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Goals as reward-producing programs
 

Guy Davidson    1,4 , Graham Todd2,4, Julian Togelius2, Todd M. Gureckis3,5 & 
Brenden M. Lake    1,3,5

People are remarkably capable of generating their own goals, beginning 
with child’s play and continuing into adulthood. Despite considerable 
empirical and computational work on goals and goal-oriented behaviour, 
models are still far from capturing the richness of everyday human goals. 
Here we bridge this gap by collecting a dataset of human-generated playful 
goals (in the form of scorable, single-player games), modelling them as 
reward-producing programs and generating novel human-like goals through 
program synthesis. Reward-producing programs capture the rich semantics 
of goals through symbolic operations that compose, add temporal 
constraints and allow program execution on behavioural traces to evaluate 
progress. To build a generative model of goals, we learn a fitness function 
over the infinite set of possible goal programs and sample novel goals with a 
quality-diversity algorithm. Human evaluators found that model-generated 
goals, when sampled from partitions of program space occupied by human 
examples, were indistinguishable from human-created games. We also 
discovered that our model’s internal fitness scores predict games that are 
evaluated as more fun to play and more human-like.

Understanding how humans create, represent and reason about goals 
is crucial to understanding human behaviour. Goals are pervasive 
throughout psychology1–3, having been studied from perspectives 
such as motivation4–6, personality and social psychology7,8, and learn-
ing and decision-making9,10. But what is a goal? Elliot and Fryer offer 
the workable, albeit simplified, definition: a representation of a future 
object to be approached or avoided (see also refs. 3,10). Reinforce-
ment learning offers another formulation, operationalizing goals as 
maximizing cumulative reward over a series of steps11. Typical goals 
in reinforcement learning tasks include reaching a target location, 
winning in a video or board game12, or placing an object in a specified 
position (for example, Fig. 1a), such that success can be characterized 
by reaching a target state.

By contrast, people routinely create novel, idiosyncratic goals 
with richness beyond these common modelling settings. Chu et al.13 
report the example of Gareth Wild, who set an unusual goal for himself 
to park in every spot in a particular grocery store’s parking lot (Fig. 1b). 
Children routinely devise fun and compelling goals without external 
guidance, such as creating a ‘truck carrier truck’ (Fig. 1c) or stacking 

as many blocks as possible in a single tower (Fig. 1d). Beyond being 
fun, these playful goals serve a crucial role in learning to structure 
and solve arbitrary problems14–16. Indeed, it has been argued that 
autonomously setting and achieving goals is a core component of 
human intelligence13,17.

We propose a framework for modelling human goal generation as 
synthesizing reward-producing programs (Fig. 1, bottom row). There 
are several advantages to representing goals as symbolic programs, 
which map an agent’s behaviour to a reward score indicating the degree 
of success. First, a structured language facilitates the compositional 
reuse of motifs across disparate goals. Such reuse makes capturing 
the wide range of human creativity in goal creation substantially more 
tractable: In Fig. 1e, we illustrate a simple ball-throwing game (in black) 
and four distinct variants (in red, blue, pink and brown) composed in 
part from shared components: balls being thrown (highlighted in yel-
low), the thrown ball hitting something (orange) and the thrown ball 
landing somewhere (green). Second, our choice of representation 
makes goal semantics explicit. The particular grammatical elements  
of our representation each fulfil particular roles, such as predicates 
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games from sections of program space closer to participant-created 
games were judged indistinguishably from the real games, but model 
samples further away were not rated as highly on average. Analyses 
revealed that our learned fitness function predicts several human 
judgement questions, including how human-like games are rated. 
These results demonstrate that our goal representations and model 
capture important aspects of how people creatively construct new 
goals, generating plausible, diverse goals and predicting understand-
ability and fun ratings. We conclude with a discussion of the scope of 
our representational hypothesis (capturing goals as programs), the 
relationship to prior work, some limitations of our model and avenues 
for future work.

Behavioural results
Although goals play a crucial role in psychological theory, there are few, 
if any, empirical paradigms for eliciting wide-ranging goals from study 
participants. We created an experimental setting that aims to capture 
the rich, playful and creative nature of how children (and adults) create 
everyday goals. We used AI2-THOR19 (an embodied, three-dimensional 
environment simulation) to set up a room resembling a child’s bed-
room, filled with toys and other common objects (Fig. 2a; see Extended 
Data Fig. 1 for a larger version). In our task, we asked participants to 

(that is, specific and evaluable relations between objects, coloured 
orange in the programs in Fig. 1) and temporal modals (that is, rela-
tionships in time between goal components, such as ‘until’ and ‘then’ 
in Fig. 1). Finally, goals-as-programs are executable; that is, they can 
be computationally interpreted to detect when a goal is entirely or 
partially achieved (Fig. 1e, each program would be interpreted and 
provide a score only when the matching throw trajectory is completed).

In this Article, we demonstrate that programs can capture real 
human-created goals in a naturalistic domain and build a model capable 
of generating new programs representing human-like goals. We devised 
a rich experimental environment for goal generation and asked human 
participants to generate playful goals in the form of single-player 
scoreable games (see ref. 18 on the relationship between games and 
goals). We translated these games into programs in a domain-specific 
language (DSL) that explicitly models the core semantics of the par-
ticipants’ creations. We also developed a goal program generator 
(GPG) model to generate new goals in this representation, learning a 
fitness metric over programs to capture human likeness and sampling 
diverse goal programs to maximize fitness. We found that the model 
succeeds in generating novel games distinct from examples in the 
training dataset. Human raters evaluated several characteristics of 
model-generated games, including how human-like they were. Model 

e

“This a truck carrier truck”“Park in every parking 
spot in this lot”

“Stack as many blocks as I 
can before the tower falls”

b c d

“Pick the red cube and 
place it on the blue cube” 

a

“Throw the ball so it hits a 
block from the shelf onto 
the chair”

“Throw the ball so it hits 
the wall then bounces 
back to you”

“Throw the ball into the bin”
“Throw the ball so it bounces
o� the wall and into the bin”

“Place the bin on the bed and
the dog bed next to it, throw
dodgeballs to either of them”

Fig. 1 | Goals as reward-producing programs. a–d, Different goals, presented in 
natural language and mapped to pseudo-code in a program-like representation. 
Panel a depicts a pick-and-place task of the form often studied in reinforcement 
learning and robotics, presented in contrast to human-created goals: a self-
imposed challenge to park in every spot in a parking lot (b), creating a ‘truck 
carrier truck’ (c), and stacking blocks until a tower falls (d). e, A set of varied yet 
related goals in our experiment environment, of which the blue and pink were 
created by participants in our experiment. Each goal is represented by a throw 
trajectory (dashed line in the illustration) matching a description of the goal 
(whose text is the same colour as the line). We highlight shared compositional 

components between programs in yellow, orange and green. Our program 
representations are reward-producing, that is, run on sequences of agent 
interactions with an environment (state–action pairs) and emit a score with 
respect to the specified goal. Our pseudo-code and DSL both use syntax inspired 
by the LISP (list processing) programming language, where function calls 
have the function name as the first token inside the parentheses. Participants 
in our experiment created some of these goals; see Supplementary Fig. 1 for 
representations of the blue and pink programs in our DSL. Credit: car park in b, 
Vecteezy.com.
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propose a single-player game to be played in the room. This design 
allowed participants to imagine and propose a wide range of playful 
goals, with the aim of game generation helping to make the resulting 
goals more concrete. We collected a dataset of 98 games, described by 
participants in natural language. In addition, we recorded full state–
action traces of each participant’s interactions with the environment, 

which we leveraged in later experiments (see ‘Dataset collection meth-
ods’ section in the Methods for additional details).

We then manually translated each game from natural language to 
programs in a DSL, inspired by language-of-thought models in compu-
tational cognitive science20–24. The DSL is used to model the semantics 
of games in our dataset, independent of the exact natural language 
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Fig. 2 | Participants in our behavioural experiment create diverse games 
reflecting common sense and compositionality. a, Our online game creation 
experiment (see full interface in Extended Data Fig. 1). b, Participants showcase 
intuitive common sense. Left: in games involving exclusively throwing, 
participants use balls (orange) far more often than any other object type. Right: 
in other games, participants refer to blocks or ‘any object’ more often, most 
often checking where objects are placed (using the in and on predicates). We 
most often observe balls being thrown and blocks being stacked, and while 
a few participants specified block-throwing games, no participant created a 
game involving ball-stacking. Participants also rarely specified throwing large 
or cumbersome objects (such as the chair or laptop), and only used buildings 
to specify stacking objectives (as opposed to moving or throwing them). See 
Extended Data Fig. 2 for an extended version of this panel (including additional 

object categories and predicate). c, We analyse the occurrence of various abstract 
structures in our programs (see ‘Game dataset analysis methods’ section in the 
Methods for details). Red: the five most common structures cover almost half 
(47.5%) of total occurrences, showing extensive compositional reuse. The three 
most common structures combine into simple ball-to-bin throwing preference 
((1), structure indices in square brackets). Purple: other structures are reused 
fewer times, covering most remaining occurrences (another 40.5%). These rarer 
structures allow for creating more complex throwing elements, constraining 
where the player throws the ball from (2,3) or to (3). Blue: exactly half of the 
structures (63/126) appear only once—this long tail of expressions offers 
evidence of creativity. The last throwing preference (4), specifying throwing a 
block from the rug onto the desk without moving off the rug or breaking any of 
the objects on the desk, uses two unique structures.
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phrasing. Although the translation from natural language to DSL is 
unlikely to be lossless, we aim to capture the core semantics of the rich 
and generative structure of human goals with these relatively simple 
programs. This DSL was derived from the planning domain definition 
language (PDDL25), which offers a basic representation for specifying 
goals (that is, end states of plans) and preferences (that is, other costs 
to optimize while planning). Each program in the DSL contains two 
mandatory sections: gameplay preferences describing how a game is 
played, and scoring rules specifying how to determine a player’s score 
based on the satisfaction of the game’s preferences. Game programs 
may also contain optional setup instructions and terminal conditions 
(see Supplementary Information L for the full DSL).

