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A B S T R A C T   

Human infants are fascinated by other people. They bring to this fascination a constellation of rich and flexible 
expectations about the intentions motivating people’s actions. Here we test 11-month-old infants and state-of- 
the-art learning-driven neural-network models on the “Baby Intuitions Benchmark (BIB),” a suite of tasks 
challenging both infants and machines to make high-level predictions about the underlying causes of agents’ 
actions. Infants expected agents’ actions to be directed towards objects, not locations, and infants demonstrated 
default expectations about agents’ rationally efficient actions towards goals. The neural-network models failed to 
capture infants’ knowledge. Our work provides a comprehensive framework in which to characterize infants’ 
commonsense psychology and takes the first step in testing whether human knowledge and human-like artificial 
intelligence can be built from the foundations cognitive and developmental theories postulate.   

The early-developing ease with which infants know about people 
(Gergely, Nádasdy, Csibra, & Bíró, 1995; Woodward, 1998), objects 
(Spelke, 1990; Stahl & Feigenson, 2015), and places (Hermer & Spelke, 
1994) is impressive, especially compared with the difficulties machines 
have had in achieving these simple human competencies (Lake, Ullman, 
Tenenbaum, & Gershman, 2017; Marcus & Davis, 2019). Such differ-
ences between human and artificial intelligence (AI) are critical to 
address if we aim to create commonsense AI, leading to AI that we better 
understand and that better understands us. 

One of the general challenges of building commonsense AI is 
deciding what knowledge to start with. A human infant’s foundational 
knowledge is limited, abstract, and reflects our evolutionary inheri-
tance, yet it can accommodate any context or culture in which that in-
fant might develop (Spelke, 2022; Spelke & Kinzler, 2007). If an aim of 
AI is to build the flexible, commonsense thinker that human adults 
become, then machines might need to start like adults do, from the same 
core abilities as infants, whether achieved through learning-driven or 
engineered approaches (Botvinick et al., 2017). 

Over the past several decades, foundational research on infants’ 
commonsense psychology, i.e., infants’ understanding of the intentions, 
goals, preferences, and rationality underlying agents’ actions, has sug-
gested that infants attribute goals to agents and expect agents to pursue 
goals in rationally efficient ways (Baillargeon, Scott, & Bian, 2016; 
Gergely et al., 1995; Spelke, 2022; Woodward, 1998). The predictions 

that support infants’ commonsense psychology are foundational to 
human social intelligence (Banaji & Gelman, 2013; Jara-Ettinger, 
Gweon, Schulz, & Tenenbaum, 2016) and could thus inform better 
commonsense AI, but these predictions are typically missing from 
machine-learning algorithms, which instead predict actions directly (e. 
g., churn, clicks, likes, etc.; Griffiths, 2015), and therefore lack flexibility 
to new contexts and situations. 

Nevertheless, research on infants’ commonsense psychology has not 
yet been evaluated in a framework that could be directly tested against 
machines’—let alone built into them—because of non-scalable stimuli, 
varied task demands, isolated questions, and mixed results. For example, 
experiments on infants’ commonsense psychology have exemplified 
agents and their actions using various displays, from live human actors 
reaching for everyday objects (Woodward, 1998), to live puppets with 
or without animate features like eyes or fur (Johnson, Slaughter, & 
Carey, 1998), to highly minimal animations of simple shapes navigating 
in 2D or 3D worlds (Csibra, Bíró, Koós, & Gergely, 2003; Csibra, Gergely, 
Bíró, Koós, & Brockbank, 1999). These experiments have also typically 
focused on individual questions of, e.g., goal (Woodward, 1998) or ra-
tionality (Gergely et al., 1995) attribution, although some work has 
probed, for example, how infants’ inferences about goals and rationality 
might combine to support notions of consistency, cost, or value (Liu, 
Ullman, Tenenbaum, & Spelke, 2017; Scott & Baillargeon, 2013). 

Different accounts of infants’ knowledge about agents have 
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suggested that this knowledge: coheres as a unified set of abstract con-
cepts of causal efficacy, efficiency, goal-directedness, and perceptual 
access (Spelke, 2022); reflects infants’ intuitive understanding of agents’ 
mental states, which direct their efficient actions consistent with their 
mental states (Baillargeon et al., 2015; Baillargeon et al., 2016); or 
emerges from individual achievements rooted in infants’ own action 
experience (Woodward, 2009; Woodward, Sommerville, & Guajardo, 
2001). From this rich experimental and theoretical tradition thus arises 
the need for a comprehensive framework in which to characterize in-
fants’ knowledge of agents with results on one task comparable with 
those on another and with results on the suite of tasks comparable across 
infants and machines. Such a framework can inform both theories of 
infants’ knowledge and the future of human-like AI. 

Here we take a critical step in addressing this need. We provide a 
comprehensive framework for testing infants’ commonsense psychology 
by assessing infants’ performance on the “Baby Intuitions Benchmark 
(BIB),” a suite of six tasks probing commonsense psychology. BIB was 
designed expressly to allow for testing both infant and machine intelli-
gence alike (Gandhi, Stojnic, Lake, & Dillon, 2021), and fulfilling that 
intention, here we also directly compare the performance of infants and 
machines, providing an empirical foundation for building human-like 
AI. 

