
Nature Machine Intelligence | Volume 7 | February 2025 | 205–220 205

nature machine intelligence

https://doi.org/10.1038/s42256-025-00981-4Article

Goals as reward-producing programs

Guy Davidson   1,4 , Graham Todd2,4, Julian Togelius2, Todd M. Gureckis3,5 &
Brenden M. Lake   1,3,5

People are remarkably capable of generating their own goals, beginning
with child’s play and continuing into adulthood. Despite considerable
empirical and computational work on goals and goal-oriented behaviour,
models are still far from capturing the richness of everyday human goals.
Here we bridge this gap by collecting a dataset of human-generated playful
goals (in the form of scorable, single-player games), modelling them as
reward-producing programs and generating novel human-like goals through
program synthesis. Reward-producing programs capture the rich semantics
of goals through symbolic operations that compose, add temporal
constraints and allow program execution on behavioural traces to evaluate
progress. To build a generative model of goals, we learn a fitness function
over the infinite set of possible goal programs and sample novel goals with a
quality-diversity algorithm. Human evaluators found that model-generated
goals, when sampled from partitions of program space occupied by human
examples, were indistinguishable from human-created games. We also
discovered that our model’s internal fitness scores predict games that are
evaluated as more fun to play and more human-like.

Understanding how humans create, represent and reason about goals
is crucial to understanding human behaviour. Goals are pervasive
throughout psychology1–3, having been studied from perspectives
such as motivation4–6, personality and social psychology7,8, and learn-
ing and decision-making9,10. But what is a goal? Elliot and Fryer offer
the workable, albeit simplified, definition: a representation of a future
object to be approached or avoided (see also refs. 3,10). Reinforce-
ment learning offers another formulation, operationalizing goals as
maximizing cumulative reward over a series of steps11. Typical goals
in reinforcement learning tasks include reaching a target location,
winning in a video or board game12, or placing an object in a specified
position (for example, Fig. 1a), such that success can be characterized
by reaching a target state.

By contrast, people routinely create novel, idiosyncratic goals
with richness beyond these common modelling settings. Chu et al.13
report the example of Gareth Wild, who set an unusual goal for himself
to park in every spot in a particular grocery store’s parking lot (Fig. 1b).
Children routinely devise fun and compelling goals without external
guidance, such as creating a ‘truck carrier truck’ (Fig. 1c) or stacking

as many blocks as possible in a single tower (Fig. 1d). Beyond being
fun, these playful goals serve a crucial role in learning to structure
and solve arbitrary problems14–16. Indeed, it has been argued that
autonomously setting and achieving goals is a core component of
human intelligence13,17.

We propose a framework for modelling human goal generation as
synthesizing reward-producing programs (Fig. 1, bottom row). There
are several advantages to representing goals as symbolic programs,
which map an agent’s behaviour to a reward score indicating the degree
of success. First, a structured language facilitates the compositional
reuse of motifs across disparate goals. Such reuse makes capturing
the wide range of human creativity in goal creation substantially more
tractable: In Fig. 1e, we illustrate a simple ball-throwing game (in black)
and four distinct variants (in red, blue, pink and brown) composed in
part from shared components: balls being thrown (highlighted in yel-
low), the thrown ball hitting something (orange) and the thrown ball
landing somewhere (green). Second, our choice of representation
makes goal semantics explicit. The particular grammatical elements
of our representation each fulfil particular roles, such as predicates

Received: 14 May 2024

Accepted: 5 January 2025

Published online: 21 February 2025

 Check for updates

1Center for Data Science, New York University, New York, NY, USA. 2Department of Computer Science and Engineering, New York University, New York,
NY, USA. 3Department of Psychology, New York University, New York, NY, USA. 4These authors contributed equally: Guy Davidson, Graham Todd.
5These authors jointly supervised this work: Todd M. Gureckis, Brenden M. Lake.  e-mail: guy.davidson@nyu.edu

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-025-00981-4
http://orcid.org/0000-0001-8184-8940
http://orcid.org/0000-0001-8959-3401
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-025-00981-4&domain=pdf
mailto:guy.davidson@nyu.edu

Nature Machine Intelligence | Volume 7 | February 2025 | 205–220 206

Article https://doi.org/10.1038/s42256-025-00981-4

games from sections of program space closer to participant-created
games were judged indistinguishably from the real games, but model
samples further away were not rated as highly on average. Analyses
revealed that our learned fitness function predicts several human
judgement questions, including how human-like games are rated.
These results demonstrate that our goal representations and model
capture important aspects of how people creatively construct new
goals, generating plausible, diverse goals and predicting understand-
ability and fun ratings. We conclude with a discussion of the scope of
our representational hypothesis (capturing goals as programs), the
relationship to prior work, some limitations of our model and avenues
for future work.

Behavioural results
Although goals play a crucial role in psychological theory, there are few,
if any, empirical paradigms for eliciting wide-ranging goals from study
participants. We created an experimental setting that aims to capture
the rich, playful and creative nature of how children (and adults) create
everyday goals. We used AI2-THOR19 (an embodied, three-dimensional
environment simulation) to set up a room resembling a child’s bed-
room, filled with toys and other common objects (Fig. 2a; see Extended
Data Fig. 1 for a larger version). In our task, we asked participants to

(that is, specific and evaluable relations between objects, coloured
orange in the programs in Fig. 1) and temporal modals (that is, rela-
tionships in time between goal components, such as ‘until’ and ‘then’
in Fig. 1). Finally, goals-as-programs are executable; that is, they can
be computationally interpreted to detect when a goal is entirely or
partially achieved (Fig. 1e, each program would be interpreted and
provide a score only when the matching throw trajectory is completed).

In this Article, we demonstrate that programs can capture real
human-created goals in a naturalistic domain and build a model capable
of generating new programs representing human-like goals. We devised
a rich experimental environment for goal generation and asked human
participants to generate playful goals in the form of single-player
scoreable games (see ref. 18 on the relationship between games and
goals). We translated these games into programs in a domain-specific
language (DSL) that explicitly models the core semantics of the par-
ticipants’ creations. We also developed a goal program generator
(GPG) model to generate new goals in this representation, learning a
fitness metric over programs to capture human likeness and sampling
diverse goal programs to maximize fitness. We found that the model
succeeds in generating novel games distinct from examples in the
training dataset. Human raters evaluated several characteristics of
model-generated games, including how human-like they were. Model

e

“This a truck carrier truck”“Park in every parking
spot in this lot”

“Stack as many blocks as I
can before the tower falls”

b c d

“Pick the red cube and
place it on the blue cube”

a

“Throw the ball so it hits a
block from the shelf onto
the chair”

“Throw the ball so it hits
the wall then bounces
back to you”

“Throw the ball into the bin”
“Throw the ball so it bounces
o� the wall and into the bin”

“Place the bin on the bed and
the dog bed next to it, throw
dodgeballs to either of them”

Fig. 1 | Goals as reward-producing programs. a–d, Different goals, presented in
natural language and mapped to pseudo-code in a program-like representation.
Panel a depicts a pick-and-place task of the form often studied in reinforcement
learning and robotics, presented in contrast to human-created goals: a self-
imposed challenge to park in every spot in a parking lot (b), creating a ‘truck
carrier truck’ (c), and stacking blocks until a tower falls (d). e, A set of varied yet
related goals in our experiment environment, of which the blue and pink were
created by participants in our experiment. Each goal is represented by a throw
trajectory (dashed line in the illustration) matching a description of the goal
(whose text is the same colour as the line). We highlight shared compositional

components between programs in yellow, orange and green. Our program
representations are reward-producing, that is, run on sequences of agent
interactions with an environment (state–action pairs) and emit a score with
respect to the specified goal. Our pseudo-code and DSL both use syntax inspired
by the LISP (list processing) programming language, where function calls
have the function name as the first token inside the parentheses. Participants
in our experiment created some of these goals; see Supplementary Fig. 1 for
representations of the blue and pink programs in our DSL. Credit: car park in b,
Vecteezy.com.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 205–220 207

Article https://doi.org/10.1038/s42256-025-00981-4

propose a single-player game to be played in the room. This design
allowed participants to imagine and propose a wide range of playful
goals, with the aim of game generation helping to make the resulting
goals more concrete. We collected a dataset of 98 games, described by
participants in natural language. In addition, we recorded full state–
action traces of each participant’s interactions with the environment,

which we leveraged in later experiments (see ‘Dataset collection meth-
ods’ section in the Methods for additional details).