Our choice to represent games as programs allows us to quantita-
tively analyse their structure and fundamental components. We found 
that people recruit an intuitive physical common sense when creating 
games (Fig. 2b; see Extended Data Fig. 2 for a detailed breakdown and 
‘Game dataset analysis methods’ section in the Methods for details). 
For instance, if an object is thrown, it is probably a ball, and if an object 
is stacked, it is probably a block—and although a few participants speci-
fied games involving throwing blocks, none attempted to stack balls. 
Similarly, participants did not specify throwing cumbersome objects 
(such as the laptop or chair), and a participant who specified throwing 
a large ‘beach ball’ clarified that it should land on the bin (as the ball 
does not fit within the bin). We also observed evidence of both compo-
sitionality (common structure reuse) and creativity (preponderance of 
unique structures) across our participants, summarized in Fig. 2c (see 
‘Game dataset analysis methods’ section in the Methods for details). 
Counting occurrences of grammatical structures while abstracting 
over the identities of individual objects—that is, treating the modal 
expressions ‘the agent holds a block’ (once (agent_holds block)) and 
‘the agent holds a ball’ (once (agent_holds ball)) the same—we find the 
five most common structures cover almost half of the total observa-
tions, showing how representing goals as programs can reveal shared, 
compositional substructure. At the other end of the distribution, we 
also observe a long tail emblematic of creativity, as one-half of the 
unique structures we count appear exactly once. Despite not being 
explicitly prompted to generate novel or creative games, many par-
ticipants proposed entirely unique gameplay ideas, encouraging us 
that our experimental paradigm elicits rich and creative goal creation.

Modelling results
We next develop a computational model to synthesize human-like goals. 
Guided by insights from our behavioural analyses, we design our model 
to explicitly leverage cognitive capacities that people seem to recruit 
in creating goals. Our GPG model (illustrated in Fig. 3) operates over 
a high-dimensional program space and learns how to generate goals 
maximizing a fitness measure. Upon entering a new environment, 
people can create goals without extensive data-driven demonstrations; 
therefore, we aim for a model that can similarly generate goals without 
a large number of examples. The GPG consists of two main elements: a 
fitness function and a search procedure. The fitness function (learned 
from data) attempts to quantify human likeness over the space of goal 
programs (Fig. 3a), such that a higher score indicates a better generated 
goal (Fig. 3b). The search procedure generates diverse samples that 
maximize this fitness function (Fig. 3c). As a framework, the GPG model 
is committed to the idea of evaluating the quality of goals-as-programs 
with a learned objective function and less so to the specific algorithms 
used for optimization and search.

The fitness function f(g) = θ ⋅ φ(g) maps f ∶ 𝒢𝒢 𝒢 𝒢 from a game 
g ∈ 𝒢𝒢 to a real-valued score that aims to encode its human-likeness 
(Fig. 3b). We transform each game into an 89-dimensional vector of 
features that capture properties relating to structure (for example, the 
size and depth of its syntax tree), logic (for example, whether any 
expressions are redundant) or goal semantics (for example, the extent 
to which different parts of the goal are interrelated). We leverage our 

programmatic representation of goals to automate this feature extrac-
tion process (see ‘Fitness function methods’ section in the Methods 
for details). In this implementation, parameter learning of feature 
weights θ proceeds in a contrastive fashion26,27 by optimizing for the 
difference in scores between our set of human-generated games and 
a substantially larger set of corrupted (that is, lower quality) games 
obtained through random tree regrowth21 on our dataset (see Fig. 3b 
and details in ‘Fitness function methods’ section in the Methods).

This learned fitness function then guides an evolutionary search 
procedure to generate novel games (Fig. 3c). Broadly inspired by work 
in genetic programming, we use a quality-diversity algorithm28,29 called 
MAP-Elites30 to generate a set of samples that widely cover the space of 
programs in addition to optimizing the fitness function. The details of 
our implementation, including the particular behavioural characteristics 
used for maintaining sample diversity and structure our search of pro-
gram space, are available in ‘MAP-Elites methods’ section in the Methods.

Our model includes several components that explicitly proxy 
cognitive capacities, such as features representing physical common 
sense (estimating predicate feasibility from play data) and recombina-
tion operators that explicitly leverage compositionality (the crossover 
operation that recombines programs). We describe a few of these 
components and how we ablated their contribution to our model in 
‘Ablation methods’ section in the Methods.

Generated games
GPG produces a variety of outputs that range from variants of simple 
games in our reference dataset to games in entirely new regions of 
program space. In Fig. 4, we show examples of model outputs alongside 
the human-generated games that occupy the same ‘niche’ as defined 
by the MAP-Elites algorithm (see ‘MAP-Elites methods’ section in the 
Methods for details). We call generated games that occupy the same 
niche as a human game matched and those that do not unmatched. In 
the first pair (Fig. 4, left), the model proposes an original block-stacking 
objective: where the human participant created a tower, the model 
asks to stack three blocks all on the same taller block. The second and 
third pairs (Fig. 4, middle and right) demonstrate the model’s abil-
ity to propose throwing games. In both cases, the model proposes 
interesting detailed objectives, some unseen in our training set (for 
example, throwing balls onto the top shelf or desk), that match the 
niche of the participant games by having the same high-level configu-
ration. However, the purpose of certain minor elements in generated 
games tends to be less intuitively obvious (for example, the scoring 
condition in the left-most generated game, which arbitrarily multi-
plies the number of satisfactions by 0.4). Our model also produces 
unmatched games that occupy niches without corresponding human 
games (Fig. 5). These include unusual combinations of throwing and 
block-stacking (Fig. 5, left), a game that combines ball throwing and 
small object placement (Fig. 5, middle) and a game that offers a col-
lection of varied block-stacking objectives (all-on-one, a T-shape and a 
tower; Fig. 5, right). Although these programs represent creative goals, 
with preferences that are each individually sensible, their components 
sometimes fail to combine into a coherent whole (for example, the golf 
ball throwing and block placement elements in Fig. 5, left, which do not 
intuitively form a cohesive game).

Quantitatively, Extended Data Fig. 3 shows that the GPG quickly 
produces games with fitness scores in the range of human samples and 
does so across many of the niches defined by our search procedure. Of 
the 2,000 programs we report, 1,889 programs (94.45%) exceed the 
fitness score of the least fit real game, and exactly half (1,000) exceed 
the fitness of the median human game. This demonstrates that our 
search procedure successfully finds high-fitness samples across much 
of the range of variation defined by our behavioural characteristics. 
To the extent that our fitness function captures human likeness, our 
model produces human-like games; we next use human evaluators to 
extrinsically test our model.
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“Put the desk in a chair. 
Stack blocks on the bed”

“Place the bin near the 
rug. Throw basketballs 
onto it, and put chairs 
on the desk”

“You have 30 seconds to 
throw dodgeballs to land 
on the top shelf”

“Place the bin near the rug, 
and throw balls into it”

“Throw the ball so it 
hits the wall then 
bounces back to you”

“Place the bin on the bed 
and the dog bed next to 
it, throw dodgeballs to 
either of them”

“Place all blue cube blocks 
on the rug. Put objects 
near the north wall, and 
make stacks of a cube, a 
yellow cube, and another 
cube.”