Fig. 1. Schematic of BIB’s six tasks used in Experiments 1 & 2 (see also Fig. S1). For each task, observers first see eight familiarization trial videos in which an agent 
acts consistently in terms of its goals, rationality, or instrumentality. The exact make-up of the grid world and the movement of the agent may vary across trials, as 
described in the main text and SI. One example still image per task from a familiarization trial video is shown here. Observers then see expected and unexpected test 
trial videos (with the order of these trials varying for infants). Example still images of both test trial videos per task are shown here. All of the videos are available at: 
https://osf.io/r98je/. 
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1. General methods 

1.1. Materials 

BIB’s tasks include short silent animated videos with simple visuals 
(Heider & Simmel, 1944), like basic shapes without eyes or limbs, un-
dertaking basic movements in a grid world (Figs. 1 and S1). This design 
allowed for the stimuli’s scalable procedural generation, which is 
required for testing machine-learning algorithms, and emphasized the 
high-level properties of agents (Csibra et al., 1999; Gao, McCarthy, & 
Scholl, 2010; Johnson & Gilmore, 2003; Meltzoff, 1995), which chal-
lenges the limits and abstraction of an observer’s inferential capacity 
(Kominsky, Lucca, Thomas, Frank, & Hamlin, 2022). This design also 
presented a novel, overhead navigational context, which required an 
assumption of agents’ full observability of the grid world and its con-
tents (Baker, Jara-Ettinger, Saxe, & Tenenbaum, 2017; Luo & Baillar-
geon, 2007; Luo & Johnson, 2009; Rabinowitz, Perbet, Song, Zhang, & 
Botvinick, 2018). 

Importantly, all of BIB’s tasks are presentationally consistent, 
allowing for comparisons across tasks, without concerns of attributing 
null effects to varying visual, memory, or other task demands. Instead of 
focusing on one principle of commonsense psychology, moreover, BIB’s 
tasks focus on three possible attributions to agents’ actions that an 
observer could make—goal attribution, rationality attribution, and 
instrumentality attribution—thereby addressing whether and how such 
principles of commonsense psychology might cohere. 

Using BIB’s environment (Gandhi et al., 2021), we procedurally 
generated the video stimuli to test infants and computational models 
and chose the clearest examples of the particular principles of 
commonsense psychology targeted by each task (Figs. 1 and S1). The 
first three tasks focus on an observer’s attribution of goals to agents’ 
actions. The Goal-Directed Task captures the idea that agents’ goals are 
directed towards objects, not locations. Observers watch an agent 
repeatedly move to the same one of two objects in approximately the 
same location in an unchanging grid world during familiarization. At 
test, observers may be more surprised when the agent moves to a new 
object in that grid world after the locations of the two objects switch 
(Woodward, 1998). The Multi-Agent Task asks whether goals are specific 
to agents. Observers watch an agent move to the same one of two objects 
during familiarization in a changing grid world, with both objects 
appearing in varying locations. At test, observers may be more surprised 
when the original agent versus a new agent moves to a new object 
(Buresh & Woodward, 2007; Repacholi & Gopnik, 1997). The Inacces-
sible-Goal Task asks whether agents might form new goals when their 
existing goals become unattainable. Observers watch an agent move to 
the same one of two objects during familiarization in a changing grid 
world, with both objects appearing in varying locations. At test, the grid 
world changes again such that the agent’s goal object becomes physi-
cally inaccessible. Observers may be more surprised when the agent 
moves to a new object when its prior goal object is accessible versus 
inaccessible (Luo & Baillargeon, 2007; Scott & Baillargeon, 2013). 

The next two tasks focus on an observer’s attribution of rationality to 
agents’ actions. The Efficient-Agent Task captures the idea that agents act 
rationally to achieve goals. Observers watch an agent move to an object 
efficiently around obstacles in an unchanging grid world during famil-
iarization. At test, the object appears in a location that it had appeared 
during familiarization, but the grid world has changed such that the 
obstacles that blocked the object are gone or have been replaced with 
different obstacles (Gergely et al., 1995; Liu & Spelke, 2017). Observers 
may be more surprised when the agent moves along a familiar but now 
inefficient path to the object. The Inefficient-Agent Task asks what ex-
pectations observers have about agents who initially move inefficiently 
in a changing grid world. During familiarization, observers watch an 
agent move along the same paths to an object as the agent in the Effi-
cient-Agent Task, but this time there are no obstacles in the agent’s way, 
so the agent’s movements to the object are inefficient. At test, the 

environment changes as in the Efficient Agent Task. Observers may either 
be more surprised when the agent continues to move inefficiently to the 
object (Liu & Spelke, 2017) or may have no expectations about whether 
that agent will move efficiently or inefficiently to the object (Gergely 
et al., 1995). 

The last task focuses on an observer’s attribution of instrumentality 
to agents’ actions. The Instrumental-Action Task captures the idea that 
agents should only take instrumental actions when necessary. During 
familiarization, observers watch an agent move first to a key, which it 
uses to remove a barrier around an object in varying locations, and then 
to that object. At test, observers may be more surprised when the agent 
continues to move to the key, instead of directly to the object, when the 
barrier is no longer blocking the object (Sommerville & Woodward, 
2005; Woodward & Sommerville, 2000). 

All of the stimuli videos are available at: https://osf.io/r98je/, and 
additional details about each task are included in the SI. 