We then manually translated each game from natural language to
programs in a DSL, inspired by language-of-thought models in compu-
tational cognitive science20–24. The DSL is used to model the semantics
of games in our dataset, independent of the exact natural language

a

b

c

Structure index
60 80

St
ru

ct
ur

e
oc

cu
rr

en
ce

 c
ou

nt
C

ou
nt

100 1200
0

10

40

50

60

70

Agent h
olds

Dist
an

ce In On

In m
otio

n
0

Predicate
Agent h

olds
NearIn On

In m
otio

n

Predicate

Exclusively throwing games Other games

100

200

300

C
ou

nt

0

100

50

20

30

20 40

Any object
Balls
Blocks
Building
Furniture
Large objects
Receptacles
Room features
Small objects

Fig. 2 | Participants in our behavioural experiment create diverse games
reflecting common sense and compositionality. a, Our online game creation
experiment (see full interface in Extended Data Fig. 1). b, Participants showcase
intuitive common sense. Left: in games involving exclusively throwing,
participants use balls (orange) far more often than any other object type. Right:
in other games, participants refer to blocks or ‘any object’ more often, most
often checking where objects are placed (using the in and on predicates). We
most often observe balls being thrown and blocks being stacked, and while
a few participants specified block-throwing games, no participant created a
game involving ball-stacking. Participants also rarely specified throwing large
or cumbersome objects (such as the chair or laptop), and only used buildings
to specify stacking objectives (as opposed to moving or throwing them). See
Extended Data Fig. 2 for an extended version of this panel (including additional

object categories and predicate). c, We analyse the occurrence of various abstract
structures in our programs (see ‘Game dataset analysis methods’ section in the
Methods for details). Red: the five most common structures cover almost half
(47.5%) of total occurrences, showing extensive compositional reuse. The three
most common structures combine into simple ball-to-bin throwing preference
((1), structure indices in square brackets). Purple: other structures are reused
fewer times, covering most remaining occurrences (another 40.5%). These rarer
structures allow for creating more complex throwing elements, constraining
where the player throws the ball from (2,3) or to (3). Blue: exactly half of the
structures (63/126) appear only once—this long tail of expressions offers
evidence of creativity. The last throwing preference (4), specifying throwing a
block from the rug onto the desk without moving off the rug or breaking any of
the objects on the desk, uses two unique structures.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 205–220 208

Article https://doi.org/10.1038/s42256-025-00981-4

phrasing. Although the translation from natural language to DSL is
unlikely to be lossless, we aim to capture the core semantics of the rich
and generative structure of human goals with these relatively simple
programs. This DSL was derived from the planning domain definition
language (PDDL25), which offers a basic representation for specifying
goals (that is, end states of plans) and preferences (that is, other costs
to optimize while planning). Each program in the DSL contains two
mandatory sections: gameplay preferences describing how a game is
played, and scoring rules specifying how to determine a player’s score
based on the satisfaction of the game’s preferences. Game programs
may also contain optional setup instructions and terminal conditions
(see Supplementary Information L for the full DSL).

Our choice to represent games as programs allows us to quantita-
tively analyse their structure and fundamental components. We found
that people recruit an intuitive physical common sense when creating
games (Fig. 2b; see Extended Data Fig. 2 for a detailed breakdown and
‘Game dataset analysis methods’ section in the Methods for details).
For instance, if an object is thrown, it is probably a ball, and if an object
is stacked, it is probably a block—and although a few participants speci-
fied games involving throwing blocks, none attempted to stack balls.
Similarly, participants did not specify throwing cumbersome objects
(such as the laptop or chair), and a participant who specified throwing
a large ‘beach ball’ clarified that it should land on the bin (as the ball
does not fit within the bin). We also observed evidence of both compo-
sitionality (common structure reuse) and creativity (preponderance of
unique structures) across our participants, summarized in Fig. 2c (see
‘Game dataset analysis methods’ section in the Methods for details).
Counting occurrences of grammatical structures while abstracting
over the identities of individual objects—that is, treating the modal
expressions ‘the agent holds a block’ (once (agent_holds block)) and
‘the agent holds a ball’ (once (agent_holds ball)) the same—we find the
five most common structures cover almost half of the total observa-
tions, showing how representing goals as programs can reveal shared,
compositional substructure. At the other end of the distribution, we
also observe a long tail emblematic of creativity, as one-half of the
unique structures we count appear exactly once. Despite not being
explicitly prompted to generate novel or creative games, many par-
ticipants proposed entirely unique gameplay ideas, encouraging us
that our experimental paradigm elicits rich and creative goal creation.

Modelling results
We next develop a computational model to synthesize human-like goals.
Guided by insights from our behavioural analyses, we design our model
to explicitly leverage cognitive capacities that people seem to recruit
in creating goals. Our GPG model (illustrated in Fig. 3) operates over
a high-dimensional program space and learns how to generate goals
maximizing a fitness measure. Upon entering a new environment,
people can create goals without extensive data-driven demonstrations;
therefore, we aim for a model that can similarly generate goals without
a large number of examples. The GPG consists of two main elements: a
fitness function and a search procedure. The fitness function (learned
from data) attempts to quantify human likeness over the space of goal
programs (Fig. 3a), such that a higher score indicates a better generated
goal (Fig. 3b). The search procedure generates diverse samples that
maximize this fitness function (Fig. 3c). As a framework, the GPG model
is committed to the idea of evaluating the quality of goals-as-programs
with a learned objective function and less so to the specific algorithms
used for optimization and search.

The fitness function f(g) = θ ⋅ φ(g) maps f ∶ 𝒢𝒢 𝒢 𝒢 from a game
g ∈ 𝒢𝒢 to a real-valued score that aims to encode its human-likeness
(Fig. 3b). We transform each game into an 89-dimensional vector of
features that capture properties relating to structure (for example, the
size and depth of its syntax tree), logic (for example, whether any
expressions are redundant) or goal semantics (for example, the extent
to which different parts of the goal are interrelated). We leverage our

programmatic representation of goals to automate this feature extrac-
tion process (see ‘Fitness function methods’ section in the Methods
for details). In this implementation, parameter learning of feature
weights θ proceeds in a contrastive fashion26,27 by optimizing for the
difference in scores between our set of human-generated games and
a substantially larger set of corrupted (that is, lower quality) games
obtained through random tree regrowth21 on our dataset (see Fig. 3b
and details in ‘Fitness function methods’ section in the Methods).

This learned fitness function then guides an evolutionary search
procedure to generate novel games (Fig. 3c). Broadly inspired by work
in genetic programming, we use a quality-diversity algorithm28,29 called
MAP-Elites30 to generate a set of samples that widely cover the space of
programs in addition to optimizing the fitness function. The details of
our implementation, including the particular behavioural characteristics
used for maintaining sample diversity and structure our search of pro-
gram space, are available in ‘MAP-Elites methods’ section in the Methods.

Our model includes several components that explicitly proxy
cognitive capacities, such as features representing physical common
sense (estimating predicate feasibility from play data) and recombina-
tion operators that explicitly leverage compositionality (the crossover
operation that recombines programs). We describe a few of these
components and how we ablated their contribution to our model in
‘Ablation methods’ section in the Methods.

Generated games
GPG produces a variety of outputs that range from variants of simple
games in our reference dataset to games in entirely new regions of
program space. In Fig. 4, we show examples of model outputs alongside
the human-generated games that occupy the same ‘niche’ as defined
by the MAP-Elites algorithm (see ‘MAP-Elites methods’ section in the
Methods for details). We call generated games that occupy the same
niche as a human game matched and those that do not unmatched. In
the first pair (Fig. 4, left), the model proposes an original block-stacking
objective: where the human participant created a tower, the model
asks to stack three blocks all on the same taller block. The second and
third pairs (Fig. 4, middle and right) demonstrate the model’s abil-
ity to propose throwing games. In both cases, the model proposes
interesting detailed objectives, some unseen in our training set (for
example, throwing balls onto the top shelf or desk), that match the
niche of the participant games by having the same high-level configu-
ration. However, the purpose of certain minor elements in generated
games tends to be less intuitively obvious (for example, the scoring
condition in the left-most generated game, which arbitrarily multi-
plies the number of satisfactions by 0.4). Our model also produces
unmatched games that occupy niches without corresponding human
games (Fig. 5). These include unusual combinations of throwing and
block-stacking (Fig. 5, left), a game that combines ball throwing and
small object placement (Fig. 5, middle) and a game that offers a col-
lection of varied block-stacking objectives (all-on-one, a T-shape and a
tower; Fig. 5, right). Although these programs represent creative goals,
with preferences that are each individually sensible, their components
sometimes fail to combine into a coherent whole (for example, the golf
ball throwing and block placement elements in Fig. 5, left, which do not
intuitively form a cohesive game).

Quantitatively, Extended Data Fig. 3 shows that the GPG quickly
produces games with fitness scores in the range of human samples and
does so across many of the niches defined by our search procedure. Of
the 2,000 programs we report, 1,889 programs (94.45%) exceed the
fitness score of the least fit real game, and exactly half (1,000) exceed
the fitness of the median human game. This demonstrates that our
search procedure successfully finds high-fitness samples across much
of the range of variation defined by our behavioural characteristics.
To the extent that our fitness function captures human likeness, our
model produces human-like games; we next use human evaluators to
extrinsically test our model.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 205–220 209

Article https://doi.org/10.1038/s42256-025-00981-4

“Put the desk in a chair.
Stack blocks on the bed”

“Place the bin near the
rug. Throw basketballs
onto it, and put chairs
on the desk”

“You have 30 seconds to
throw dodgeballs to land
on the top shelf”

“Place the bin near the rug,
and throw balls into it”

“Throw the ball so it
hits the wall then
bounces back to you”

“Place the bin on the bed
and the dog bed next to
it, throw dodgeballs to
either of them”

“Place all blue cube blocks
on the rug. Put objects
near the north wall, and
make stacks of a cube, a
yellow cube, and another
cube.”

Malformed program:
One variable (?b) unused,
predicate applied to the
same variable twice.

a

“Put the bin on the
bed then throw balls

into it”

Fitness

Games are
translated from
natural language
to the DSL…

MoreLess

Corruptions are
generated with
random tree
regrowth…

Contrastive learning
is used to obtain a
quantitative metric of
human likeness…

b c

Fitness

(1) Sample game
from the archive…

Program feature 1

(2) Apply
mutation
operator…

(3) Reinsert if
novel or more fit…

Behavioural characteristic #1

Behavioural
characteristic #2

Pro
gram

 fe
atu

re
2

Fi
tn

es
s

Fig. 3 | GPG model. a, Overview. Our model operates on programs in a high-
dimensional space (visualized in two dimensions). We learn a fitness metric
(Z axis) capturing desirable aspects of programs using a dataset of human-created
goals (highlighted in green). Our model then generates diverse new samples
maximizing the fitness measure, some matched to participant-created goal
programs on diversity criteria (in blue) and other unmatched novel goals (in
purple). These programs stand in contrast to potential failure modes, such as
generating programs that are malformed or semantically incoherent (in red).
All (non-red) goals in this figure were created by participants in our experiment
or our model; see Supplementary Fig. 1 for their full representations in our DSL.

b, Parameter learning. We contrastively learn a quantitative measure of fitness
(the Z axis in a) by maximizing the distance between human-generated exemplar
games and a set of corruptions obtained through random tree regrowth.
c, Search. This measure is then used as the basis for quality-diversity optimization
using MAP-Elites. The algorithm maintains an archive of games that differ across
phenotypic ‘behavioural characteristics’. At each step, a game is randomly
sampled from the archive (1), randomly mutated (2) and reevaluated for fitness
and its position in the archive. It is added to the archive only if it would occupy a
previously empty position or if it is more fit than the current occupant (3).