Malformed program: 
One variable (?b) unused,
predicate applied to the 
same variable twice.

a

“Put the bin on the 
bed then throw balls 

into it”

Fitness

Games are 
translated from 
natural language 
to the DSL…

MoreLess

Corruptions are 
generated with 
random tree 
regrowth…

Contrastive learning 
is used to obtain a 
quantitative metric of 
human likeness…

b c

Fitness

(1) Sample game 
from the archive…

Program feature 1

(2) Apply
mutation
operator…

(3) Reinsert if
novel or more fit…

Behavioural characteristic #1

Behavioural
characteristic #2

Pro
gram
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re 
2
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tn
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Fig. 3 | GPG model. a, Overview. Our model operates on programs in a high-
dimensional space (visualized in two dimensions). We learn a fitness metric  
(Z axis) capturing desirable aspects of programs using a dataset of human-created 
goals (highlighted in green). Our model then generates diverse new samples 
maximizing the fitness measure, some matched to participant-created goal 
programs on diversity criteria (in blue) and other unmatched novel goals (in 
purple). These programs stand in contrast to potential failure modes, such as 
generating programs that are malformed or semantically incoherent (in red). 
All (non-red) goals in this figure were created by participants in our experiment 
or our model; see Supplementary Fig. 1 for their full representations in our DSL. 

b, Parameter learning. We contrastively learn a quantitative measure of fitness 
(the Z axis in a) by maximizing the distance between human-generated exemplar 
games and a set of corruptions obtained through random tree regrowth.  
c, Search. This measure is then used as the basis for quality-diversity optimization 
using MAP-Elites. The algorithm maintains an archive of games that differ across 
phenotypic ‘behavioural characteristics’. At each step, a game is randomly 
sampled from the archive (1), randomly mutated (2) and reevaluated for fitness 
and its position in the archive. It is added to the archive only if it would occupy a 
previously empty position or if it is more fit than the current occupant (3).
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Participant game #14 (36.491)

Gameplay: stack a �at block on a bridge block, then place a tall
cylindrical block on the �at block, followed by a cube block on the tall
cylindrical block, and �nally a pyramid block on the cube block.

Scoring: you get 10 points for each di�erent set of blocks you have
successfully stacked in this order by the end of the game

Matched model game (36.994)

Gameplay: stack three blocks on top of a tall rectangular block, with
two of the stacked blocks being the same type as the tall rectangular
block.

Scoring: your score is 1.4 times the number of such stacks you have
at the end of the game.

Participant game #31 (37.338)

Gameplay: throw a ball so that it touches a wall and then either
catch it or touch it

Scoring: you get 1 point for each time you successfully throw the ball,
it touches a wall, and you are either holding it again or touching it
after its �ight

Matched model game (37.324)

Gameplay: throw dodgeballs so that they land and come to rest on
the top shelf

Terminal: the game ends after 30 seconds

Scoring: you get 1 point for each dodgeball that is resting on the top
shelf at the end of the game

Participant game #40 (36.152)

Setup: Place a green golf ball near the door and ensure it remains
there for the entire game. During the game, place at least one
dodgeball near the green golf ball.

Gameplay: While standing next to the green golf ball and the door,
throw dodgeballs with the goal of getting them to stop inside a
hexagonal bin.

Terminal: The game ends when you have thrown the same dodgeball
and it has stopped moving more than once, or when you have thrown
and stopped at least three di�erent objects.

Scoring: You earn 10 points for each di�erent object that you
successfully throw into the hexagonal bin.

Matched model game (37.020)

Setup: Place a hexagonal bin near the rug and ensure it remains there
for the entire game.

Gameplay: Throw dodgeballs aiming to land them on the desk or in
side the hexagonal bin.

Scoring: You earn points for each dodgeball that comes to rest either
on the desk or inside the hexagonal bin. Your �nal score is the sum of
these points.

Fig. 4 | GPG model produces simple, coherent, human-like games. Each pair 
of games in a column has the same set of MAP-Elites behavioural characteristics 
(a real participant-created game and the corresponding matched model-
generated one). The fitness score assigned by the model to each game is shown 
in parentheses. Natural language descriptions are generated through automated 

back-translation from programs (see Supplementary Information F for details). 
To ascertain that the model-generated programs are distinct from training set 
examples, we also provide in Supplementary Fig. 2 the most similar real exemplar 
using an edit distance; see Supplementary Information G for details.
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Human evaluations
To systematically and extrinsically evaluate our model, we performed 
human evaluations using a second set of human participants (n = 100; 
see Extended Data Fig. 4 for the evaluation interface and ‘Human  
evaluation methods’ section in the Methods for details). Evaluated 
games belonged to one of three different categories mentioned 
above: real participant-created games from our behavioural experi-
ment, or matched or unmatched model-generated games (see Fig. 3 
for category definitions; games in Figs. 4 and 5 were included; see 
‘Human evaluation methods’ section in the Methods for details). 
Participants evaluated three games in each category above (with-
out knowing their categories) in a randomized order and provided 
Likert scale ratings on each game for seven measures, includ-
ing human likeness, fun and creativity. Our final dataset includes  
892 participant-game evaluations, each with a rating for all seven 
measures.

To analyse these results, we performed a mixed-effects regression 
analysis (we provide the raw score means and non-parametric statisti-
cal tests in Extended Data Table 1). We fit independent models using 
each of the seven attributes we asked our human evaluators to judge as 
the dependent variables. We examine two questions: (1) Are there any 
systematic differences between game categories? (2) Does our fitness 
function, learned from corrupting samples in program space, capture 
any human-evaluated qualities of the games? For both questions, we 
fit mixed-effects models that include a fixed effect for membership 
in the real and matched groups (treating the unmatched group as a 
baseline) and random effects for the participants and individual games. 
For the second question, we also include a fixed effect for the fitness 

score (see ‘Human evaluation methods’ section in the Methods and 
Supplementary Table 5 for full details).

To answer the first question, we use the method of estimated 
marginal means to compare the difference in scores between each 
pair of categories, averaging out the random effects (Table 1, visually 
summarized in Extended Data Fig. 5; see Supplementary Information 
I.3 for details). Participants respond similarly to the real and matched 
games, with no statistically significant differences in the estimated 
mean scores across all seven attributes. Meanwhile, the unmatched 
games differ on several attributes. Participants judge them to be less 
easily understood and fun to play than real games and less human-like 
and fun to watch than both matched and real samples. We observe 
similar results using non-parametric statistical tests (Extended Data 
Table 1). One potential explanation for the apparent similarity between 
matched and real games is that the former simply replicate the latter in 
form and function. We examined this question and found that matched 
and real games have substantial functional differences (see summary 
in Extended Data Fig. 6, details in Supplementary Information I.4 and 
methodological details in ‘Sample similarity comparison methods’ 
section in the Methods).

Next, we analyse the mixed-effect models fit with a fixed effect of 
fitness scores. First, we replicate the effects of the fitness-less regres-
sions; we continue observing no significant differences between the 
real and matched groups, and several significant differences between 
both of those and the unmatched group (Supplementary Table 6). 
Next, we examine the fitted coefficients in these regressions (sum-
marized in Extended Data Table 2 and visualized in Extended Data 
Fig. 7). We find that our fitness function captures many of the evaluated 

Unmatched model sample (36.066)

Setup: place a hexagonal bin near the north wall and make sure it
stays there throughout the game.

Gameplay: throw golfballs aiming to have them stop on and inside
the hexagonal bin, and stack blocks so that each has three cube blocks
on top, with one cube block being the same type as the block it’s on.

Scoring: you score points based on the number of correctly stacked
blocks minus four times the number of golfballs that stop on and in
side the hexagonal bin.

Unmatched model sample (36.881)

Gameplay: throw dodgeballs and place credit cards or CDs into a
hexagonal bin

Scoring: you get 40 points for each dodgeball that ends up in the
hexagonal bin multiplied by the number of credit cards or CDs in the
bin, plus 1 point for each dodgeball thrown regardless of where it
lands.

Unmatched model sample (35.872)

Gameplay: Stack blocks in speci�c con�gurations

Scoring: You get 1 point for each stack where one cube block is on
top of another cube block with a tall rectangular block on the same
cube block. You also get 1 point for each stack where a cube block is
on top of a tall rectangular block, which is on top of another cube
block, with an additional cube block on top of the tall rectangular
block, provided the bottom cube block is the same type as the tall
rectangular block. Additionally, you get 1 point for each stack where a
tall rectangular block is on top of a cube block, which is on top of
another cube block, and the top cube block is the same type as a third
cube block. Your �nal score is the sum of points from these three
con�gurations.

Fig. 5 | GPG model produces interesting, novel goals. Each of the three games below has high fitness and fills an unmatched cell in the MAP-Elites archive, with no 
corresponding human game in our dataset. The fitness score assigned by the model to each game is shown in parentheses.
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attributes: higher fitness predicts higher ratings of understandability, 
fun to play and human likeness (βfit > 0); conversely, higher fitness also 
predicts lower ratings of helpfulness, difficulty and creativity (βfit < 0). 
Our positive findings are promising: they indicate that our fitness 
function, learned to maximize human likeness in a symbolic program 
space, also captures intuitive human notions of understandability 
and fun. Conversely, we view the negative relations as evidence of 
some degree of mode seeking: our fitness measure probably assigns 
the highest scores to the games most representative of the dataset at 
large. These modal games are plausibly neither particularly creative 
nor difficult, which means that participants might also find them less 
helpful for learning the details of the environment. To explore this, we 
highlight the highest-fitness games generated both by our model and 
by human participants in Supplementary Fig. 3 and observe the type 
of mode seeking we suggest above (see Supplementary Information 
H for details).