BIB’s task structure adopts the “violation-of-expectation” looking- 
time paradigm often used to test infants (Spelke, 1985; Téglás et al., 
2011). Observers see a series of familiarization trials that serve to set up 
an expectation followed by an expected outcome that is perceptually 
dissimilar to the familiarization but is conceptually consistent and an 
unexpected outcome that is perceptually similar to the familiarization 
but is conceptually surprising. This task structure has been used in 
recent machine-learning benchmarks focusing on common sense (Piloto, 
Weinstein, Battaglia, & Botvinick, 2022; Shu et al., 2021; Smith et al., 
2019) and is advantageous because it both protects against low-level 
heuristic-based solutions (Spelke, 1985) and allows for an algorithm’s 
quantitative measure of surprise to be compared with a well-established 
psychological measure of surprise (Piloto et al., 2022; Stahl & Kibbe, 
2022). 

2. Infant methods 

2.1. Infant design and analyses 

In Experiment 1, we collected infants’ responses to two of BIB’s six 
tasks, the Goal-Directed Task and the Efficient-Agent Task. Mixed-model 
linear regressions with raw looking time as the dependent variable, 
outcome (expected versus unexpected) as a fixed effect, and participant 
as a random-effects intercept evaluated infants’ performance on each 
task, and an additional regression examined infants’ overall perfor-
mance across both tasks. To obtain p-values, we ran Type 3 Wald tests on 
the results of each regression. Experiment 1 focused on these two tasks 
because the common sense they measured has had consistent findings in 
the prior literature on infants’ action understanding (Baillargeon et al., 
2016; Gergely & Csibra, 2003; Spelke, 2022; Woodward, 2009). 
Experiment 1 thus aimed to provide initial evidence of infants’ 
commonsense psychology, as elicited by BIB’s highly minimal displays, 
in BIB’s fully observable, overhead navigational context, and with BIB’s 
multiple tasks presented to infants online. 

Experiment 2 followed a preregistered design and analysis plan 
(https://osf.io/p6kba) with replications of the two tasks in Experiment 1 
with several improvements, including: automated trial progression; 
balancing of the side of the goal object across participants in the Goal- 
Directed Task; and matching of the test-trial lengths within participants 
in the Efficient-Agent Task. Infants were tested on these two tasks as well 
as on BIB’s other four tasks outlined above that were not included in 
Experiment 1. 

Following Experiment 1, Experiment 2 evaluated infants’ perfor-
mance on each task with planned mixed-model linear regressions and 
Type 3 Wald tests with raw looking time as the dependent variable, 
outcome (expected versus unexpected) as a fixed effect, and participant 
as a random-effects intercept. Additional planned regressions examined 
infants’ overall performance across all six tasks and directly compared 
their performance on the two tasks focused on agents’ rational actions. 
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2.2. Infant participants 

In Experiment 1, typically developing 11-month-old infants (N = 26, 
Mage = 11.13 months, Range = 10.42 months – 11.83 months; 12 girls) 
born at ≥37 weeks gestational age were included. They completed the 
Goal-Directed Task, the Efficient-Agent Task, or both, with half of the 
infants receiving each task first, totaling N = 48 individual testing ses-
sions and N = 24 sessions per task. An additional four sessions were 
excluded because infants did not complete the session. 

In Experiment 2, typically developing 11-month-old infants (N = 58, 
Mage = 11.06 months, Range = 10.50 months – 11.50 months; 31 girls) 
born at ≥37 weeks gestational age were included. Each infant completed 
at least one of BIB’s tasks, totaling N = 288 individual testing sessions. 
Following our preregistration, data collection stopped when 32 infants 
(Mage = 11.09 months, Range = 10.50 months – 11.50 months; 17 girls) 
completed all six of BIB’s tasks. Tasks were presented in a semi- 
randomized order using 32 fixed orders that averaged to each task 
being presented 5.33 times in each ordinal position (range: 4–7 times). 
All included sessions for each task contributed to the analyses reported 
here. The final sample sizes for each task were: Goal-Directed Task, N =
48; Multi-Agent Task, N = 49; Inaccessible-Goal Task, N = 47; Efficient- 
Agent Task, N = 47; Inefficient-Agent Task, N = 49; Instrumental-Action 
Task, N = 48. The results from the 32 infants who completed all six of 
BIB’s tasks were consistent with the results reported here and so are 
reported in the SI. 

An additional 37 sessions were excluded because of preregistered 
exclusion criteria, including: looking time < 1.5 s to least one test trial 
and/or two familiarization trials with or without the infant completing 
the session (16); poor video quality and/or technical failure (18); and 
caretaker interference (3). An additional two sessions were excluded 
post hoc for extreme values (> 40 s) to one test outcome, which could 
artificially inflate the calculation of the sample’s variance. These 
extreme values were identified through examination of a histogram of 
the raw looking times across all of the sessions and across all of the tasks 
by two researchers masked to the task and outcome represented by each 
value. Exclusions were consistent across tasks: Goal-Directed Task, 5; 
Multi-Agent Task, 6; Inaccessible-Goal Task, 9; Efficient-Agent Task, 7; 
Inefficient-Agent Task, 5; Instrumental-Goal Task, 7. The total exclusion 
rate was 11.9%. 