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 205–220 210

Article https://doi.org/10.1038/s42256-025-00981-4

Participant game #14 (36.491)

Gameplay: stack a �at block on a bridge block, then place a tall
cylindrical block on the �at block, followed by a cube block on the tall
cylindrical block, and �nally a pyramid block on the cube block.

Scoring: you get 10 points for each di�erent set of blocks you have
successfully stacked in this order by the end of the game

Matched model game (36.994)

Gameplay: stack three blocks on top of a tall rectangular block, with
two of the stacked blocks being the same type as the tall rectangular
block.

Scoring: your score is 1.4 times the number of such stacks you have
at the end of the game.

Participant game #31 (37.338)

Gameplay: throw a ball so that it touches a wall and then either
catch it or touch it

Scoring: you get 1 point for each time you successfully throw the ball,
it touches a wall, and you are either holding it again or touching it
after its �ight

Matched model game (37.324)

Gameplay: throw dodgeballs so that they land and come to rest on
the top shelf

Terminal: the game ends after 30 seconds

Scoring: you get 1 point for each dodgeball that is resting on the top
shelf at the end of the game

Participant game #40 (36.152)

Setup: Place a green golf ball near the door and ensure it remains
there for the entire game. During the game, place at least one
dodgeball near the green golf ball.

Gameplay: While standing next to the green golf ball and the door,
throw dodgeballs with the goal of getting them to stop inside a
hexagonal bin.

Terminal: The game ends when you have thrown the same dodgeball
and it has stopped moving more than once, or when you have thrown
and stopped at least three di�erent objects.

Scoring: You earn 10 points for each di�erent object that you
successfully throw into the hexagonal bin.

Matched model game (37.020)

Setup: Place a hexagonal bin near the rug and ensure it remains there
for the entire game.

Gameplay: Throw dodgeballs aiming to land them on the desk or in
side the hexagonal bin.

Scoring: You earn points for each dodgeball that comes to rest either
on the desk or inside the hexagonal bin. Your �nal score is the sum of
these points.

Fig. 4 | GPG model produces simple, coherent, human-like games. Each pair
of games in a column has the same set of MAP-Elites behavioural characteristics
(a real participant-created game and the corresponding matched model-
generated one). The fitness score assigned by the model to each game is shown
in parentheses. Natural language descriptions are generated through automated

back-translation from programs (see Supplementary Information F for details).
To ascertain that the model-generated programs are distinct from training set
examples, we also provide in Supplementary Fig. 2 the most similar real exemplar
using an edit distance; see Supplementary Information G for details.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 205–220 211

Article https://doi.org/10.1038/s42256-025-00981-4

Human evaluations
To systematically and extrinsically evaluate our model, we performed
human evaluations using a second set of human participants (n = 100;
see Extended Data Fig. 4 for the evaluation interface and ‘Human
evaluation methods’ section in the Methods for details). Evaluated
games belonged to one of three different categories mentioned
above: real participant-created games from our behavioural experi-
ment, or matched or unmatched model-generated games (see Fig. 3
for category definitions; games in Figs. 4 and 5 were included; see
‘Human evaluation methods’ section in the Methods for details).
Participants evaluated three games in each category above (with-
out knowing their categories) in a randomized order and provided
Likert scale ratings on each game for seven measures, includ-
ing human likeness, fun and creativity. Our final dataset includes
892 participant-game evaluations, each with a rating for all seven
measures.

To analyse these results, we performed a mixed-effects regression
analysis (we provide the raw score means and non-parametric statisti-
cal tests in Extended Data Table 1). We fit independent models using
each of the seven attributes we asked our human evaluators to judge as
the dependent variables. We examine two questions: (1) Are there any
systematic differences between game categories? (2) Does our fitness
function, learned from corrupting samples in program space, capture
any human-evaluated qualities of the games? For both questions, we
fit mixed-effects models that include a fixed effect for membership
in the real and matched groups (treating the unmatched group as a
baseline) and random effects for the participants and individual games.
For the second question, we also include a fixed effect for the fitness

score (see ‘Human evaluation methods’ section in the Methods and
Supplementary Table 5 for full details).

To answer the first question, we use the method of estimated
marginal means to compare the difference in scores between each
pair of categories, averaging out the random effects (Table 1, visually
summarized in Extended Data Fig. 5; see Supplementary Information
I.3 for details). Participants respond similarly to the real and matched
games, with no statistically significant differences in the estimated
mean scores across all seven attributes. Meanwhile, the unmatched
games differ on several attributes. Participants judge them to be less
easily understood and fun to play than real games and less human-like
and fun to watch than both matched and real samples. We observe
similar results using non-parametric statistical tests (Extended Data
Table 1). One potential explanation for the apparent similarity between
matched and real games is that the former simply replicate the latter in
form and function. We examined this question and found that matched
and real games have substantial functional differences (see summary
in Extended Data Fig. 6, details in Supplementary Information I.4 and
methodological details in ‘Sample similarity comparison methods’
section in the Methods).

Next, we analyse the mixed-effect models fit with a fixed effect of
fitness scores. First, we replicate the effects of the fitness-less regres-
sions; we continue observing no significant differences between the
real and matched groups, and several significant differences between
both of those and the unmatched group (Supplementary Table 6).
Next, we examine the fitted coefficients in these regressions (sum-
marized in Extended Data Table 2 and visualized in Extended Data
Fig. 7). We find that our fitness function captures many of the evaluated

Unmatched model sample (36.066)

Setup: place a hexagonal bin near the north wall and make sure it
stays there throughout the game.

Gameplay: throw golfballs aiming to have them stop on and inside
the hexagonal bin, and stack blocks so that each has three cube blocks
on top, with one cube block being the same type as the block it’s on.

Scoring: you score points based on the number of correctly stacked
blocks minus four times the number of golfballs that stop on and in
side the hexagonal bin.

Unmatched model sample (36.881)

Gameplay: throw dodgeballs and place credit cards or CDs into a
hexagonal bin

Scoring: you get 40 points for each dodgeball that ends up in the
hexagonal bin multiplied by the number of credit cards or CDs in the
bin, plus 1 point for each dodgeball thrown regardless of where it
lands.

Unmatched model sample (35.872)

Gameplay: Stack blocks in speci�c con�gurations

Scoring: You get 1 point for each stack where one cube block is on
top of another cube block with a tall rectangular block on the same
cube block. You also get 1 point for each stack where a cube block is
on top of a tall rectangular block, which is on top of another cube
block, with an additional cube block on top of the tall rectangular
block, provided the bottom cube block is the same type as the tall
rectangular block. Additionally, you get 1 point for each stack where a
tall rectangular block is on top of a cube block, which is on top of
another cube block, and the top cube block is the same type as a third
cube block. Your �nal score is the sum of points from these three
con�gurations.

Fig. 5 | GPG model produces interesting, novel goals. Each of the three games below has high fitness and fills an unmatched cell in the MAP-Elites archive, with no
corresponding human game in our dataset. The fitness score assigned by the model to each game is shown in parentheses.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 205–220 212

Article https://doi.org/10.1038/s42256-025-00981-4

attributes: higher fitness predicts higher ratings of understandability,
fun to play and human likeness (βfit > 0); conversely, higher fitness also
predicts lower ratings of helpfulness, difficulty and creativity (βfit < 0).
Our positive findings are promising: they indicate that our fitness
function, learned to maximize human likeness in a symbolic program
space, also captures intuitive human notions of understandability
and fun. Conversely, we view the negative relations as evidence of
some degree of mode seeking: our fitness measure probably assigns
the highest scores to the games most representative of the dataset at
large. These modal games are plausibly neither particularly creative
nor difficult, which means that participants might also find them less
helpful for learning the details of the environment. To explore this, we
highlight the highest-fitness games generated both by our model and
by human participants in Supplementary Fig. 3 and observe the type
of mode seeking we suggest above (see Supplementary Information
H for details).

We also performed ablations of key model components that
explicitly proxy some cognitive capacities we found our participants
recruited (see details in ‘Ablation methods’ section in the Methods). To
ablate physical common sense, we remove from our fitness function
the two features that estimate the feasibility of a game’s preferences
by leveraging our database of participant–environment interactions.
Analogously, we ablate the intuitive coherence we observe in human
goals by removing the features that capture the coordination of game-
play elements between different sections. Ablating compositionality
is more difficult, as our programmatic representation is inherently
compositional. We do so by removing the crossover mutation operator
used to generate new samples during MAP-Elites, which most explicitly
leverages the compositional structure of games. In these three abla-
tions, model performance degrades substantially, either in sample
fitness scores or in goal plausibility, as estimated using our database
of participant–environment interactions. We also report two other
comparisons, one to a model sampling only from the probabilistic
context-free grammar (PCFG) over our DSL (which performs much
worse) and one to a model optimizing a fitness function trained on a
subset of our full dataset (which performs comparably and general-
izes to the held-out regions of program space). See Supplementary
Information J for further details.