We also performed ablations of key model components that 
explicitly proxy some cognitive capacities we found our participants 
recruited (see details in ‘Ablation methods’ section in the Methods). To 
ablate physical common sense, we remove from our fitness function 
the two features that estimate the feasibility of a game’s preferences 
by leveraging our database of participant–environment interactions. 
Analogously, we ablate the intuitive coherence we observe in human 
goals by removing the features that capture the coordination of game-
play elements between different sections. Ablating compositionality 
is more difficult, as our programmatic representation is inherently 
compositional. We do so by removing the crossover mutation operator 
used to generate new samples during MAP-Elites, which most explicitly 
leverages the compositional structure of games. In these three abla-
tions, model performance degrades substantially, either in sample 
fitness scores or in goal plausibility, as estimated using our database 
of participant–environment interactions. We also report two other 
comparisons, one to a model sampling only from the probabilistic 
context-free grammar (PCFG) over our DSL (which performs much 
worse) and one to a model optimizing a fitness function trained on a 
subset of our full dataset (which performs comparably and general-
izes to the held-out regions of program space). See Supplementary 
Information J for further details.

Discussion
Goals are a critical aspect of human cognition and, in fact, the starting 
place for many models of human behaviour. However, the represen-
tation of goals is often impoverished. In this Article, we proposed a 

new framework for understanding a particular class of human goals 
as reward-producing programs, as a stepping-stone towards a broader 
understanding of goal representation and generation. To evaluate this 
framework, we developed an interactive experiment in which partici-
pants created playful goals, operationalized as games to be played in 
a virtual environment. By analysing the program-based translation of 
these games, we highlighted several cognitive capacities recruited by 
our participants, such as physical common sense and compositional-
ity. These capacities, in turn, informed our modelling efforts. We then 
built a computational model that learns from a small dataset of games 
and generates coherent, novel goals, where those sampled from parti-
tions of program space occupied by human examples were deemed 
human-like according to human evaluators.

This work unites various strands of research in cognitive science, 
artificial intelligence and game design. First, we build on substantial 
literature studying the psychology of goals1–3,10,13 by offering a specific 
representational hypothesis, in contrast with previous approaches 
to defining goals. We emphasize open-ended goal creation given that 
generating new exemplars is a core capacity of human conceptual rep-
resentations31 and the utility of games in the study of cognition32. Our 
work also relates to goal-conditioned reinforcement learning33, and we 
aim to improve on the goal representations used for such agents that 
tend to lack the variety and richness of human-created goals (ref. 34,  
chapter 7). In this respect, our proposal attempts to abstract from 
the reward functions and simpler goals used in many reinforcement 
learning tasks. Our goal program interpreter conceptually draws on 
the notion of reward machines introduced in ref. 35. Finally, we are 
inspired by the automatic game design literature, such as synthesiz-
ing board-game variants36–38 or simple video games39–42. Unlike our 
approach, these efforts often optimize program synthesis for some 
heuristic notion of fun38,39 rather than explicitly modelling human-like 
game generation.

Our framework is committed to the representation of goals as 
reward-producing programs: computationally executable mappings 
from behaviour to indications of progress towards a goal, which we 
term reward. We find it crucial that these programs capture the rich, 
temporally extended nature of goals people create and that they facili-
tate the flexible and compositional creation that people seem to engage 
in31,43. We hope that this proposal is useful to understanding goal rep-
resentation and generation, not that it losslessly explains every source 
of variation in human-created and reported goals. We note that we cur-
rently study goal generation through game creation, and while many 
games have players take on goals18, not all goals are fully equivalent or 

Table 1 | Mixed-model marginal means comparison summary

Real − Matched Real − Unmatched Matched − Unmatched

Attribute Difference ± SE Z P value Difference ± SE Z P value Difference ± SE Z P value

Understandable↑ −0.001 ± 0.331 −0.003 1.000 1.042 ± 0.332 3.138 4.837 × 10−3** 1.042 ± 0.333 3.133 4.927 × 10−3**

Fun to play↑ 0.143 ± 0.266 0.538 0.853 1.020 ± 0.274 3.722 5.791 × 10−4*** 0.877 ± 0.273 3.210 3.791 × 10−3**

Fun to watch↑ 0.135 ± 0.250 0.542 0.850 0.892 ± 0.259 3.446 1.650 × 10−3** 0.757 ± 0.257 2.944 9.076 × 10−3**

Helpfula 0.016 ± 0.159 0.097 0.995 0.251 ± 0.165 1.521 0.281 0.236 ± 0.165 1.426 0.328

Difficult
↓
↑

−0.200 ± 0.357 −0.559 0.842 −0.194 ± 0.361 −0.538 0.853 0.006 ± 0.361 0.016 1.000

Creative↑ 0.228 ± 0.310 0.736 0.742 0.489 ± 0.316 1.548 0.269 0.261 ± 0.314 0.832 0.683

Human-like↑ 0.199 ± 0.274 0.727 0.748 1.396 ± 0.283 4.927 2.495 ×10−6*** 1.197 ± 0.283 4.225 7.088 × 10−5***

Evaluators do not distinguish between participant-created real and matched model games but do distinguish unmatched games from real (and marginally from matched ones). 
Participants responded to seven Likert questions on a 5-point scale, one for each attribute in the first column (see ‘Human evaluation methods’ section in the Methods). We found fairly low 
inter-rater agreement (Supplementary Information I), and so we centre our analysis on our fitted mixed-effects models (see ‘Human evaluation methods’ section in the Methods). We use 
the method of estimated (least-squares) marginal means to compare the three groups of games, accounting for the random effects fitted to particular games and human evaluators. We 
report two-sided Z significance tests adjusted using the Tukey method to control for the multiple difference tests within each attribute, as implemented in the emmeans package, with 
standard errors (SE) computed on the basis of the pooled residual standard deviations. *P < 0.05, **P < 0.01, ***P < 0.001 aThe full measure description is ‘helpful for interacting with the 
simulated environment’. In most measures, higher scores are better, indicated by the ↑, other than ‘Difficult

↓
↑’, in which 3 means ‘appropriately difficult’ and scores below and above 

indicate too easy and too hard, respectively.
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isomorphic to games. We believe that our representational hypothesis 
also has merit for additional kinds of goals, such as the goals created in 
joint play between multiple children or adults (such as tag or dodgeball) 
or the objectives a person exploring a new environment might set for 
themselves (for instance, how to turn on the light at an AirBnB without 
bumping into anything). While we expect the general GPG framework 
to accommodate such goals in different domains, doing so would 
certainly entail changes to the specific syntax and semantics of the 
programmatic representations. There are, however, types and aspects 
of goals that might complicate the general procedure of translation 
into programs. For instance, subjectivity, which may be modelled as 
listeners forming different representations of the same utterance, 
might require breaking the assumption that each natural language 
goal corresponds to a single program. Similarly, it is not obvious how 
to represent truly abstract goals such as ‘I want to do well in school’ 
as a well-formed program. In both cases, an avenue forward might be 
grounding not to a single program but to distributions over programs 
or programs with stochastic elements (for example, as suggested 
in the Rational Meaning Construction framework24). We are excited 
for future work to continue studying open-ended goal generation  
in other domains and explore how readily other types of goals map 
onto programs.

There are limitations of the current work that we hope to address 
in future work. Our model strongly relies on its approach to sample 
diversity, which arises from the choice of behavioural characteristics 
that define the axes along which the MAP-Elites algorithm maintains 
diversity. In this work, we select behavioural characteristics based 
on notable gameplay components observed in our human dataset; 
future work could explore other techniques for maintaining diversity, 
including the automated selection of behavioural characteristics44,45. 
In addition, our fitness function ablation (reported in Supplementary 
Information J.5) reveals evidence of potential overfitting in our fitness 
function and highlights the limitation of fitting a single objective func-
tion to all participants. Future work could explore tuning versions of 
the objective to the individual preferences of particular participants. 
Our model currently does not account for any resource constraints 
people face in creating goals that may make compact goals easier to 
propose or maintain; we leave to future work the question of whether 
adding any length-related penalty recovers more human-like pro-
posed goals. Finally, our compositionality ablation (reported in Sup-
plementary Information J.2) is limited—as we collect a single playful 
goal from each participant, we can only compare compositionally 
between participants, rather than measuring component reuse within 
a single participant’s goals. Within-participant reuse may offer further 
evidence of how humans creatively recombine components to com-
pose novel goals.

Our current features approximating intuitive physical common 
sense are indirect, using participant interactions with the environ-
ment to estimate feasibility. Future approaches could integrate plan-
ning or physical simulation to improve our model’s understanding of 
physics46,47. Our model is currently limited to a single kind of common 
sense, the intuitive physical one; other environments may require lev-
eraging similar knowledge from other domains, such as intuitive social 
models of agency and theory of mind. Finally, our model is inherently 
coupled to the environment and dataset we collected—particularly 
given the engineering effort to instantiate various types of knowledge. 
This approach has some distinct advantages: we can isolate various 
cognitive capacities, interpret their contribution to our fitness measure 
(Supplementary Information C.1) and ablate their roles (Supplemen-
tary Information J). Simultaneously, some of the challenges our model 
faces (such as coherence between program components) might be 
alleviated by incorporating natural language or by leveraging the capa-
bilities of large language models to write code and adapt to in-context 
instructions. Language models could also alleviate our current reliance 
on manual translations from participant game descriptions to the 

proposed mental language of goal programs (see ref. 24 for a discus-
sion on using language to construct meaning through programs, and 
ref. 48 for building programs to act as world models).