Participating families received a $5 Amazon gift card after each 
testing session and received a bonus gift card of $30 if they completed all 
six sessions. Prior to participation in session one, we obtained informed 
consent from the infant’s legal guardian, and we confirmed consent 
before each subsequent session. The use of human participants for this 
study was approved by the Institutional Review Board on the Use of 
Human Subjects at our university. 

2.3. Infant procedure 

Infants were tested online on Zoom. In the first ten minutes of the 
first testing session, the experimenter explained to caretakers the in-
structions for setting up their device and for positioning the infant in 
front of the screen. We asked caretakers to close their eyes and not 
communicate with the infant during the stimuli presentation. The 
experimenter, masked to what trial was being presented and the order of 
the test trials, coded infants’ looking to the stimuli live from the start of 
each video and controlled the progression of stimuli using PyHab 
(Kominsky, 2019) and slides.com. Each trial video was preceded by a 5 s 
attention grabber (a swirling blob accompanied by a chiming sound, 
centered on the screen) to focus the infant’s attention to the screen, and 
each video froze after the agent reached an object. The last frame of the 
video remained on the screen until infants looked away for 2 s consec-
utively or for a maximum of 60 s. Testing sessions were recorded 
through the Zoom recording function, capturing both the infant’s face 
and the screen presenting the stimuli. 

Following our preregistration, a different researcher, masked to the 

study outcome, what trial was being presented, and the order of the test 
trials, recoded 48 randomly chosen sessions (25%) from the 32 infants 
who completed all six tasks. The reliability between the first and second 
coder was very high (ICC = 0.98). 

3. Infant results 

Infants’ performance on Experiment 1’s two tasks is displayed in 
Fig. 2. Infants’ looking time varied by task, with longer looking to the 
Efficient-Agent versus Goal-Directed Task (F(1, 71) = 9.34, p = .003), 
reflecting the longer test-trial lengths in the Efficient-Agent Task (see SI). 
Overall, infants looked longer to the unexpected versus expected out-
comes (F(1, 66) = 11.34, p = .001), and there was no task by outcome 
interaction (F(1, 66) = 0.30, p = .585). Infants were surprised (looked 
longer) when an agent moved to a new object in the Goal-Directed Task (F 
(1, 23) = 4.73, p = .040), and they were surprised when an efficient 
agent later took an inefficient path to an object in the Efficient-Agent Task 
(F(1, 23) = 2.60, p = .016). 

Infants’ performance on Experiment 2’s six tasks is also displayed in 
Fig. 2. Infants’ looking time varied by task (F(5, 341) = 2.78, p = .018), 
reflecting the different test-trial lengths of the different tasks (see SI). 
Overall, infants did not look longer to unexpected versus expected 
outcomes (F(1, 341) = 2.27, p = .133), but a task by outcome interaction 
suggested that different tasks elicited different patterns of infants’ 
looking (F(5, 341) = 2.23, p = .051). 

We first considered infants’ performance on Experiment 2’s three 
tasks that focused on goal attribution: the Goal-Directed; Multi-Agent; and 
Inaccessible-Goal Tasks. First, consistent with the results in Experiment 1, 
infants were surprised when an agent moved to a new object in the Goal- 
Directed Task (F(1, 47) = 4.09, p = .049). Infants presented with a new 
agent in the Multi-Agent Task, however, did not show a difference in 
surprise when that agent versus the original agent moved to a new object 
(F(1, 48) = 3.41, p = .071; with longer looking times to the expected 
outcome). Infants in the Inaccessible-Goal Task also did not show a dif-
ference in surprise when an agent moved to a new object when its goal 
object was accessible versus inaccessible (F(1, 46) = 0.02, p = .891). 

We next considered infants’ performance on the two tasks that 
focused on rationality attribution: the Efficient-Agent and Inefficient- 
Agent Tasks. First, consistent with the results in Experiment 1, infants 
were surprised when an efficient agent later took an inefficient path to 
an object in the Efficient-Agent Task (F(1, 46) = 7.72, p = .008). Infants in 
the Inefficient-Agent Task did not show a difference in surprise when an 
inefficient agent continued to move inefficiently to an object at test (F(1, 
48) = 2.51, p = .119). But, when comparing infants’ performance in the 
Efficient-Agent and Inefficient-Agent Tasks directly, there was no signifi-
cant task by outcome interaction (F(1, 132) = 0.49, p = .484): We did 
not find evidence that infants’ surprise at the inefficient agent’s later 
inefficient action was different from their surprise at the efficient agent’s 
later inefficient action. 

Finally, we considered infants instrumentality attribution through 
their performance on the Instrumental-Action Task. Infants did not show a 
difference in surprise when the agent moved to the tool as opposed to its 
goal object when the tool was no longer needed to achieve the goal (F(1, 
47) = 0.03, p = .853). 