Discussion
Goals are a critical aspect of human cognition and, in fact, the starting
place for many models of human behaviour. However, the represen-
tation of goals is often impoverished. In this Article, we proposed a

new framework for understanding a particular class of human goals
as reward-producing programs, as a stepping-stone towards a broader
understanding of goal representation and generation. To evaluate this
framework, we developed an interactive experiment in which partici-
pants created playful goals, operationalized as games to be played in
a virtual environment. By analysing the program-based translation of
these games, we highlighted several cognitive capacities recruited by
our participants, such as physical common sense and compositional-
ity. These capacities, in turn, informed our modelling efforts. We then
built a computational model that learns from a small dataset of games
and generates coherent, novel goals, where those sampled from parti-
tions of program space occupied by human examples were deemed
human-like according to human evaluators.

This work unites various strands of research in cognitive science,
artificial intelligence and game design. First, we build on substantial
literature studying the psychology of goals1–3,10,13 by offering a specific
representational hypothesis, in contrast with previous approaches
to defining goals. We emphasize open-ended goal creation given that
generating new exemplars is a core capacity of human conceptual rep-
resentations31 and the utility of games in the study of cognition32. Our
work also relates to goal-conditioned reinforcement learning33, and we
aim to improve on the goal representations used for such agents that
tend to lack the variety and richness of human-created goals (ref. 34,
chapter 7). In this respect, our proposal attempts to abstract from
the reward functions and simpler goals used in many reinforcement
learning tasks. Our goal program interpreter conceptually draws on
the notion of reward machines introduced in ref. 35. Finally, we are
inspired by the automatic game design literature, such as synthesiz-
ing board-game variants36–38 or simple video games39–42. Unlike our
approach, these efforts often optimize program synthesis for some
heuristic notion of fun38,39 rather than explicitly modelling human-like
game generation.

Our framework is committed to the representation of goals as
reward-producing programs: computationally executable mappings
from behaviour to indications of progress towards a goal, which we
term reward. We find it crucial that these programs capture the rich,
temporally extended nature of goals people create and that they facili-
tate the flexible and compositional creation that people seem to engage
in31,43. We hope that this proposal is useful to understanding goal rep-
resentation and generation, not that it losslessly explains every source
of variation in human-created and reported goals. We note that we cur-
rently study goal generation through game creation, and while many
games have players take on goals18, not all goals are fully equivalent or

Table 1 | Mixed-model marginal means comparison summary

Real − Matched Real − Unmatched Matched − Unmatched

Attribute Difference ± SE Z P value Difference ± SE Z P value Difference ± SE Z P value

Understandable↑ −0.001 ± 0.331 −0.003 1.000 1.042 ± 0.332 3.138 4.837 × 10−3** 1.042 ± 0.333 3.133 4.927 × 10−3**

Fun to play↑ 0.143 ± 0.266 0.538 0.853 1.020 ± 0.274 3.722 5.791 × 10−4*** 0.877 ± 0.273 3.210 3.791 × 10−3**

Fun to watch↑ 0.135 ± 0.250 0.542 0.850 0.892 ± 0.259 3.446 1.650 × 10−3** 0.757 ± 0.257 2.944 9.076 × 10−3**

Helpfula 0.016 ± 0.159 0.097 0.995 0.251 ± 0.165 1.521 0.281 0.236 ± 0.165 1.426 0.328

Difficult
↓
↑

−0.200 ± 0.357 −0.559 0.842 −0.194 ± 0.361 −0.538 0.853 0.006 ± 0.361 0.016 1.000

Creative↑ 0.228 ± 0.310 0.736 0.742 0.489 ± 0.316 1.548 0.269 0.261 ± 0.314 0.832 0.683

Human-like↑ 0.199 ± 0.274 0.727 0.748 1.396 ± 0.283 4.927 2.495 ×10−6*** 1.197 ± 0.283 4.225 7.088 × 10−5***

Evaluators do not distinguish between participant-created real and matched model games but do distinguish unmatched games from real (and marginally from matched ones).
Participants responded to seven Likert questions on a 5-point scale, one for each attribute in the first column (see ‘Human evaluation methods’ section in the Methods). We found fairly low
inter-rater agreement (Supplementary Information I), and so we centre our analysis on our fitted mixed-effects models (see ‘Human evaluation methods’ section in the Methods). We use
the method of estimated (least-squares) marginal means to compare the three groups of games, accounting for the random effects fitted to particular games and human evaluators. We
report two-sided Z significance tests adjusted using the Tukey method to control for the multiple difference tests within each attribute, as implemented in the emmeans package, with
standard errors (SE) computed on the basis of the pooled residual standard deviations. *P < 0.05, **P < 0.01, ***P < 0.001 aThe full measure description is ‘helpful for interacting with the
simulated environment’. In most measures, higher scores are better, indicated by the ↑, other than ‘Difficult

↓
↑’, in which 3 means ‘appropriately difficult’ and scores below and above

indicate too easy and too hard, respectively.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 205–220 213

Article https://doi.org/10.1038/s42256-025-00981-4

isomorphic to games. We believe that our representational hypothesis
also has merit for additional kinds of goals, such as the goals created in
joint play between multiple children or adults (such as tag or dodgeball)
or the objectives a person exploring a new environment might set for
themselves (for instance, how to turn on the light at an AirBnB without
bumping into anything). While we expect the general GPG framework
to accommodate such goals in different domains, doing so would
certainly entail changes to the specific syntax and semantics of the
programmatic representations. There are, however, types and aspects
of goals that might complicate the general procedure of translation
into programs. For instance, subjectivity, which may be modelled as
listeners forming different representations of the same utterance,
might require breaking the assumption that each natural language
goal corresponds to a single program. Similarly, it is not obvious how
to represent truly abstract goals such as ‘I want to do well in school’
as a well-formed program. In both cases, an avenue forward might be
grounding not to a single program but to distributions over programs
or programs with stochastic elements (for example, as suggested
in the Rational Meaning Construction framework24). We are excited
for future work to continue studying open-ended goal generation
in other domains and explore how readily other types of goals map
onto programs.

There are limitations of the current work that we hope to address
in future work. Our model strongly relies on its approach to sample
diversity, which arises from the choice of behavioural characteristics
that define the axes along which the MAP-Elites algorithm maintains
diversity. In this work, we select behavioural characteristics based
on notable gameplay components observed in our human dataset;
future work could explore other techniques for maintaining diversity,
including the automated selection of behavioural characteristics44,45.
In addition, our fitness function ablation (reported in Supplementary
Information J.5) reveals evidence of potential overfitting in our fitness
function and highlights the limitation of fitting a single objective func-
tion to all participants. Future work could explore tuning versions of
the objective to the individual preferences of particular participants.
Our model currently does not account for any resource constraints
people face in creating goals that may make compact goals easier to
propose or maintain; we leave to future work the question of whether
adding any length-related penalty recovers more human-like pro-
posed goals. Finally, our compositionality ablation (reported in Sup-
plementary Information J.2) is limited—as we collect a single playful
goal from each participant, we can only compare compositionally
between participants, rather than measuring component reuse within
a single participant’s goals. Within-participant reuse may offer further
evidence of how humans creatively recombine components to com-
pose novel goals.

Our current features approximating intuitive physical common
sense are indirect, using participant interactions with the environ-
ment to estimate feasibility. Future approaches could integrate plan-
ning or physical simulation to improve our model’s understanding of
physics46,47. Our model is currently limited to a single kind of common
sense, the intuitive physical one; other environments may require lev-
eraging similar knowledge from other domains, such as intuitive social
models of agency and theory of mind. Finally, our model is inherently
coupled to the environment and dataset we collected—particularly
given the engineering effort to instantiate various types of knowledge.
This approach has some distinct advantages: we can isolate various
cognitive capacities, interpret their contribution to our fitness measure
(Supplementary Information C.1) and ablate their roles (Supplemen-
tary Information J). Simultaneously, some of the challenges our model
faces (such as coherence between program components) might be
alleviated by incorporating natural language or by leveraging the capa-
bilities of large language models to write code and adapt to in-context
instructions. Language models could also alleviate our current reliance
on manual translations from participant game descriptions to the

proposed mental language of goal programs (see ref. 24 for a discus-
sion on using language to construct meaning through programs, and
ref. 48 for building programs to act as world models).

We see two particularly promising ways in which our representa-
tional framework could be used going forward. First, there is increas-
ing interest in building artificial agents that can flexibly explore and
generalize across environments49,50. The autotelic perspective argues
that empowering agents to propose and pursue self-generated goals
is a fruitful way to improve their ability to generalization34. How-
ever, goals in such systems are often derived from agent or object
positions51,52, short natural language descriptions53,54 or limited tem-
porally aware mechanisms55,56—all impoverished when compared with
the diverse goals humans flexibly create. Closely related to our notion
of representing goals by programs, recent work proposes to directly
synthesize reward functions57 or environment descriptions58 using
code-generation models. We are excited for future work to empower
artificial agents with richer goals that reflect human-like novelty and
difficulty, for two specific reasons. First, we believe that access to
complex and varied goals would enable agents to learn flexible rep-
resentations of their environments that support higher behavioural
adaptability13. Second, we view compositional goal production as
facilitating effective exploration of unseen goals59 (see ref. 60 for a
discussion of generalization and exploration). We also note that our
current approach estimates goal fitness without considering addi-
tional higher-level objectives that might guide goal generation. Prior
literature offers curiosity61,62, empowerment63–65, information gain66,67,
novelty62,68 and learning progress69,70 as compelling potential objec-
tives. Future work could instantiate goal generators that consider
these objectives as auxiliary terms to the fitness function and compare
the behaviours that arise in artificial agents through pursuing them.