We see two particularly promising ways in which our representa-
tional framework could be used going forward. First, there is increas-
ing interest in building artificial agents that can flexibly explore and 
generalize across environments49,50. The autotelic perspective argues 
that empowering agents to propose and pursue self-generated goals 
is a fruitful way to improve their ability to generalization34. How-
ever, goals in such systems are often derived from agent or object 
positions51,52, short natural language descriptions53,54 or limited tem-
porally aware mechanisms55,56—all impoverished when compared with 
the diverse goals humans flexibly create. Closely related to our notion 
of representing goals by programs, recent work proposes to directly 
synthesize reward functions57 or environment descriptions58 using 
code-generation models. We are excited for future work to empower 
artificial agents with richer goals that reflect human-like novelty and 
difficulty, for two specific reasons. First, we believe that access to 
complex and varied goals would enable agents to learn flexible rep-
resentations of their environments that support higher behavioural 
adaptability13. Second, we view compositional goal production as 
facilitating effective exploration of unseen goals59 (see ref. 60 for a 
discussion of generalization and exploration). We also note that our 
current approach estimates goal fitness without considering addi-
tional higher-level objectives that might guide goal generation. Prior 
literature offers curiosity61,62, empowerment63–65, information gain66,67, 
novelty62,68 and learning progress69,70 as compelling potential objec-
tives. Future work could instantiate goal generators that consider 
these objectives as auxiliary terms to the fitness function and compare 
the behaviours that arise in artificial agents through pursuing them.

If we are to understand goals as programs, our proposed frame-
work may also help advance our understanding of intuitive psychol-
ogy and goal inference71–73. Previous work proposed that our ability 
to understand other people’s goals, as part of our theory of mind, 
operates through inverse reinforcement learning: inferring an agent’s 
reward from observing their behaviour74. Many prior approaches 
eschew goals entirely, using some function approximator (for exam-
ple, a neural network) to estimate reward, resulting in an uninterpret-
able estimator that can struggle to generalize75. We envision leveraging 
our goal programs as a prior distribution for a Bayesian theory of 
mind76 approach, scaling up previous approaches that relied on a small 
number of predefined goals77, to create models that would parse an 
agent’s behaviour and provide an interpretable, semantically explicit 
estimate of their goal78. Applying our framework to either of these 
proposed problems would offer a substantial long-term challenge 
building on the work we present in this Article. Nevertheless, we see 
an exciting prospect to leverage this approach to improve the under-
standing of human goals and endow machines with human-like goal 
concepts and capabilities.

Methods
Dataset collection methods
Experimental design. After an informed consent form and instruc-
tions quiz, participants completed a tutorial designed to familiarize 
them with the controls for our environment. After successfully com-
pleting the tutorial, participants were randomly assigned to one of 
three variations of the main experiment room, with the same structure 
but different amounts of available toys and objects. Participants were 
then free to explore this new room until they had a game ready, and 
could freely reset it to its initial state in the meantime. Participants were 
asked to create games with the following restrictions: single-player, 
requiring no additional space or objects that they do not see in the 
room, and including a scoring system. Although the latter constraint 
may seem limiting, we note that any arbitrary goal can be scored by 
rewarding the achievement of the goal.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 7 | February 2025 | 205–220 214

Article https://doi.org/10.1038/s42256-025-00981-4

Ethics oversight. The study was performed under the New York 
University institutional review board study titled ‘Active learning in 
dynamic task environments’, IRB-FY2016-231, under the principal 
investigator T.M.G.

Dataset collection. Participants then reported their game in natural 
language in three text boxes, one of which was optional (Extended Data 
Fig. 1). The optional first one allowed specifying whether there was any 
setup or preparation required to get the room from its default initial 
state to one that would allow playing the game (for example, plac-
ing the bin on the bed). The second text box allowed participants to 
describe the game’s gameplay, and the third offered space to describe 
the scoring rules. To encourage participants to imagine playing their 
game, they were also asked to report their perceived difficulty level 
and how many points they thought they might score if they played it. 
Participants then had a chance to play their game and revise it should 
they want to; if participants opted to revise their games, we analysed 
the revised ones. We contacted 192 participants via Prolific79 of whom 
114 finished the experiment and another 12 were paid due to technical 
difficulties. Participants were paid a base rate of US$10 and received a 
US$2 bonus if their game satisfied the required constraints. Success-
ful participants took 44.4 min on average, with a standard deviation 
of 23.3 min. We then excluded eight games that did not satisfy the 
constraints we posed on participants, six duplicates (including some 
due to technical difficulties from participants who restarted the experi-
ment) and six other games that were unclear or underspecified. After 
accounting for 2 other games we opted to avoid modelling owing to 
their complexity (one referring directly to the game interface and 
controls, and another describing several games or levels in the single 
description we collected), we arrived at our final dataset of 98 games. 
We acknowledge the potential arbitrariness of manually translating 
from natural language to our program representations; we attempted 
to be maximally faithful to the descriptions and excluded participants 
whose games required too much subjectivity or interpretation.

Interaction traces. In addition to the game descriptions in natural lan-
guage, we record traces of participants’ interactions with the environ-
ment. We record state–action traces to allow us to replay and examine 
how participants interact with our environment. We record separate 
traces for each different segment of the experiment (before creating 
the game, while reporting their game, playing their game and after 
editing their game) and for each time the participant resets the envi-
ronment within each segment. We end up with 382 total such traces. 
Our primary use for them is in implementing a reward machine, an 
interpreter for our goal programs, which parses a goal program into a 
state machine and iterates through a trace to emit the score of that trace 
under the goal. We use a limited version of this in our fitness features 
(see ‘Fitness function methods’ section for additional details) and in 
some of our model evaluations and ablations (see Supplementary 
Information J for additional details).

Natural language to DSL translation. We manually translated the 
games we collected from participants to programs in a DSL we cre-
ated. We examined the natural language descriptions our participants 
provided to identify recurring semantic components, which we then 
mapped onto elements in our DSL, iterating between translating more 
programs and updating the DSL grammar. We began by attempting 
to translate directly into PDDL25, which offers a basic representation 
for specifying planning problems, but deviated from it as we encoun-
tered game elements our participants specified with no clear PDDL 
analogues. We assume that the translation process is not lossless, as 
there are probably multiple natural language descriptions for each 
underlying set of game semantics and multiple programmatic encod-
ings of vague natural language descriptions; however, we aimed to 
develop representations that capture the core semantics of the rich, 

generative and creative structure in goals. We also perform some analy-
ses to validate the extent to which these translated programs capture 
semantic concepts that were intended by participants, which we report 
in Supplementary Information B.

Goal program interpreter. Inspired by the reward machine proposed 
by ref. 80, we similarly implement an interpreter for the goal programs 
in our DSL. The interpreter parses a program in our DSL into a state 
machine. This state machine enumerates over environment states 
and participant actions emitted as a participant plays in our experi-
ment (see ‘Interaction traces’ section above), tracks the participant’s 
progress with respect to each program component (setup conditions, 
gameplay preferences and terminal conditions) and emits a reward 
according to the scoring conditions defined in the goal program.  
This allows us to ground programs to participant interactions and 
evaluate partial or complete fulfilment of the specified goal. We use  
this reward machine as part of our feature set (see ‘Fitness function 
methods’ section), to analyse functional similarity between programs 
our model generates and participant-created games (Extended Data 
Fig. 6) and to assess our manual translations of participant-provided 
descriptions (Supplementary Information B). Our current imple-
mentation of the interpreter covers the vast majority of predicates  
and grammar elements; we omitted grounding a few rarely used predi-
cates owing to their complexity and lack of frequency. In these cases,  
we attempted to ensure that our implementation would be biased 
towards false negatives rather than false positives—we would rather 
fail to count an interaction that occurred than count interactions that 
did not occur.

Game dataset analysis methods
Common sense through predicate role-filler analysis. We analyse 
predicate role-filler occurrences, coarsening individual objects to 
higher-level categories (see the legend on the right of Fig. 2b). To split 
between the two panels of Fig. 2b, we categorize each game by whether 
it includes the following motifs: throwing (for example, balls into a bin), 
stacking (for example, blocks in a building), organizing (for example, 
placing objects in specified places) or other. We split the figure into 
games involving only throwing motifs (left panel) and games involving 
any other motifs, potentially in addition to throwing (right panel). In 
games involving only throwing (left panel), participants most often 
refer to balls, primarily checking whether or not the agent holds a 
ball or a ball is in motion (as part of quantifying the act of throwing). 
Other predicates are often used to specify some additional conditions 
on throwing (such as specifying the bin being on the bed or the agent 
being next to the desk) and are used with a variety of object categories. 
Conversely, in games involving other elements (right panel), we see 
blocks and the generic ‘any_object’ being used far more often, mostly 
in various placement and stacking constraints.

