dataset of 98 games,
only two were identical), a computational model aiming to
generate human-like games would be required to display a
similar ability to conceive of unlikely yet plausible instances.

Table 1: Context sensitivity
Context Sensitivity

Version | Few Medium Many

We evaluate how partici-

. Few 100% 80% 100%
pants tailor goals to the Medium| 23% 100%  60%
specific objects and affor- Many |36% 48% 100%

dances presented by the
environment. To assess this sort of context sensitivity, we enu-
merate which objects each game refers to, and check whether
or not they exist in the other two versions of the environment.
plots summarizes this information, where each en-
try indicates the percentage of games created in the version
marked by the row that could be played in the version marked
by the column. Room versions are named by how many ob-
jects are in each one. There is overlap between the objects
in each room (every object in the ‘Few’ room exists in the
‘Many’ room, which is not true for the other two pairs). Un-
surprisingly, games more often transfer from sparser versions
of the environment to more object-dense ones, than vice versa.
Although this could be partially accounted for by the overlap
in terms of which objects exists, many of the movable objects,
and all furniture and architectural room features, exist in all
three versions. It would be trivial to construct games that use
the shared objects, and in fact, to create games that use no ob-
jects at all, albeit they might be less fun and interestinéﬂ We
hypothesize that to effectively model human game creation,

7“Walk in circles around the room. You get a point for each lap.”

and generate games that are compelling, a model would need
to be sensitive to salient objects in its environment.

Discussion

Inspired by intrinsic motivation and playful exploration, this
work takes initial steps towards a formal characterization of
human game generation. We created a web-based experiment
to collect games in an embodied, interactive environment. We
formalized a notion of temporally extended goals representing
reward-generating functions, and use our dataset to propose a
DSL capturing the semantics of the games we collected. We
used the representations of games in our DSL to systematically
analyze our dataset and highlight four key aspects of human
game generation any computational account must address:
common sense, compositionality, creativity, and context sensi-
tivity. The DSL is critical for analyzing games in terms of their
underlying compositional and correlational structures, which
are readily computable from the semantic representations but
not from the natural language descriptions. We see the DSL
as forming the foundation of future computational modeling
efforts to automatically generate human-like goals.

Our work builds upon language of thought (LOT, Fodor,
1979) models in cognitive science, treating knowledge as pro-
grams and learning as program induction within this language
(Bramley et al.,|2018)). Rule et al. (2020) offer an extensive of
discussion of this approach. Program-like representations have
been used to model cognitive processes in a variety of domains:
causal models (Chater and Oaksford, 2013), concepts (Good-
man et al.,|2015)), handwritten character generation (Lake et
al., [2015)), and question asking (Rothe et al., 2017), among
many others. Our work extends this tradition by showing
how programs can capture playful goals. Looking forward,
techniques for synthesizing programs within our DSL will pro-
vide guidance in extending our approach to goal generation,
although goals are distinguished by the additional challenges
of recombining parts in ways that reflect common sense con-
straints we identified here. Treating goals as programs also
provides an avenue for developing models that act on goals,
building on the planning literature that inspired our DSL.

We view this work as a stepping stone toward models that
can generate, reason with, and pursue playful goals. Beyond
the ability to score successful achievement, we are excited
about modeling two other human cognitive capacities. One is
the ability to reason about goals: could we devise and train
a model to predict whether a particular goal is easy or hard?
Boring or fun? A second is the capacity to generate new,
human-like goals: can a model propose goals that are indistin-
guishable from human-generated ones? Or tailor goals to use
a specific object or affordance? We also hope to investigate
the relationship between environment complexity and creativ-
ity: how would simpler environments (with fewer objects or
affordances) change the breadth of games participants create?
Finally, we hope to develop reinforcement learning methods
that use playful goals as exploration objectives, or that learn
how to pursue many goals and then generalize to new ones.
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