4. Infant discussion 

Infants’ successful performance in the Goal-Directed and Efficient- 
Agent Tasks in both Experiments 1 and 2 suggest that they expect agents’ 
actions to be goal directed towards objects, not locations, and that they 
expect agents’ goal-directed actions to be rationally efficient. These 
results also show that infants’ common sense about the underlying 
causes of agents’ actions are accessible when testing infants online and 
are highly abstract: Infants’ expectations are elicited by BIB’s minimal 
displays and are generalizable to BIB’s novel, overhead navigational 
context. 
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Fig. 2. Infants’ raw looking times to the two outcomes in 
each of BIB’s tasks in Experiments 1 & 2. Gray lines connect 
the individual looking times (represented by blue and yellow 
dots) of each infant to each outcome. Red dots connected by 
red lines indicate the mean looking times to each outcome for 
each task. Beta coefficients are effects sizes in terms of 
standard deviations, and statistical analyses are reported in 
the main text (*p < .05, **p < .01). (For interpretation of the 
references to colour in this figure legend, please see the on-
line version.)   
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This latter suggestion is especially striking given infants’ success on 
the Efficient-Agent Task since obstacles in the grid world blocked an 
agent’s direct access to the goal object. Given infants sensitivity to and 
use of agents’ perceptual access to objects when making inferences 
about agents’ actions (Luo & Baillargeon, 2007; Luo & Johnson, 2009), 
infants evidently appreciated BIB’s blocking obstacles as only physical, 
not perceptual. With BIB’s context providing no information that these 
obstacles limit an agent’s perceptual access, infants may have inter-
preted the obstacles as something that agents could “see over” or “see 
through.” Future studies could explore how infants appreciate the geo-
metric, physical, and perceptual affordances of such overhead naviga-
tional environments. 

Infants’ pattern of performance on BIB thus enriches our under-
standing of their commonsense psychology and raises new questions 
about the abstract principles that might be inherent to that common 
sense. Building on questions of infants’ sensitivity to agents’ physical 
and perceptual access to objects, future versions of the Goal-Directed 
Task could reveal how having an agent move around obstacles to a goal 
object, instead of taking only straight paths—actions providing addi-
tional cues to agency (Johnson, Shimizu, & Ok, 2007; Luo & Baillargeon, 
2005)—might bolster infants’ goal attribution in that task. Introducing 
significant changes to the arrangement of obstacles across the famil-
iarization and test environments in the Goal-Directed Task, moreover, 
could explore the effects of context changes on goal attribution (Liu & 
Spelke, 2017; Sommerville & Crane, 2009). These latter results might 
also shed light on infants’ failures in some of BIB’s other tasks. For 
example, infants may have failed in the Inaccessible-Goal Task because 
the arrangement of obstacles changed from familiarization to test, 
including in a way that affected one object’s physical accessibility. In-
fants may have found a change in the object’s accessibility itself sur-
prising, or they may not have generalized the agent’s goal to this new 
test environment with significantly different physical affordances 
because they interpreted this change as indicating two different places in 
which the agent was acting (Sommerville & Crane, 2009). The Multi- 
Agent Task similarly changed the arrangement of obstacles from famil-
iarization to test, although infants may have failed in this task simply 
because of heightened attention to the new agent, who appeared for the 
first and only time in the expected outcome (prior studies showing 
agent-specific goal attribution had presented the new agent in both test 
outcomes; Buresh & Woodward, 2007). 

Changes to the affordances of the environment from familiarization 
to test may also explain the pattern of findings in the Inefficient-Agent 
Task, which did not differ from the patterns of findings in the Efficient- 
Agent Task. In particular, previous literature suggests both that infants 
do not expect an agent who had previously moved inefficiently to later 
move efficiently when an obstacle present during familiarization is 
removed from the test environment (Gergely et al., 1995; Skerry, Carey, 
& Spelke, 2013) and that infants do expect a previously inefficient agent 
to later move efficiently if the test environment introduces a new 
obstacle (Liu & Spelke, 2017). The changes in the number and location 
of the obstacles across the Inefficient-Agent Task’s familiarization and test 
environments may have weakly elicited, or elicited in only some infants, 
this latter, “default” prediction about rationally efficient goal-directed 
actions for inefficient agents in the Inefficient-Agent Task (Liu & 
Spelke, 2017). Future versions of the Inefficient-Agent Task could thus 
focus specifically on the effects of different kinds of changes in the 
context and in the environment’s affordances on infants’ rationality 
attribution. 

Finally, given infants’ successes in previous tasks probing their un-
derstanding of instrumental actions, infants may have failed in BIB’s 
Instrumental-Action Task because they could not understand the tool 
object’s causal efficacy (Sommerville, Hildebrand, & Crane, 2008) or the 
agent’s ultimate goal. Specifically, prior findings suggesting that infants 
recognize agents’ instrumental actions (e.g., the use of a tool) relied on 
tools whose causal efficacy was familiar to infants (e.g., pulling a cloth 
to bring a toy within reach; Piaget, 1953; Sommerville & Woodward, 

2005) or on novel tools with which infants were first given direct 
experience (Sommerville et al., 2008). The tool infants saw in the 
Instrumental-Action Task was both novel and not something they were 
given experience with. Future versions of the Instrumental-Action Task 
might thus introduce state-changes, such as colour changes, to the 
contacted tools and objects, which, in previous studies, have made the 
causal efficacy of otherwise novel and inscrutable actions appreciable to 
young infants (Liu, Brooks, & Spelke, 2019; Skerry et al., 2013). 