If we are to understand goals as programs, our proposed frame-
work may also help advance our understanding of intuitive psychol-
ogy and goal inference71–73. Previous work proposed that our ability
to understand other people’s goals, as part of our theory of mind,
operates through inverse reinforcement learning: inferring an agent’s
reward from observing their behaviour74. Many prior approaches
eschew goals entirely, using some function approximator (for exam-
ple, a neural network) to estimate reward, resulting in an uninterpret-
able estimator that can struggle to generalize75. We envision leveraging
our goal programs as a prior distribution for a Bayesian theory of
mind76 approach, scaling up previous approaches that relied on a small
number of predefined goals77, to create models that would parse an
agent’s behaviour and provide an interpretable, semantically explicit
estimate of their goal78. Applying our framework to either of these
proposed problems would offer a substantial long-term challenge
building on the work we present in this Article. Nevertheless, we see
an exciting prospect to leverage this approach to improve the under-
standing of human goals and endow machines with human-like goal
concepts and capabilities.

Methods
Dataset collection methods
Experimental design. After an informed consent form and instruc-
tions quiz, participants completed a tutorial designed to familiarize
them with the controls for our environment. After successfully com-
pleting the tutorial, participants were randomly assigned to one of
three variations of the main experiment room, with the same structure
but different amounts of available toys and objects. Participants were
then free to explore this new room until they had a game ready, and
could freely reset it to its initial state in the meantime. Participants were
asked to create games with the following restrictions: single-player,
requiring no additional space or objects that they do not see in the
room, and including a scoring system. Although the latter constraint
may seem limiting, we note that any arbitrary goal can be scored by
rewarding the achievement of the goal.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 205–220 214

Article https://doi.org/10.1038/s42256-025-00981-4

Ethics oversight. The study was performed under the New York
University institutional review board study titled ‘Active learning in
dynamic task environments’, IRB-FY2016-231, under the principal
investigator T.M.G.

Dataset collection. Participants then reported their game in natural
language in three text boxes, one of which was optional (Extended Data
Fig. 1). The optional first one allowed specifying whether there was any
setup or preparation required to get the room from its default initial
state to one that would allow playing the game (for example, plac-
ing the bin on the bed). The second text box allowed participants to
describe the game’s gameplay, and the third offered space to describe
the scoring rules. To encourage participants to imagine playing their
game, they were also asked to report their perceived difficulty level
and how many points they thought they might score if they played it.
Participants then had a chance to play their game and revise it should
they want to; if participants opted to revise their games, we analysed
the revised ones. We contacted 192 participants via Prolific79 of whom
114 finished the experiment and another 12 were paid due to technical
difficulties. Participants were paid a base rate of US$10 and received a
US$2 bonus if their game satisfied the required constraints. Success-
ful participants took 44.4 min on average, with a standard deviation
of 23.3 min. We then excluded eight games that did not satisfy the
constraints we posed on participants, six duplicates (including some
due to technical difficulties from participants who restarted the experi-
ment) and six other games that were unclear or underspecified. After
accounting for 2 other games we opted to avoid modelling owing to
their complexity (one referring directly to the game interface and
controls, and another describing several games or levels in the single
description we collected), we arrived at our final dataset of 98 games.
We acknowledge the potential arbitrariness of manually translating
from natural language to our program representations; we attempted
to be maximally faithful to the descriptions and excluded participants
whose games required too much subjectivity or interpretation.

Interaction traces. In addition to the game descriptions in natural lan-
guage, we record traces of participants’ interactions with the environ-
ment. We record state–action traces to allow us to replay and examine
how participants interact with our environment. We record separate
traces for each different segment of the experiment (before creating
the game, while reporting their game, playing their game and after
editing their game) and for each time the participant resets the envi-
ronment within each segment. We end up with 382 total such traces.
Our primary use for them is in implementing a reward machine, an
interpreter for our goal programs, which parses a goal program into a
state machine and iterates through a trace to emit the score of that trace
under the goal. We use a limited version of this in our fitness features
(see ‘Fitness function methods’ section for additional details) and in
some of our model evaluations and ablations (see Supplementary
Information J for additional details).

Natural language to DSL translation. We manually translated the
games we collected from participants to programs in a DSL we cre-
ated. We examined the natural language descriptions our participants
provided to identify recurring semantic components, which we then
mapped onto elements in our DSL, iterating between translating more
programs and updating the DSL grammar. We began by attempting
to translate directly into PDDL25, which offers a basic representation
for specifying planning problems, but deviated from it as we encoun-
tered game elements our participants specified with no clear PDDL
analogues. We assume that the translation process is not lossless, as
there are probably multiple natural language descriptions for each
underlying set of game semantics and multiple programmatic encod-
ings of vague natural language descriptions; however, we aimed to
develop representations that capture the core semantics of the rich,

generative and creative structure in goals. We also perform some analy-
ses to validate the extent to which these translated programs capture
semantic concepts that were intended by participants, which we report
in Supplementary Information B.

Goal program interpreter. Inspired by the reward machine proposed
by ref. 80, we similarly implement an interpreter for the goal programs
in our DSL. The interpreter parses a program in our DSL into a state
machine. This state machine enumerates over environment states
and participant actions emitted as a participant plays in our experi-
ment (see ‘Interaction traces’ section above), tracks the participant’s
progress with respect to each program component (setup conditions,
gameplay preferences and terminal conditions) and emits a reward
according to the scoring conditions defined in the goal program.
This allows us to ground programs to participant interactions and
evaluate partial or complete fulfilment of the specified goal. We use
this reward machine as part of our feature set (see ‘Fitness function
methods’ section), to analyse functional similarity between programs
our model generates and participant-created games (Extended Data
Fig. 6) and to assess our manual translations of participant-provided
descriptions (Supplementary Information B). Our current imple-
mentation of the interpreter covers the vast majority of predicates
and grammar elements; we omitted grounding a few rarely used predi-
cates owing to their complexity and lack of frequency. In these cases,
we attempted to ensure that our implementation would be biased
towards false negatives rather than false positives—we would rather
fail to count an interaction that occurred than count interactions that
did not occur.

Game dataset analysis methods
Common sense through predicate role-filler analysis. We analyse
predicate role-filler occurrences, coarsening individual objects to
higher-level categories (see the legend on the right of Fig. 2b). To split
between the two panels of Fig. 2b, we categorize each game by whether
it includes the following motifs: throwing (for example, balls into a bin),
stacking (for example, blocks in a building), organizing (for example,
placing objects in specified places) or other. We split the figure into
games involving only throwing motifs (left panel) and games involving
any other motifs, potentially in addition to throwing (right panel). In
games involving only throwing (left panel), participants most often
refer to balls, primarily checking whether or not the agent holds a
ball or a ball is in motion (as part of quantifying the act of throwing).
Other predicates are often used to specify some additional conditions
on throwing (such as specifying the bin being on the bed or the agent
being next to the desk) and are used with a variety of object categories.
Conversely, in games involving other elements (right panel), we see
blocks and the generic ‘any_object’ being used far more often, mostly
in various placement and stacking constraints.

Compositionality and creativity through abstract structure occur-
rence. We analyse how often participant games make use of various
grammatical structures to showcase both compositional reuse and
long-tail creativity. Each structure involves a temporal modal (such
as once or hold) and the predicate expression nested under it, such as
(once (agent_holds ?b)), where ?b is a variable quantified earlier. We
count structures, abstracting away specific variables and their types—
so the expression above would be coarsened as (once (agent_holds
<obj>)) and would be counted together with any other expression
coarsened to this pattern. We encounter a total of 126 unique expres-
sions in our dataset, the most common one with 62 occurrences being
(hold (and (not (agent_holds <obj>)) (in_motion <obj>))), which maps
loosely to ‘find a sequence of states where an object is not held and is in
motion’—that is, it is currently moving with the agent touching it, for
instance while being thrown or rolled. Of the 126 expressions, exactly
half (63) occur only once.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 205–220 215

Article https://doi.org/10.1038/s42256-025-00981-4

Fitness function methods
Fitness function form. We use the most direct mapping from feature
values to a real-valued score as our fitness function: a learned, weighted
linear combination of a set of features extracted programmatically from
each game that is optimized to assign high scores to ‘human-like’ games
and low scores to everything else. It is a function f ∶ 𝒢𝒢 𝒢 𝒢 that maps
individual games g ∈ 𝒢𝒢 to real-valued scores: f(g) = θ ⋅ φ(g), where θ is
a learned vector of weights and ϕ ∶ 𝒢𝒢 𝒢 𝒢0, 1]F is a feature extractor.

Feature extractor and feature set. The feature extractor φ represents
each game as an 89-dimensional vector (that is F = 89). Each entry in
the vector corresponds to a particular structural or semantic property
of the game, from the size and depth of the syntax tree to the apparent
feasibility of the game’s preferences. We normalize the values of each
property to fall within the unit interval by using the observed range
of values in our dataset. Many features used in the fitness function
are directly computable from the DSL representation of a game (for
instance, properties of its syntax tree or the misuse of particular gram-
matical structures). While these features represent the majority of the
89 features used, we also implement two important sets of features that
require additional computation.

The first of these are n-gram features that capture the mean log
score of the game under a simple n-gram language model trained over
the set of human-generated syntax trees. We fit n-gram models using
stupid backoff81 to account for missing n-grams, using the default
discount factor of 0.4 reported in ref. 81. We compute these scores
separately for each game section (that is, setup, preferences, terminal
and scoring) and also for the game overall, resulting in five features.

The second set consists of two features that make use of an inter-
preter that parses game programs into reward machines80: finite-state
machines that process a trace of player inputs and emit a reward when-
ever the particular scoring conditions of the game are met. The inter-
preter programmatically implements each of the predicates in the DSL,
which allows us to construct a dataset of which objects were used to
satisfy which predicates across our dataset of 382 human play traces.
The two features query this database to get an approximate common
sense measure of a game’s feasibility, computing the proportion of a
game’s predicate–argument combinations that have been satisfied
by human players in our dataset (one feature does this for individual
predicates, while the other does this for Boolean logical expressions
over predicates). Although these feasibility measures give a sense of
whether the objectives of a game can be completed in the physical
reality of the simulation, the limited nature of our play trace dataset
means they are far from perfect proxies.