Compositionality and creativity through abstract structure occur-
rence. We analyse how often participant games make use of various 
grammatical structures to showcase both compositional reuse and 
long-tail creativity. Each structure involves a temporal modal (such 
as once or hold) and the predicate expression nested under it, such as 
(once (agent_holds ?b)), where ?b is a variable quantified earlier. We 
count structures, abstracting away specific variables and their types—
so the expression above would be coarsened as (once (agent_holds 
<obj>)) and would be counted together with any other expression 
coarsened to this pattern. We encounter a total of 126 unique expres-
sions in our dataset, the most common one with 62 occurrences being 
(hold (and (not (agent_holds <obj>)) (in_motion <obj>))), which maps 
loosely to ‘find a sequence of states where an object is not held and is in 
motion’—that is, it is currently moving with the agent touching it, for 
instance while being thrown or rolled. Of the 126 expressions, exactly 
half (63) occur only once.
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Fitness function methods
Fitness function form. We use the most direct mapping from feature 
values to a real-valued score as our fitness function: a learned, weighted 
linear combination of a set of features extracted programmatically from 
each game that is optimized to assign high scores to ‘human-like’ games 
and low scores to everything else. It is a function f ∶ 𝒢𝒢 𝒢 𝒢 that maps 
individual games g ∈ 𝒢𝒢 to real-valued scores: f(g) = θ ⋅ φ(g), where θ is 
a learned vector of weights and ϕ ∶ 𝒢𝒢 𝒢 𝒢0, 1]F  is a feature extractor.

Feature extractor and feature set. The feature extractor φ represents 
each game as an 89-dimensional vector (that is F = 89). Each entry in 
the vector corresponds to a particular structural or semantic property 
of the game, from the size and depth of the syntax tree to the apparent 
feasibility of the game’s preferences. We normalize the values of each 
property to fall within the unit interval by using the observed range 
of values in our dataset. Many features used in the fitness function 
are directly computable from the DSL representation of a game (for 
instance, properties of its syntax tree or the misuse of particular gram-
matical structures). While these features represent the majority of the 
89 features used, we also implement two important sets of features that 
require additional computation.

The first of these are n-gram features that capture the mean log 
score of the game under a simple n-gram language model trained over 
the set of human-generated syntax trees. We fit n-gram models using 
stupid backoff81 to account for missing n-grams, using the default 
discount factor of 0.4 reported in ref. 81. We compute these scores 
separately for each game section (that is, setup, preferences, terminal 
and scoring) and also for the game overall, resulting in five features.

The second set consists of two features that make use of an inter-
preter that parses game programs into reward machines80: finite-state 
machines that process a trace of player inputs and emit a reward when-
ever the particular scoring conditions of the game are met. The inter-
preter programmatically implements each of the predicates in the DSL, 
which allows us to construct a dataset of which objects were used to 
satisfy which predicates across our dataset of 382 human play traces. 
The two features query this database to get an approximate common 
sense measure of a game’s feasibility, computing the proportion of a 
game’s predicate–argument combinations that have been satisfied 
by human players in our dataset (one feature does this for individual 
predicates, while the other does this for Boolean logical expressions 
over predicates). Although these feasibility measures give a sense of 
whether the objectives of a game can be completed in the physical 
reality of the simulation, the limited nature of our play trace dataset 
means they are far from perfect proxies.

We developed our feature set starting from features used in similar 
prior work (for example, features representing the length and depth 
of the syntax tree82). We then fit a fitness function using the procedure 
described below and inspected the fittest games from our set of nega-
tive examples. We iteratively added features to account for mistakes our 
model made (flawed negatives with high fitness) and removed features 
that our fitness function seemed to ignore (by learning a weight with a 
low magnitude). The complete set of features used (and accompany-
ing descriptions) is available in Supplementary Information C, with 
the most important features (by their learned weights) highlighted in 
Supplementary Information C.1.

Fitness function learning algorithm. To learn the weight vector θ, 
we take inspiration from the contrastive learning of energy-based 
models26 with the objective of separating a set of positive examples 
(our set of human-generated games) from a set of negative examples 
(see a summary in Fig. 3b). To learn an effective fitness function, these 
negatives must be qualitatively worse than our set of human games 
without being trivially distinguishable from them. We generate a set 
of plausible negatives by corrupting games from our positive set. To 
corrupt a game, we select a random node in its syntax tree, delete the 

node and its children, and randomly resample a subtree according 
to the DSL grammar (illustrated in red in Fig. 3b). This tree-regrowth 
approach21 generally produces subtrees that are syntactically valid but 
semantically out of place, with the severity of the corruption tending 
to correspond to the height of the resampled node in the syntax tree. 
To account for the variance in the difficulty of distinguishing between 
a given positive and negative example, we generate a large set of nega-
tives: 1,024 for each of the 98 positives, for a total of 100,352 negatives.

We train the fitness function (that is, optimize θ) using a softmax 
loss, not unlike the minimum empirical error (MEE) loss used to train 
energy-based models83 or the InfoNCE loss84. For a positive example g+ 
and a set of negative examples {g−

k }, k ∈ {1, 2,⋯ ,K },, we assign the loss

ℒ( g+, {g−
k }

K
1
;θ) = − log exp( fθ( g+))

exp( fθ(g+)) +∑K
k=1 exp( fθ( g

−
k ))

. (1)

This loss encourages the model to assign higher fitness scores to the 
real games than the negative examples. Simultaneously, this loss pro-
vides a diminishing incentive to push negative fitness scores down as 
the distance between the positives and negatives increases, intuitively 
assigning higher loss to negative examples with fitness closer to the 
positive example’s fitness. See Supplementary Information D for full 
details of our training and cross-validation setups.

Final fitness function. Note that, while we perform cross-validation 
for hyperparameter selection, once we fixed a set of fitness features 
and hyperparameters, we fit a final fitness function using our entire 
dataset (98 participant-created examples and their corresponding 
negatives). Given the minuscule human dataset we collected, we 
opted against holding out data from the final objective function 
to best guide our model’s search process (but see Supplementary 
Information J.5 for a comparison with fitness function trained on a 
subset of our dataset).

MAP-Elites methods
MAP-Elites overview. MAP-Elites is a population-based, evolutionary 
algorithm that works by defining a set of behavioural characteristics: 
discrete-valued functions over genotypes (in our case, game programs 
in the DSL) that form the axes of a multidimensional archive of cells 
(see the overview in Fig. 3c). At each step, a game g is selected uniformly 
from among the individuals in the archive (Fig. 3c, step 1) and mutated 
to form a new game g′ (Fig. 3c, step 2). The mutated g′ is evaluated under 
both the fitness function f and each of the n behavioural characteristics 
bi ∶ 𝒢𝒢 𝒢 {0,… , ki} to determine which cell c = [b1(g), …, bn(g)] it occupies. 
If the cell is unoccupied, then g′ enters the archive. Otherwise, it enters 
the archive (and replaces the previous occupant) only if its fitness is 
greater than the current occupant of the cell (Fig. 3c, step 3). In this 
way, the algorithm maintains an ‘elite’ for each possible combination 
of values under the behavioural characteristics.

Behavioural characteristics. Inspired by prior work on using MAP-Elites 
for procedural content generation85, we define a set of integer-valued 
behavioural characteristics that each indicate how many preferences 
in each archive game match one of nine archetypal exemplar gameplay 
preferences (illustrated as the axes of the grid in Fig. 3c). These include 
several types of ball-throwing preferences, as well as ones capturing 
block-stacking, object-sorting and other miscellaneous activities. 
We also include two other features: one that captures whether the 
game includes a setup component and one that captures the total 
number of preferences. For additional details and descriptions of the 
exemplar preferences, see Supplementary Information E. We use nine 
exemplar preferences, in addition to these two other features, as a 
trade-off between covering many behaviours that participants demon-
strate and avoiding exploding the size of the archive: as it is, the 11 total 
behavioural characteristics result in a total archive size of 2,000 games.  
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The 98 participant-created games in our dataset map onto 47 different 
archive cells; conversely, most archive cells (1,953, or 97.65%) have no 
corresponding participant-created exemplar.

Auxiliary coherence check. We include an auxiliary pseudo- 
behavioural characteristic that explicitly captures a few general coher-
ence properties of games, which we use to help our model search 
the space of programs. This characteristic computes a conjunction 
of the values of 21 features, ones that we expect either all plausibly 
human-generated games to exhibit or none of them to exhibit (indeed, 
all participant-created programs in our dataset pass this check). These 
include features such as checking that all quantified variables are refer-
enced at least once, that all game preferences defined are mentioned 
in the terminal or scoring conditions and that no logical expressions 
are tautological or redundant. This check does not use any information 
beyond the fitness features and serves as a mild additional inductive 
bias and structure for our search process.

We keep two copies of the 2,000-sample archive from the behav-
ioural characteristics using the exemplar preferences above, one with 
samples passing this auxiliary check and the other with samples failing 
it. During the search process, we sample uniformly from both archives. 
Intuitively, this accomplishes two desiderata: (1) it forces the model 
to generate a sample in each archive cell that passes this check, and 
simultaneously, (2) it allows the model to better search the space of 
programs by also exploring high-fitness samples that fail this check. 
We consider as outputs of our final model only goals from the archive 
copy that pass this check, and those are the only ones we report in 
fitness-based and human evaluations. See Supplementary Information 
E for additional details.