5. Model methods 

5.1. Model design and analyses 

To examine whether infants’ intelligence about agents might be re-
flected in state-of-the-art machine intelligence, we compared infants’ 
performance on BIB in Experiment 2 to the performance of three 
learning-driven neural-network models. Following prior work (Gandhi 
et al., 2021; Rabinowitz et al., 2018), the models formed predictions 
about an agent’s actions at test based on its actions during familiariza-
tion. To obtain a continuous measure of surprise as a correlate of infants’ 
looking time, we calculated the models’ prediction error for each frame 
of each outcome and considered the frame with the maximum error. To 
compare model and infant performance, we then calculated the Z-scored 
mean surprisal score to each outcome for each model and the Z-scored 
mean looking time to each outcome for infants. Z-scores were calculated 
within task. For an unplanned quantitative comparison of the overall 
similarity between the infants’ and each models’ performance, we 
evaluated the root mean squared error (RMSE) across BIB’s six tasks 
using the mean Z-score to the unexpected outcome. We also included a 
comparison between infants’ performance and a “baseline,” which we 
gave a surprisal score of “0” for all tasks. 

Finally, to confirm that the models’ performance on the specific trials 
presented to infants was representative of their performance more 
generally and not due to any idiosyncrasies of the particular videos 
shown to infants, we also evaluated the models’ accuracy on BIB’s full 
dataset (Gandhi et al., 2021). Because those results were consistent with 
the models’ performance on the infant videos and with prior work 
(Gandhi et al., 2021), they are reported in the SI. 

5.2. Model specifications 

Learning-driven neural network models have accelerated recent 
advances in AI (Lecun, Bengio, & Hinton, 2015; Rabinowitz et al., 2018), 
and so we chose to compare such models’ performance on BIB to in-
fants’. Approaches like reinforcement learning (Sutton & Barto, 2018) 
and inverse reinforcement learning (Ng & Russel, 2000), for example, 
have succeeded in learning to control agents and in understanding the 
actions of agents, but these approaches cannot be used with BIB because 
they require privileged information, including the ability to actively 
control agents in the test environment and, in the case of reinforcement 
learning, receive a reward. Infants engage with stimuli like BIB’s 
through passive observation, and so we based our modeling on the 
“Theory of Mind Net (ToMnet)” architecture from Rabinowitz et al. 
(2018), which is a neural network designed specifically for passive 
observation that has been shown to make inferences about an agent’s 
underlying mental states from its behavior. 

With this architecture, we tested three models from two classes: 
behavioral cloning (BC) and video modeling (Gandhi et al., 2021). The 
models’ schematized architectures are presented in Figs. 3 and S2. Two 
BC models predicted how an agent would act using the background 
training as examples of state and action pairs (see Model Training below). 
To predict the agent’s next action in a test trial, BC combined infor-
mation from the learned features from the previous frame of a test-trial 
video along with the learned features in the set of familiarization-trial 
videos. Video modeling used a similar strategy, architecture, and 
training procedure, but it aimed to predict the entire next frame of the 
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test-trial video rather than just the agent’s next action. 
The two BC models differed in their encoding of the familiarization 

trials. One BC model relied on a simple multi-layer perceptron (MLP) to 
encode pairs of states and actions independently (Fig. S2), and the other 
BC model relied on a more complex, bi-directional recurrent neural 
network (RNN) to sequentially encode pairs of states and actions 
(Fig. 3). The states were encoded with a convolutional neural network 
(CNN), which was pretrained using Augmented Temporal Contrast 
(ATC) (Stooke, Lee, Abbeel, & Laskin, 2020). Table S1 provides the CNN 
specifications and the ATC data augmentation details. For both the MLP 
and RNN encoders, the model obtained a characteristic embedding 
(Rabinowitz et al., 2018) of an agent by first aggregating the embed-
dings across frames (using the average for the MLP and the last step for 
the RNN) for each familiarization trial and by second averaging across 
familiarization trials. When aggregating frames, the videos were 
randomly sub-sampled to use up to 30 frames. To predict the future 
actions of the agent, defined as the continuous change in position based 
on the video (at 3 frames per second), the models combined the char-
acteristic embedding with the current state of the environment (also 
encoded with the CNN). See Table S2 for the specifications of the BC 
models. 

The one video model sequentially encoded each familiarization trial 
by passing up to 30 frames through a CNN and then combining them 
with a bi-directional RNN. The model obtained a characteristic 
embedding of an agent by averaging the RNN embeddings. The model 
combined the characteristic embedding with the current state of the 
environment (specified by the current frame of the video) to predict the 
next frame of the video (at 3 frames per second) using a U-net archi-
tecture (Ronneberger et al., 2015). 

5.3. Model training 

Prior to being tested, the models were trained on thousands of 
background examples provided by the BIB dataset (Gandhi et al., 2021) 
of BIB-like agents exhibiting simple behaviors in a grid world. While the 
training set included individual components of the test set (e.g., agents’ 
movement to objects, agents’ consistent object goals, barriers, tools, etc.; 
see below), success on the test set required models to flexibly combine 
representations across the different training tasks. Moreover, since 
training included only expected outcomes, training with labeled videos 
was not possible. The training otherwise used the same familiarization/ 
test task design as the test set. 

In one training task, an agent moved to one object in varying loca-
tions in the grid world. In a second training task, two objects were 
presented in varying locations in the grid world but always very close to 
the agent; the agent consistently moved to one of the two objects. In a 
third training task, the agent moved to one object in varying locations in 
the grid world; at varying points during the familiarization, that agent 
was substituted by another agent. Finally, in a fourth training task, a 
green barrier surrounded an agent and a key; the agent retrieved the key 
to let itself out of the blocked area to move to an object. 