We developed our feature set starting from features used in similar
prior work (for example, features representing the length and depth
of the syntax tree82). We then fit a fitness function using the procedure
described below and inspected the fittest games from our set of nega-
tive examples. We iteratively added features to account for mistakes our
model made (flawed negatives with high fitness) and removed features
that our fitness function seemed to ignore (by learning a weight with a
low magnitude). The complete set of features used (and accompany-
ing descriptions) is available in Supplementary Information C, with
the most important features (by their learned weights) highlighted in
Supplementary Information C.1.

Fitness function learning algorithm. To learn the weight vector θ,
we take inspiration from the contrastive learning of energy-based
models26 with the objective of separating a set of positive examples
(our set of human-generated games) from a set of negative examples
(see a summary in Fig. 3b). To learn an effective fitness function, these
negatives must be qualitatively worse than our set of human games
without being trivially distinguishable from them. We generate a set
of plausible negatives by corrupting games from our positive set. To
corrupt a game, we select a random node in its syntax tree, delete the

node and its children, and randomly resample a subtree according
to the DSL grammar (illustrated in red in Fig. 3b). This tree-regrowth
approach21 generally produces subtrees that are syntactically valid but
semantically out of place, with the severity of the corruption tending
to correspond to the height of the resampled node in the syntax tree.
To account for the variance in the difficulty of distinguishing between
a given positive and negative example, we generate a large set of nega-
tives: 1,024 for each of the 98 positives, for a total of 100,352 negatives.

We train the fitness function (that is, optimize θ) using a softmax
loss, not unlike the minimum empirical error (MEE) loss used to train
energy-based models83 or the InfoNCE loss84. For a positive example g+
and a set of negative examples {g−

k }, k ∈ {1, 2,⋯ ,K },, we assign the loss

ℒ(g+, {g−
k }

K
1
;θ) = − log exp(fθ(g+))

exp(fθ(g+)) +∑K
k=1 exp(fθ(g

−
k))

. (1)

This loss encourages the model to assign higher fitness scores to the
real games than the negative examples. Simultaneously, this loss pro-
vides a diminishing incentive to push negative fitness scores down as
the distance between the positives and negatives increases, intuitively
assigning higher loss to negative examples with fitness closer to the
positive example’s fitness. See Supplementary Information D for full
details of our training and cross-validation setups.

Final fitness function. Note that, while we perform cross-validation
for hyperparameter selection, once we fixed a set of fitness features
and hyperparameters, we fit a final fitness function using our entire
dataset (98 participant-created examples and their corresponding
negatives). Given the minuscule human dataset we collected, we
opted against holding out data from the final objective function
to best guide our model’s search process (but see Supplementary
Information J.5 for a comparison with fitness function trained on a
subset of our dataset).

MAP-Elites methods
MAP-Elites overview. MAP-Elites is a population-based, evolutionary
algorithm that works by defining a set of behavioural characteristics:
discrete-valued functions over genotypes (in our case, game programs
in the DSL) that form the axes of a multidimensional archive of cells
(see the overview in Fig. 3c). At each step, a game g is selected uniformly
from among the individuals in the archive (Fig. 3c, step 1) and mutated
to form a new game g′ (Fig. 3c, step 2). The mutated g′ is evaluated under
both the fitness function f and each of the n behavioural characteristics
bi ∶ 𝒢𝒢 𝒢 {0,… , ki} to determine which cell c = [b1(g), …, bn(g)] it occupies.
If the cell is unoccupied, then g′ enters the archive. Otherwise, it enters
the archive (and replaces the previous occupant) only if its fitness is
greater than the current occupant of the cell (Fig. 3c, step 3). In this
way, the algorithm maintains an ‘elite’ for each possible combination
of values under the behavioural characteristics.

Behavioural characteristics. Inspired by prior work on using MAP-Elites
for procedural content generation85, we define a set of integer-valued
behavioural characteristics that each indicate how many preferences
in each archive game match one of nine archetypal exemplar gameplay
preferences (illustrated as the axes of the grid in Fig. 3c). These include
several types of ball-throwing preferences, as well as ones capturing
block-stacking, object-sorting and other miscellaneous activities.
We also include two other features: one that captures whether the
game includes a setup component and one that captures the total
number of preferences. For additional details and descriptions of the
exemplar preferences, see Supplementary Information E. We use nine
exemplar preferences, in addition to these two other features, as a
trade-off between covering many behaviours that participants demon-
strate and avoiding exploding the size of the archive: as it is, the 11 total
behavioural characteristics result in a total archive size of 2,000 games.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 205–220 216

Article https://doi.org/10.1038/s42256-025-00981-4

The 98 participant-created games in our dataset map onto 47 different
archive cells; conversely, most archive cells (1,953, or 97.65%) have no
corresponding participant-created exemplar.

Auxiliary coherence check. We include an auxiliary pseudo-
behavioural characteristic that explicitly captures a few general coher-
ence properties of games, which we use to help our model search
the space of programs. This characteristic computes a conjunction
of the values of 21 features, ones that we expect either all plausibly
human-generated games to exhibit or none of them to exhibit (indeed,
all participant-created programs in our dataset pass this check). These
include features such as checking that all quantified variables are refer-
enced at least once, that all game preferences defined are mentioned
in the terminal or scoring conditions and that no logical expressions
are tautological or redundant. This check does not use any information
beyond the fitness features and serves as a mild additional inductive
bias and structure for our search process.

We keep two copies of the 2,000-sample archive from the behav-
ioural characteristics using the exemplar preferences above, one with
samples passing this auxiliary check and the other with samples failing
it. During the search process, we sample uniformly from both archives.
Intuitively, this accomplishes two desiderata: (1) it forces the model
to generate a sample in each archive cell that passes this check, and
simultaneously, (2) it allows the model to better search the space of
programs by also exploring high-fitness samples that fail this check.
We consider as outputs of our final model only goals from the archive
copy that pass this check, and those are the only ones we report in
fitness-based and human evaluations. See Supplementary Information
E for additional details.

Mutation operators. To mutate a game, we randomly select an operator
from among the following: regrowing a random node and its children
in its syntax tree; inserting and deleting the child of a node with mul-
tiple potential children; crossing over with the syntax tree of another
randomly selected game; resampling the variables, initial conditions
or final conditions used by a preference; and resampling the optional
game sections (that is, setup and terminal conditions). We seed the
initial archive by naively sampling candidates from the PCFG—not with
real, human-participant-created games or corruptions thereof that
were used to train the fitness function. Further details of the algorithm
are available in Supplementary Information E.

Archive initialization. Our search process is not seeded from any real
participant-created examples. Instead, we initialize the MAP-Elites
archive with examples generated by sampling from the PCFG defining
our DSL. We generate 1,024 initial samples, sort them by their fitness
scores and add at most 128 of them to the archive. See Supplementary
Information E for additional details.

Ablation methods
We ablate several components of our model that leverage cognitive
capacities people appear to use when creating goals. We describe the
components and briefly elaborate on their respective cognitive capaci-
ties below. We report the full ablations in Supplementary Information J.

Common sense. We offer evidence in Fig. 2 and our discussion of the
behavioural results that participants seem to leverage (physical) com-
mon sense reasoning in their goal creation. The DSL we use to represent
goals is underconstrained with respect to this type of common sense
and allows one to generate expressions that are physically improbable
or entirely impossible. To aid our model in generating physically plausi-
ble expressions, we include two fitness features that query a dataset of
participant interactions with our environment (see ‘Dataset collection
methods’ section) and score predicate expressions on whether or not
any participants ever satisfied them in their play behaviour. We report

the results of this ablation in Supplementary Information J.1, where we
find that these features are crucial for our model.

Compositionality. We offer evidence of the way participants appear
to recombine simple elements to create diverse games in Fig. 2. Com-
positionality is core to our DSL, as programs naturally offer the ability
to compose expressions of the same type. We ablate this ability by
removing the mutation operators that implement compositions. We
first remove some of our custom resampling operations and then
remove the crossover operation, which explicitly composes two pro-
grams in our archive to create two new candidates (see ‘MAP-Elites
methods’ for additional details). We report the results of this ablation
in Supplementary Information J.2, where we observe that the crossover
operation is crucial for our model and that our custom operators offer
a smaller but measurable effect.

Coherence. We observe that most participants create coherent goals
that fit together without any explicit prompting to do so: different
components of a goal tend to refer to one another and avoid disjoint-
edness. After earlier versions of our model struggled with this type
of higher-level coherence, we included several fitness features that
attempt to measure it at different degrees of abstraction (see Sup-
plementary Information J.3 for additional details and the full results).
We find that including these features substantially improves the
model-generated games.

PCFG-sampling-only baseline. To illustrate the necessity of a complex
search process over the space of programs in our DSL, we created a
baseline that repeatedly samples from the PCFG representing our gram-
mar, with rule and terminal counts fitted to our human datasets. We
match the total number of samples to the total number of candidates
our full model generates in its search. We find both low occupancy
rates (sampling from this prior fails to explore the space) and low fit-
ness scores. See Supplementary Information J.4 for additional details
and the full results.

Held-out data ablation. We perform a held-out evaluation of our
model to evaluate how robust our procedure is to unobserved data. We
split our dataset of 98 games into 20 test games and 78 training games
and fit the fitness function only using those games (with the same set
of fitness features as our full model). We then run our search to opti-
mize the fitness function fitted to the partial data. We find the results
comparable to our full model, both in overall fitness scores and when
particularly examining the model-generated games corresponding to
the held-out samples. See Supplementary Information J.5 for additional
details and the full results.