Mutation operators. To mutate a game, we randomly select an operator 
from among the following: regrowing a random node and its children 
in its syntax tree; inserting and deleting the child of a node with mul-
tiple potential children; crossing over with the syntax tree of another 
randomly selected game; resampling the variables, initial conditions 
or final conditions used by a preference; and resampling the optional 
game sections (that is, setup and terminal conditions). We seed the 
initial archive by naively sampling candidates from the PCFG—not with 
real, human-participant-created games or corruptions thereof that 
were used to train the fitness function. Further details of the algorithm 
are available in Supplementary Information E.

Archive initialization. Our search process is not seeded from any real 
participant-created examples. Instead, we initialize the MAP-Elites 
archive with examples generated by sampling from the PCFG defining 
our DSL. We generate 1,024 initial samples, sort them by their fitness 
scores and add at most 128 of them to the archive. See Supplementary 
Information E for additional details.

Ablation methods
We ablate several components of our model that leverage cognitive 
capacities people appear to use when creating goals. We describe the 
components and briefly elaborate on their respective cognitive capaci-
ties below. We report the full ablations in Supplementary Information J.

Common sense. We offer evidence in Fig. 2 and our discussion of the 
behavioural results that participants seem to leverage (physical) com-
mon sense reasoning in their goal creation. The DSL we use to represent 
goals is underconstrained with respect to this type of common sense 
and allows one to generate expressions that are physically improbable 
or entirely impossible. To aid our model in generating physically plausi-
ble expressions, we include two fitness features that query a dataset of 
participant interactions with our environment (see ‘Dataset collection 
methods’ section) and score predicate expressions on whether or not 
any participants ever satisfied them in their play behaviour. We report 

the results of this ablation in Supplementary Information J.1, where we 
find that these features are crucial for our model.

Compositionality. We offer evidence of the way participants appear 
to recombine simple elements to create diverse games in Fig. 2. Com-
positionality is core to our DSL, as programs naturally offer the ability 
to compose expressions of the same type. We ablate this ability by 
removing the mutation operators that implement compositions. We 
first remove some of our custom resampling operations and then 
remove the crossover operation, which explicitly composes two pro-
grams in our archive to create two new candidates (see ‘MAP-Elites 
methods’ for additional details). We report the results of this ablation 
in Supplementary Information J.2, where we observe that the crossover 
operation is crucial for our model and that our custom operators offer 
a smaller but measurable effect.

Coherence. We observe that most participants create coherent goals 
that fit together without any explicit prompting to do so: different 
components of a goal tend to refer to one another and avoid disjoint-
edness. After earlier versions of our model struggled with this type 
of higher-level coherence, we included several fitness features that 
attempt to measure it at different degrees of abstraction (see Sup-
plementary Information J.3 for additional details and the full results). 
We find that including these features substantially improves the 
model-generated games.

PCFG-sampling-only baseline. To illustrate the necessity of a complex 
search process over the space of programs in our DSL, we created a 
baseline that repeatedly samples from the PCFG representing our gram-
mar, with rule and terminal counts fitted to our human datasets. We 
match the total number of samples to the total number of candidates 
our full model generates in its search. We find both low occupancy 
rates (sampling from this prior fails to explore the space) and low fit-
ness scores. See Supplementary Information J.4 for additional details 
and the full results.

Held-out data ablation. We perform a held-out evaluation of our 
model to evaluate how robust our procedure is to unobserved data. We 
split our dataset of 98 games into 20 test games and 78 training games 
and fit the fitness function only using those games (with the same set 
of fitness features as our full model). We then run our search to opti-
mize the fitness function fitted to the partial data. We find the results 
comparable to our full model, both in overall fitness scores and when 
particularly examining the model-generated games corresponding to 
the held-out samples. See Supplementary Information J.5 for additional 
details and the full results.

Human evaluation methods
Evaluation dataset. We select games to be evaluated using the fol-
lowing procedure:
 (1) Real: We include 30 participant-created games, each with a 

different set of behavioural characteristics—that is, each being 
considered different according to how our model searches 
through the space of games (see ‘MAP-Elites methods’ section 
for additional details).

 (2) Matched: For each of the real games included above, we include 
the model-generated game from our final model from the 
corresponding MAP-Elites archive cell. Each of these games 
includes the same number of gameplay preferences as the cor-
responding real participant-created games, matching the same 
exemplar preferences.

 (3) Unmatched: We also include 30 additional games from our 
model’s archive. We sample these in a fashion that aims to be 
balanced across the different preference counts and usage of 
the different exemplar preferences. That said, given that human 
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games cover only 47 out of the 2,000 archive cells, that leaves 
1,953 potential unmatched games to sample; it is difficult to 
know how representative our set of 30 (which is about 1.5%) 
is. We initially sampled 40 unmatched games and had partici-
pants evaluate 4. We then discovered that some of these model 
samples have drastically lower fitness scores from the real and 
matched samples. We therefore excluded evaluations of the ten 
lowest-fitness unmatched samples from our analyses to reduce 
the degree to which fitness scores confound our analyses.

We collected evaluations from n = 100 human participants, and 
our final dataset includes 892 participant-game evaluations, of which 
300 are in the real category, 300 in the matched category and 292 in 
the unmatched category (due to the exclusions mentioned above).

GPT-4-based back-translation. Rather than ask participants to inter-
pret our DSL, we use the GPT-4 (ref. 86) language model to perform a 
multistep back-translation from programs in our DSL to structured 
natural language. For fairness and consistency, we use this procedure 
on the real games in addition to the model-generated matched and 
unmatched games. We first apply a rule-based system to apply tem-
plates, translating expressions in the DSL to natural language sentence 
fragments. We then use GPT-4 to first map the templated fragments 
to a more natural language and then combine the description of each 
game component (setup, gameplay preferences, terminal conditions 
and scoring rules) to a short coherent description. See Supplementary 
Information F for full details and prompts used.

Human evaluations structure. Extended Data Fig. 4 shows our human 
evaluation interface. Following instructions and an understanding 
quiz, participants evaluated nine total games: three real ones, the 
corresponding three matched ones and three unmatched ones. Par-
ticipants were presented one game at a time and provided two short 
textual responses, one explaining the game in their own words and 
one providing a short overall impression of the game. Participants also 
answered seven Likert-type questions on 5-point scales, answering the 
following questions about the italicized attributes:

 (1) Understandable: ‘How confident are you that you understand 
the game described above?’ (1, not at all confident; 3, moder-
ately confident; 5, very confident).

 (2) Fun to play: ‘How fun would it be to play the game yourself?’ (1, 
not at all fun; 3, moderately fun; 5, extremely fun).

 (3) Fun to watch: ‘How fun would it be to watch someone else play 
this game?’ (1, not at all fun; 3, moderately fun; 5, extremely 
fun).

 (4) Helpful: ‘Imagine that you played this game for several minutes. 
How helpful would it be for learning to interact with the virtual 
environment?’ (1, not at all helpful; 3, moderately helpful; 5, 
extremely helpful).

 (5) Difficult: ‘Imagine that you played this game for several min-
utes. Do you think it would be too easy, appropriately difficult, 
or too hard for you?’ (1, far too easy; 3, appropriately difficult; 5, 
far too hard).

 (6) Creative: ‘How creatively designed is this game?’ (1, not at all 
creative; 3, moderately creative; 5, extremely creative).

 (7) Human-like: ‘How human-like do you think this game is?’ (1, 
not at all human-like; 3, moderately human-like; 5, extremely 
human-like).

Evaluation statistical analyses. For each attribute and each game 
category (real, matched and unmatched), we report the mean score 
assigned by all participants to games in that category for that attribute. 
We then also aggregate these attribute scores by category and report 
a non-parametric Mann–Whitney U test87 for differences in outcomes, 
as appropriate for ordinal data. See Supplementary Table 2 for the 

full table including test statistics and P values. Significance results 
were highly similar when computing two-sample t-tests as an alterna-
tive statistical test. We do not perform any adjustment for multiple 
comparisons but note that most effects discussed would remain sig-
nificant at the α = 0.05 level under a standard Bonferroni correction. 
We report extended analyses, including inter-rater reliability88, in the 
supplemental information.