We included five runs of each model type with the runs initialized 
randomly and trained until they converged on the background training. 
The BC models were trained to minimize mean squared error, and the 
video model was trained to minimize mean squared error in pixel space. 
Twenty percent of the background training trials were left out as a 
validation set, and the models were successful at the validation set in 
predicting agents’ actions on all of the background training tasks, with 
low prediction errors. For example, the MSE error for the BC models on 

LSTM LSTM

AVERAGED
CHARACTERISTIC

CHARACTERISTIC

U-NET

PREDICTION

MSE LOSS

LSTM

LSTM LSTMLSTM CHARACTERISTIC

8 
FAMILIARIZATION

TRIALS

TEST FRAME

CHARACTERISTIC 1

CHARACTERISTIC 8

8 
FAMILIARIZATION

TRIALS

TILED TO 64 X 64

[0.2, 0.8]POLICY MLP

PREDICTION

MSE LOSS

BC-RNN MODEL

VIDEO MODEL

Fig. 3. Architecture of the video and BC RNN models (Gandhi et al., 2021; Rabinowitz et al., 2018). An agent-characteristic embedding was inferred from the 
familiarization trials using a recurrent net. This embedding, with a frame from the test trial, was used to predict the next action of the agent in case of the BC model 
and the next frame of the video using a U-net (Ronneberger, Fischer, & Brox, 2015) in the case of the video model. 
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the validation set was about 0.03 which is 0.8% of the maximum 
possible prediction error (4.00). The only exception was that the BC 
RNN model performed an order of magnitude less well compared to the 
BC MLP model on the training task in which two objects were presented 
very close to the agent and the agent consistently moved to just one (see 
SI). 

6. Model results 

Fig. 4 displays the Z-scored means of the models’ surprisal scores to 
the expected and unexpected outcomes for each task (see SI for addi-
tional details). The Z-scored means of infants’ looking times in the tasks 
of Experiment 2 are also displayed. Model performance shows little 
resemblance to infant performance. 

First, to evaluate machines’ goal attribution relative to infants’, we 
compared infants and models on the Goal-Attribution Task. Unlike in-
fants, who attributed to agents goal objects, not goal locations, the 
models either attributed to agents goal locations (BC MLP) or neither 
goal objects nor goal locations (BC RNN, video model). Next, to evaluate 
machines’ rationality attribution relative to infants’, we compared in-
fants and models on the Efficient-Agent and Inefficient-Agent Tasks. While 
models attributed rational action to agents in the Efficient-Agent Task (to 
an even greater degree than did infants), models did not attribute 
rational action to previously inefficient agents who act in new envi-
ronments in the Inefficient-Agent Task. Here the models’ performance 
was nearly orthogonal to infants’, who did attribute rational action to 
previously inefficient agents who act in new environments. 

The comparisons between machine and infant performance on BIB’s 
other three tasks revealed no instances in which the models demon-
strated positive predictions about agents’ actions missing from infants’ 
predictions. In particular, while infants’ may have been relatively more 
surprised at the appearance of the new agent in the expected outcome of 
the Multi-Agent Task, as described above, the models did not show a 
difference in surprise across the two outcomes. In the Inaccessible-Goal 
Task, the video model did appear to be more surprised when the agent 
moved to a new object when its goal object was accessible, unlike the 
infants, but given this model’s failure on the Goal-Directed and Multi- 
Agent Tasks, its performance is unlikely to reflect an understanding of 
agents’ goal-directed actions towards objects. For example, the model 
may have learned that the obstacles in the grid world block objects and 
that agents move to objects. This would lead to a lower surprisal score 
when an agent moved to the one accessible object compared with when 
it moved to either one of the accessible objects. Similarly, in the 
Instrumental-Action Task the models seemed to have succeeded where 
the infants did not, showing greater surprise when the agent moved to 
the key when it was unnecessary to do so. But, closer investigation of the 
models’ performance shows that this apparent success is limited to test 
trials in which the green barrier was absent versus present and incon-
sequential (see SI). A true understanding of instrumental actions would 
generalize across the presence or absence of the green barrier at test. The 
models thus did not understand agents’ instrumental actions. 

Finally, the RMSE analysis revealed high values for all infant and 
model comparisons: BC RNN: 0.319; BC MLP: 0.492; video model: 
0.297, suggesting little similarity between infant and model perfor-
mance. Indeed, these RMSE values were higher than the one obtained by 
comparing infants’ performance to “baseline” surprisal scores of “0” for 
all tasks: 0.143. 

7. Model discussion 

BIB was expressly designed to allow for testing both infant and ma-
chine intelligence alike (Gandhi et al., 2021), providing an empirical 
foundation for building human-like AI. While the performance of the 
models tested here has not previously been compared with human 
performance (let alone with infant performance), and while and models 
like these are limited in their capacity for flexible generalization to out- 

of-distribution novel test displays compared with the displays used for 
their training (a generalization BIB requires and infants excel at), such 
models have nevertheless accelerated recent advances in AI (Lecun 
et al., 2015; Rabinowitz et al., 2018). Our comparison reveals that the 
state-of-the-art “machine theory of mind” captured in such models is 
indeed missing key principles of commonsense psychology that infants 
possess. 