Human evaluation methods
Evaluation dataset. We select games to be evaluated using the fol-
lowing procedure:
 (1) Real: We include 30 participant-created games, each with a

different set of behavioural characteristics—that is, each being
considered different according to how our model searches
through the space of games (see ‘MAP-Elites methods’ section
for additional details).

 (2) Matched: For each of the real games included above, we include
the model-generated game from our final model from the
corresponding MAP-Elites archive cell. Each of these games
includes the same number of gameplay preferences as the cor-
responding real participant-created games, matching the same
exemplar preferences.

 (3) Unmatched: We also include 30 additional games from our
model’s archive. We sample these in a fashion that aims to be
balanced across the different preference counts and usage of
the different exemplar preferences. That said, given that human

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 205–220 217

Article https://doi.org/10.1038/s42256-025-00981-4

games cover only 47 out of the 2,000 archive cells, that leaves
1,953 potential unmatched games to sample; it is difficult to
know how representative our set of 30 (which is about 1.5%)
is. We initially sampled 40 unmatched games and had partici-
pants evaluate 4. We then discovered that some of these model
samples have drastically lower fitness scores from the real and
matched samples. We therefore excluded evaluations of the ten
lowest-fitness unmatched samples from our analyses to reduce
the degree to which fitness scores confound our analyses.

We collected evaluations from n = 100 human participants, and
our final dataset includes 892 participant-game evaluations, of which
300 are in the real category, 300 in the matched category and 292 in
the unmatched category (due to the exclusions mentioned above).

GPT-4-based back-translation. Rather than ask participants to inter-
pret our DSL, we use the GPT-4 (ref. 86) language model to perform a
multistep back-translation from programs in our DSL to structured
natural language. For fairness and consistency, we use this procedure
on the real games in addition to the model-generated matched and
unmatched games. We first apply a rule-based system to apply tem-
plates, translating expressions in the DSL to natural language sentence
fragments. We then use GPT-4 to first map the templated fragments
to a more natural language and then combine the description of each
game component (setup, gameplay preferences, terminal conditions
and scoring rules) to a short coherent description. See Supplementary
Information F for full details and prompts used.

Human evaluations structure. Extended Data Fig. 4 shows our human
evaluation interface. Following instructions and an understanding
quiz, participants evaluated nine total games: three real ones, the
corresponding three matched ones and three unmatched ones. Par-
ticipants were presented one game at a time and provided two short
textual responses, one explaining the game in their own words and
one providing a short overall impression of the game. Participants also
answered seven Likert-type questions on 5-point scales, answering the
following questions about the italicized attributes:

 (1) Understandable: ‘How confident are you that you understand
the game described above?’ (1, not at all confident; 3, moder-
ately confident; 5, very confident).

 (2) Fun to play: ‘How fun would it be to play the game yourself?’ (1,
not at all fun; 3, moderately fun; 5, extremely fun).

 (3) Fun to watch: ‘How fun would it be to watch someone else play
this game?’ (1, not at all fun; 3, moderately fun; 5, extremely
fun).

 (4) Helpful: ‘Imagine that you played this game for several minutes.
How helpful would it be for learning to interact with the virtual
environment?’ (1, not at all helpful; 3, moderately helpful; 5,
extremely helpful).

 (5) Difficult: ‘Imagine that you played this game for several min-
utes. Do you think it would be too easy, appropriately difficult,
or too hard for you?’ (1, far too easy; 3, appropriately difficult; 5,
far too hard).

 (6) Creative: ‘How creatively designed is this game?’ (1, not at all
creative; 3, moderately creative; 5, extremely creative).

 (7) Human-like: ‘How human-like do you think this game is?’ (1,
not at all human-like; 3, moderately human-like; 5, extremely
human-like).

Evaluation statistical analyses. For each attribute and each game
category (real, matched and unmatched), we report the mean score
assigned by all participants to games in that category for that attribute.
We then also aggregate these attribute scores by category and report
a non-parametric Mann–Whitney U test87 for differences in outcomes,
as appropriate for ordinal data. See Supplementary Table 2 for the

full table including test statistics and P values. Significance results
were highly similar when computing two-sample t-tests as an alterna-
tive statistical test. We do not perform any adjustment for multiple
comparisons but note that most effects discussed would remain sig-
nificant at the α = 0.05 level under a standard Bonferroni correction.
We report extended analyses, including inter-rater reliability88, in the
supplemental information.

Mixed-effects models. We are interested in modelling the relationship
between the scores predicted by our fitness function and the attributes
human evaluators predicted. To that end, we set up mixed-effects
regression models89,90. We fit separate models for each measure as the
dependent variable, regressing a continuous latent score (for example,
sifp for the fun-to-play measure, equation (2) below). We include fixed
effects for membership in the real (�i

real) and matched (�i
matched) groups,

treating the unmatched group as a baseline. In our second analysis,
we also include a fixed for the fitness score (xi) (which is the full
form reported in equation (2) below). We include random effects for
the individual participants (ϵpi

p ∼ 𝒩𝒩(0,σ2p)) and evaluated games
(ϵgig ∼ 𝒩𝒩(0,σ2g)). We also fit a sequence of cut-points (equation (3)) that
transform the latent score to the observed ordinal rating yifp
(equation (4)). We suppress the subscript for each measure below:

si = βfitxi + βreal�
i
real + βmatched�

i
matched + ϵpi

p + ϵgig + ϵi, ϵi ∼ 𝒩𝒩(0,σ2)
(2)

−∞ ≡ c0 < c1 < c2 < c3 < c4 < c5 ≡ ∞ (3)

ck−1 < si ≤ ck ⇒ observe yi = k. (4)

Models without either random effect performed worse than the full
model, so we report results including both random effects. We fit
cumulative link models for ordinal regression91,92 using the ordinal
package version 2023.12-4 (ref. 93) in R version 4.3.2 (2023-10-31)94,
and produce plots using the jtools package version 2.3.0 (ref. 95). We
report coefficient significance estimates using the two-sided Wald
test, as implemented in the ordinal package. The fitted coefficients of
these mixed-effects models are summarized in Extended Data Table 2
and Extended Data Fig. 7 (see Supplementary Information I.3 and Sup-
plementary Tables 5 and 6 for additional details).

Marginal means comparisons. To compare between the three cat-
egories we evaluate (real, matched, and unmatched games), we use the
method of estimated (least-square) marginal means. This allows us to
account for variations in the random effects fitted to individual evalua-
tion participants and evaluated games. In the models fitted with fitness
scores, these similarly allow accounting for variations in observed
fitness scores between game categories and their predicted effect on
the ratings. Intuitively, the method simulates the marginal means of
the dependent variable as though we had observed each combination
of fixed effect (fitness score) and random effects (for individual raters
and games) for all values of the group of interest (game type), allowing
us to compare its effect most directly. We use the emmeans package
version 1.1.0 (ref. 96) to estimate the mean score for each attribute in
each category. We also report standard errors (of the differences in esti-
mated means) using the emmeans package and two-sided significance
tests adjusted using the Tukey method (to control for the multiple
difference tests within each attribute). We summarize the marginal
means comparison in Table 1, Extended Data Fig. 5, Supplementary
Table 6 and Supplementary Fig. 4.

Sample similarity comparison methods
For each real game and its corresponding matched game from those
included in the human evaluations, we examine which of our recorded

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | February 2025 | 205–220 218

Article https://doi.org/10.1038/s42256-025-00981-4

participant interactions (see ‘Dataset collection methods’ section
above) fulfils one or more gameplay elements. We treat the setup (if
specified) and each gameplay preference as a gameplay element; our
aim here is to quantify which participant interaction traces play a part
of the game. We do this using our reward machine—our implementation
of an interpreter for goal programs in this DSL (see ‘Dataset collec-
tion methods’ section). For each pair of games, we then check which
particular interactions either (1) play parts of both games, (2) fulfil
components only in the real game or (3) fulfil components only in the
matched game. We colour these proportions in purple, green and blue,
respectively, in Extended Data Fig. 6.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data for our study, including raw participant responses in the behav-
ioural experiment, their translations to programs in our DSL and the
specification for the DSL, are available via GitHub at https://github.
com/guydav/goals-as-reward-producing-programs/ or via Zenodo at
https://doi.org/10.5281/zenodo.14238893 (ref. 97).

Code availability
All code for our study, including code used to analyse and generate
figures for our behavioural experiment, and the full implementation of
our GPG model, are available via GitHub at https://github.com/guydav/
goals-as-reward-producing-programs/ or via Zenodo at https://doi.
org/10.5281/zenodo.14238893 (ref. 97). Our behavioural data collection
experiment is publicly accessible at https://game-generation-public.
web.app/. Code for the behavioural experiment is available via GitHub
at https://github.com/guydav/game-creation-behavioral-experimen
t. Our human evaluation experiment is publicly accessible at https://
exps.gureckislab.org/e/expert-caring-chemical/#/welcome. Code for
the human evaluation experiment is available via GitHub at https://
github.com/guydav/game-fitness-judgements.

References
1. Dweck, C. S. Article commentary: the study of goals in

psychology. Psychol. Sci. 3, 165–167 (1992).
2. Austin, J. T. & Vancouver, J. B. Goal constructs in psychology:

structure, process, and content. Psychol. Bull. 120, 338–375
(1996).

3. Elliot, A. J. & Fryer, J. W. in Handbook of Motivation Science Vol.
638 (ed. Shah, J. Y.) 235–250 (The Guilford Press, 2008).