Mixed-effects models. We are interested in modelling the relationship 
between the scores predicted by our fitness function and the attributes 
human evaluators predicted. To that end, we set up mixed-effects 
regression models89,90. We fit separate models for each measure as the 
dependent variable, regressing a continuous latent score (for example, 
sifp for the fun-to-play measure, equation (2) below). We include fixed 
effects for membership in the real (�i

real) and matched (�i
matched) groups, 

treating the unmatched group as a baseline. In our second analysis,  
we also include a fixed for the fitness score (xi) (which is the full  
form reported in equation (2) below). We include random effects for 
the individual participants (ϵpi

p ∼ 𝒩𝒩(0,σ2p) ) and evaluated games 
(ϵgig ∼ 𝒩𝒩(0,σ2g)). We also fit a sequence of cut-points (equation (3)) that 
transform the latent score to the observed ordinal rating yifp  
(equation (4)). We suppress the subscript for each measure below:

si = βfitxi + βreal�
i
real + βmatched�

i
matched + ϵpi

p + ϵgig + ϵi, ϵi ∼ 𝒩𝒩(0,σ2)
(2)

−∞ ≡ c0 < c1 < c2 < c3 < c4 < c5 ≡ ∞ (3)

ck−1 < si ≤ ck ⇒ observe yi = k. (4)

Models without either random effect performed worse than the full 
model, so we report results including both random effects. We fit 
cumulative link models for ordinal regression91,92 using the ordinal 
package version 2023.12-4 (ref. 93) in R version 4.3.2 (2023-10-31)94, 
and produce plots using the jtools package version 2.3.0 (ref. 95). We 
report coefficient significance estimates using the two-sided Wald 
test, as implemented in the ordinal package. The fitted coefficients of 
these mixed-effects models are summarized in Extended Data Table 2 
and Extended Data Fig. 7 (see Supplementary Information I.3 and Sup-
plementary Tables 5 and 6 for additional details).

Marginal means comparisons. To compare between the three cat-
egories we evaluate (real, matched, and unmatched games), we use the 
method of estimated (least-square) marginal means. This allows us to 
account for variations in the random effects fitted to individual evalua-
tion participants and evaluated games. In the models fitted with fitness 
scores, these similarly allow accounting for variations in observed 
fitness scores between game categories and their predicted effect on 
the ratings. Intuitively, the method simulates the marginal means of 
the dependent variable as though we had observed each combination 
of fixed effect (fitness score) and random effects (for individual raters 
and games) for all values of the group of interest (game type), allowing 
us to compare its effect most directly. We use the emmeans package 
version 1.1.0 (ref. 96) to estimate the mean score for each attribute in 
each category. We also report standard errors (of the differences in esti-
mated means) using the emmeans package and two-sided significance 
tests adjusted using the Tukey method (to control for the multiple 
difference tests within each attribute). We summarize the marginal 
means comparison in Table 1, Extended Data Fig. 5, Supplementary 
Table 6 and Supplementary Fig. 4.

Sample similarity comparison methods
For each real game and its corresponding matched game from those 
included in the human evaluations, we examine which of our recorded 
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participant interactions (see ‘Dataset collection methods’ section 
above) fulfils one or more gameplay elements. We treat the setup (if 
specified) and each gameplay preference as a gameplay element; our 
aim here is to quantify which participant interaction traces play a part 
of the game. We do this using our reward machine—our implementation 
of an interpreter for goal programs in this DSL (see ‘Dataset collec-
tion methods’ section). For each pair of games, we then check which 
particular interactions either (1) play parts of both games, (2) fulfil 
components only in the real game or (3) fulfil components only in the 
matched game. We colour these proportions in purple, green and blue, 
respectively, in Extended Data Fig. 6.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data for our study, including raw participant responses in the behav-
ioural experiment, their translations to programs in our DSL and the 
specification for the DSL, are available via GitHub at https://github.
com/guydav/goals-as-reward-producing-programs/ or via Zenodo at 
https://doi.org/10.5281/zenodo.14238893 (ref. 97).

Code availability
All code for our study, including code used to analyse and generate 
figures for our behavioural experiment, and the full implementation of 
our GPG model, are available via GitHub at https://github.com/guydav/
goals-as-reward-producing-programs/ or via Zenodo at https://doi.
org/10.5281/zenodo.14238893 (ref. 97). Our behavioural data collection 
experiment is publicly accessible at https://game-generation-public.
web.app/. Code for the behavioural experiment is available via GitHub 
at https://github.com/guydav/game-creation-behavioral-experimen
t. Our human evaluation experiment is publicly accessible at https://
exps.gureckislab.org/e/expert-caring-chemical/#/welcome. Code for 
the human evaluation experiment is available via GitHub at https://
github.com/guydav/game-fitness-judgements.
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Extended Data Fig. 1 | Online experiment interface. The main part of the screen presents the AI2-THOR-based experiment room. Below it, we depict the controls.  
To the right, we show the text prompts for creating a new game (fonts enlarged for visualization). Our experiment is accessible online here.
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https://game-generation-public.web.app/
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Extended Data Fig. 2 | Common-sense behavioral analyses. We plot similar information to Fig. 2b, but including additional object categories and predicates.
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Extended Data Fig. 3 | Our implementation of the Goal Program Generator 
model fills the archive quickly and finds examples with human-like fitness 
scores. Left: Our model rapidly finds exemplars for all archive cells (that is niches 
induced by our behavioral characteristics), reaching 50% occupancy after 400 
generations (out of a total of 8192) and 95% occupancy after 794 generations—the 
archive is almost full 1/10th of the way through the search process. Middle: Our 

model reaches human-like fitness scores. After only three generations, the fittest 
sample in the archive has a higher fitness score than at least one participant-
created game. By the end of the search, the mean fitness in the archive is close to 
the mean fitness of human games. Right: Our model generates the vast majority 
of its samples within the range of fitness scores occupied by participant-created 
games, though few samples approach the top of the range.
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Extended Data Fig. 4 | Human evaluations interface. For each game, 
participants viewed the same four images of the environment, followed by the 
GPT-4 back-translated description of the game (see Human evaluation methods 

for details). They then answered the two free-response and seven multiple-choice 
questions on the right. In the web page version, the questions appeared below the 
game description; we present them side-by-side to save space.
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Extended Data Fig. 5 | Mixed model result summary. We summarize the 
pairwise comparisons made in Table 1. Each panel corresponds to a set of 
columns in Table 1 and each color to one of the seven human evaluation attributes 
we consider. We compare the estimated marginal mean scores under the fitted 

mixed effect models between each pair of game types listed in the panel title. 
As in Table 1, we use the method of estimated (least-squares) marginal means to 
compare the three groups of games, accounting for the random effects fitted to 
particular games and human evaluators.
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Extended Data Fig. 6 | Proportion of human interactions activating only 
matched and real games in the same cell. Each bar corresponds to a pair of 
corresponding matched and real games. In each bar, we plot the proportion 
of relevant interactions (state-action traces) that are unique to the matched 
game (blue), unique to the real game (green), or shared across both (purple). 
A few games (with the bar mostly or entirely in purple) show high similarity 
between the corresponding games — under 25% (7/30) share more than half of 

their relevant interactions. Most games, however, show substantial differences 
between the sets of relevant interactions, with some showing a higher fraction 
unique to human games and others to matched model games. The average 
Jaccard similarity between the sets of relevant interactions for the matched 
and real game is only 0.347 and the median similarity is 0.180 (identical games 
would score 1.0, entirely dissimilar games 0).
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Extended Data Fig. 7 | Mixed model (including fitness) coefficient summary. 
We summarize the fitted model coefficients listed in Extended Data Table 2. 
Each panel corresponds to a particular coefficient in Extended Data Table 2 and 
each color to one of the seven human evaluation attributes we consider. We plot 

the fitted coefficient value and a standard error estimated using the Hessian as 
implemented in the clmmR package. We observe the same effects discussed in 
Extended Data Table 2.
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Extended Data Table 1 | Non-parametric significance test results mostly corroborate mixed-model results

Fitness scores show (statistically) significant positive effects on the understandability, fun to play, and human-likeness attributes, and significant negative effects on the helpfulness, difficulty 
and creativity questions. Accounting for the role of fitness, the matched group membership shows significant effects only the fun to play and watch, helpfulness, and human likeness 
questions. The real group shows significant effects on understandability, fun to play and watch, and human likeness. Standard errors were estimated using the Hessian as part of model-fitting. 
We report coefficient significance estimates using the two-sided Wald test. *: P < 0.05, **: P < 0.01, ***: P < 0.001 †: The full measure description is ‘Helpful for interacting with the simulated 
environment.’ In most measures, higher scores are better, indicated by the ↑, other than Difficult ↓↑, in which 3 means ‘appropriately difficult’, and scores below and above indicate too easy 
and too hard respectively.
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Extended Data Table 2 | Fitness scores significantly predict several attributes, including understandability and 
human-likeness

Fitness scores show (statistically) significant positive effects on the understandability, fun to play, and human-likeness attributes, and significant negative effects on the helpfulness, difficulty 
and creativity questions. Accounting for the role of fitness, the matched group membership shows significant effects only the fun to play and watch, helpfulness, and human likeness 
questions. The real group shows significant effects on understandability, fun to play and watch, and human likeness. Standard errors were estimated using the Hessian as part of model-fitting. 
We report coefficient significance estimates using the two-sided Wald test. *: P < 0.05, **: P < 0.01, ***: P < 0.001 †: The full measure description is ‘Helpful for interacting with the simulated 
environment.’ In most measures, higher scores are better, indicated by the ↑, other than Difficult ↓↑, in which 3 means ‘appropriately difficult’, and scores below and above indicate too easy 
and too hard respectively.
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