In particular, while infants expect agents’ goal-directed actions to be 
towards objects, not locations, models either have no expectations or 
expect those actions to be towards locations, not objects. And, while 
infants expect both previously efficient and inefficient agents to exhibit 
rational and efficient goal-directed actions towards objects in new en-
vironments, models only expect previously efficient agents to act effi-
ciently in new environments. Finally, where we were unable to find any 
predictions that infants might have about the goals of new agents, about 
agents’ goal objects in new environments, or about novel instrumental 
actions, models show no additional commonsense psychology. 

Our approach of directly comparing infant and machine intelligence 
allows us to specify what principles of commonsense psychology are 
present in infants yet missing in machines, thereby inspiring new di-
rections in engineering AI. For example, alternative models based on 
Bayesian inverse planning have been applied successfully to tasks like 
BIB by making more explicit abstract inferences about mental states 
(Baker et al., 2017; Baker, Saxe, & Tenenbaum, 2009; Shu et al., 2021). 
Nevertheless, extending the Bayesian approach to BIB in particular and 
to videos in general is not straightforward: A video format does not by 
itself provide the identification of the agents or objects present in the 
scene (let alone any relations among them). Recent approaches based on 
inverse reinforcement learning (Sim & Xu, 2019; Yu, Yu, Finn, & Ermon, 
2019) could also be promising, but, as reviewed above, they require 
online, active sampling from the testing environment, and BIB’s envi-
ronment, like much of infants’ experience, involves passive viewing. It 
thus remains an open challenge for learning-driven systems to acquire 
sufficiently rich, abstract structure from BIB’s training to match infant 
commonsense intelligence. Nevertheless, setting infant common sense 
as a benchmark for machine common sense promises to give AI the 
foundations of human intelligence. 

8. General discussion 

BIB includes six highly minimal but presentationally consistent tasks 
focusing on three high-level principles of commonsense psychology: 
goal attribution; rationality attribution; and instrumentality attribution. 
Infants’ successes on BIB suggest they have a highly abstract notion of 
agents’ actions as goal-directed towards objects and a principle of ra-
tionality that leads to default expectations of agents’ efficient actions 
towards goals. These results are consistent with the rich literature on 
infants’ commonsense psychology (Baillargeon et al., 2015; Baillargeon 
et al., 2016; Spelke, 2022; Woodward, 2009; Woodward et al., 2001) 
and synthesize the literature’s findings in a unified framework that can 
be directly compared with—and perhaps built into—machine intelli-
gence. In addition, BIB uniquely reveals that infants appreciate agents’ 
actions in a novel, overhead navigational context, here recognizing 
obstacles as physical but not perceptual barriers to action. 

Infants’ failures on BIB suggest that changes to the contexts in which 
goals are first demonstrated may have significant impacts on infants’ 
goal and rationality attribution (Liu & Spelke, 2017; Sommerville & 
Crane, 2009). For example, infants may not generalize an agent’s goal to 
a test environment with even minimal or inconsequential changes 
relative to the environment in which the goal was initially demonstrated 
if those changes suggest that agents are acting in a new place. Regardless 
of how infants might come to understand the geometry of BIB’s envi-
ronment, their sensitivity to and use of where an agent is for goal and 
rationality attribution is apparent. Future studies might thus investigate 
infants’ use of such geometry for recognizing places based on their shape 
or navigability even before infants can navigate on their own (Deen 
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Fig. 4. Z-scored means of the models’ surprisal scores (each model is 
shown with a different shape and in a different shade of gray) and the Z- 
scored means of infants’ looking times (shown in red) to the expected 
and unexpected outcomes in each of BIB’s six tasks in Experiment 2. 
Models differ from infants in terms of infants’ successful goal and ra-
tionality attribution (A), and models show no additional commonsense 
psychology missing from infants’ performance (B). (For interpretation 
of the references to colour in this figure legend, please see the online 
version.)   
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et al., 2017; Kosakowski et al., 2021). 
Future work exploring infants’ knowledge about the world could 

extend our general approach to investigate other aspects of infant 
commonsense psychology. Because BIB’s tasks are procedurally gener-
ated and presentationally consistent, for example, new tasks could easily 
be incorporated into BIB’s dataset. Future studies might explore ex-
pectations of agents’ notions of cost and value (Jara-Ettinger et al., 
2016; Liu et al., 2017) or recognition of agents’ actions that might signal 
potential social partnerships (Meltzoff, 2007; Powell & Spelke, 2013; 
Schachner & Carey, 2013; Tomasello, 2018). While we show that 
learning-driven neural-network approaches already fall short of infant’s 
common sense on BIB’s existing tasks, such expectations will never-
theless become increasingly important for AI too as it becomes further 
embedded in real-world, multi-agent settings that demand common 
sense. Extending our approach can ultimately inform comprehensive 
accounts of infants’ knowledge not only about agents, but also about 
objects (Lin, Stavans, & Baillargeon, 2022; Spelke, 1990; Stahl & Fei-
genson, 2015) and places (Hermer & Spelke, 1994), allowing us to more 
fully describe the origins and development of human common sense and 
provide an avenue for building the future of human-like AI. 

BIB called for an interanimating research program between devel-
opmental cognitive science and artificial intelligence. The present work 
demonstrates that such a program is both possible and generative for 
both fields. Our work provides a first step in this productive dialogue 
between the cognitive and computational sciences to test whether 
knowledge can be built, in human or machine, from the foundations that 
cognitive and developmental theories postulate. 
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