4. Hyland, M. E. Motivational control theory: an integrative
framework. J. Pers. Soc. Psychol. 55, 642–651 (1988).

5. Eccles, J. S. & Wigfield, A. Motivational beliefs, values, and goals.
Annu. Rev. Psychol. 53, 109–132 (2002).

6. Brown, L. V. Psychology of Motivation (Nova Science Publishers,
2007); https://books.google.com/books?id=hzPCuKfpXLMC

7. Fishbach, A. & Ferguson, M. J. in Social Psychology: Handbook
of Basic Principles Vol. 2 (eds Kruglanski, A. W. & Higgins, E. T.)
490–515 (The Guilford Press, 2007).

8. Pervin, L. A. Goal Concepts in Personality and Social
Psychology (Taylor & Francis, 2015); https://books.google.com/
books?id=lIXwCQAAQBAJ

9. Moskowitz, G. B. & Grant, H. The Psychology of Goals Vol. 548
(Guilford Press, 2009).

10. Molinaro, G. & Collins, A. G. E. A goal-centric outlook on learning.
Trends Cogn. Sci. 27, 1150–1164 (2023).

11. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An
Introduction (MIT Press, 2018).

12. Mnih, V. et al. Human-level control through deep reinforcement
learning. Nature 518, 529–533 (2015).

13. Chu, J., Tenenbaum, J. B. & Schulz, L. E. In praise of folly: flexible
goals and human cognition. Trends Cogn. Sci. 28, 628–642
(2024).

14. Chu, J. & Schulz, L. E. Play, curiosity, and cognition. Annu. Rev.
Dev. Psychol. 2, 317–343 (2020).

15. Lillard, A. S. in Handbook of Child Psychology and Developmental
Science Vol. 3 (eds Liben, L. & Mueller, U.) 425–468 (Wiley-Blackwell,
2015).

16. Andersen, M. M., Kiverstein, J., Miller, M. & Roepstorff, A. Play in
predictive minds: a cognitive theory of play. Psychol. Rev. 130,
462–479 (2023).

17. Oudeyer, P.-Y., Kaplan, F. & Hafner, V. V. Intrinsic motivation
systems for autonomous mental development. IEEE Trans. Evol.
Comput. 11, 265–286 (2007).

18. Nguyen, C. T. Games: Agency as Art (Oxford Univ. Press, 2020).
19. Kolve, E. et al. AI2-THOR: an interactive 3D environment for visual

AI. Preprint at https://arxiv.org/abs/1712.05474 (2017).
20. Fodor, J. A. The Language of Thought (Harvard Univ. Press, 1979).
21. Goodman, N. D., Tenenbaum, J. B., Feldman, J. & Griffiths, T. L. A

rational analysis of rule-based concept learning. Cogn. Sci. 32,
108–154 (2008).

22. Piantadosi, S. T., Tenenbaum, J. B. & Goodman, N. D.
Bootstrapping in a language of thought: a formal model of
numerical concept learning. Cognition 123, 199–217 (2012).

23. Rule, J. S., Tenenbaum, J. B. & Piantadosi, S. T. The child as hacker.
Trends Cogn. Sci.24, 900–915 (2020).

24. Wong, L. et al. From word models to world models: translating
from natural language to the probabilistic language of thought.
Preprint at https://arxiv.org/abs/2306.12672 (2023).

25. Ghallab, M. et al. PDDL—The Planning Domain Definition Language
Tech Report CVC TR-98-003/DCS TR-1165 (Yale Center for
Computational Vision and Control, 1998).

26. Chopra, S., Hadsell, R. & LeCun, Y. Learning a similarity metric
discriminatively, with application to face verification. In 2005 IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition 539–546 (IEEE, 2005).

27. Le-Khac, P. H., Healy, G. & Smeaton, A. F. Contrastive
representation learning: a framework and review. IEEE Access 8,
193907–193934 (2020).

28. Pugh, J. K., Soros, L. B & Stanley, K. O. Quality diversity: a new
frontier for evolutionary computation. Front. Robot. AI https://doi.
org/10.3389/frobt.2016.00040 (2016).

29. Chatzilygeroudis, K., Cully, A., Vassiliades, V. & Mouret, J. B.
Quality-diversity optimization: a novel branch of stochastic
optimization. Springer Optim. Appl. 170, 109–135 (2020).

30. Mouret, J.-B. & Clune, J. Illuminating search spaces by
mapping elites. Preprint at https://arxiv.org/abs/1504.04909
(2015).

31. Ward, T. B. Structured imagination: the role of category structure
in exemplar generation. Cogn. Psychol. 27, 1–40 (1994).

32. Allen, K. R. et al. Using games to understand the mind. Nat. Hum.
Behav. https://doi.org/10.1038/s41562-024-01878-9 (2024).

33. Liu, M., Zhu, M. & Zhang, W. Goal-conditioned reinforcement
learning: problems and solutions. In Proc. 31st International Joint
Conference on Artificial Intelligence: Survey Track (ed. De Raedt, L.)
5502–5511 (IJCAI, 2022).

34. Colas, C., Karch, T., Sigaud, O. & Oudeyer, P.-Y. Autotelic
agents with intrinsically motivated goal-conditioned reinforce-
ment learning: a short survey. J. Artif. Intell. Res. 74, 1159–1199
(2022).

35. Icarte, R. T., Klassen, T. Q., Valenzano, R. & McIlraith, S. A. Reward
machines: exploiting reward function structure in reinforcement
learning. J. Artif. Intell. Res. 73, 173–208 (2022).

36. Pell, B. Metagame in Symmetric Chess-Like Games
UCAM-CL-TR-277 (Univ. Cambridge, Computer Laboratory, 1992).

http://www.nature.com/natmachintell
https://github.com/guydav/goals-as-reward-producing-programs/
https://github.com/guydav/goals-as-reward-producing-programs/
https://doi.org/10.5281/zenodo.14238893
https://github.com/guydav/goals-as-reward-producing-programs/
https://github.com/guydav/goals-as-reward-producing-programs/
https://doi.org/10.5281/zenodo.14238893
https://doi.org/10.5281/zenodo.14238893
https://game-generation-public.web.app/
https://game-generation-public.web.app/
https://github.com/guydav/game-creation-behavioral-experiment
https://github.com/guydav/game-creation-behavioral-experiment
https://exps.gureckislab.org/e/expert-caring-chemical/#/welcome
https://exps.gureckislab.org/e/expert-caring-chemical/#/welcome
https://github.com/guydav/game-fitness-judgements
https://github.com/guydav/game-fitness-judgements
https://books.google.com/books?id=hzPCuKfpXLMC
https://books.google.com/books?id=lIXwCQAAQBAJ
https://books.google.com/books?id=lIXwCQAAQBAJ
https://arxiv.org/abs/1712.05474
https://arxiv.org/abs/2306.12672
https://doi.org/10.3389/frobt.2016.00040
https://doi.org/10.3389/frobt.2016.00040
https://arxiv.org/abs/1504.04909
https://doi.org/10.1038/s41562-024-01878-9

Nature Machine Intelligence | Volume 7 | February 2025 | 205–220 219

Article https://doi.org/10.1038/s42256-025-00981-4

37. Hom, V. & Marks, J. Automatic design of balanced board games.
In Proc. AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment Vol. 3 (eds Schaeffer, J. & Mateasvol, M.)
25–30 (AAAI Press, 2007).

38. Browne, C. & Maire, F. Evolutionary game design. IEEE Trans.
Comput. Intell. AI Games 2, 1–16 (IEEE, 2010).

39. Togelius, J. & Schmidhuber, J. An experiment in automatic game
design. In 2008 IEEE Symposium On Computational Intelligence
and Games 111–118 (IEEE, 2008).

40. Smith, A. M., Nelson, M. J. & Mateas, M. Ludocore: a logical game
engine for modeling videogames. In Proc. 2010 IEEE Conference
on Computational Intelligence and Games 91–98 (IEEE, 2010).

41. Zook, A. & Riedl, M. Automatic game design via mechanic
generation. In Proc. AAAI Conference on Artificial Intelligence
Vol. 28, https://doi.org/10.1609/aaai.v28i1.8788 (AAAI Press, 2014).

42. Khalifa, A., Green, M. C., Perez-Liebana, D. & Togelius, J. General
video game rule generation. In 2017 IEEE Conference on
Computational Intelligence and Games 170–177 (IEEE, 2017).

43. Lake, B. M., Ullman, T. D., Tenenbaum, J. B. & Gershman, S. J.
Building machines that learn and think like people. Behav. Brain
Sci. 40, e253 (2017).

44. Cully, A. Autonomous skill discovery with quality-diversity and
unsupervised descriptors. In Proc. Genetic and Evolutionary
Computation Conference (ed. López-Ibáñez, M.) 81–89
(Association for Computing Machinery, 2019).

45. Grillotti, L. & Cully, A. Unsupervised behavior discovery with
quality-diversity optimization. IEEE Trans. Evol. Comput. 26,
1539–1552 (2022).

46. Ullman, T. D., Spelke, E., Battaglia, P. & Tenenbaum, J. B. Mind
games: game engines as an architecture for intuitive physics.
Trends Cogn. Sci. 21, 649–665 (2017).

47. Chen, T., Allen, K. R., Cheyette, S. J., Tenenbaum, J. & Smith, K. A. ‘
Just in time’ representations for mental simulation in intuitive
physics. In Proc. Annual Meeting of the Cognitive Science Society
Vol. 45 (UC Merced, 2023); https://escholarship.org/uc/item/
3hq021qs

48. Tang, H., Key, D. & Ellis, K. WorldCoder, a model-based LLM agent:
building world models by writing code and interacting with the
environment. Preprint at https://arxiv.org/abs/2402.12275 (2024).

49. Reed, S. et al. A generalist agent. Trans. Mach. Learn. Res.
1ikK0kHjvj (2022).

50. Gallouédec, Q., Beeching, E., Romac, C. & Dellandréa, E. Jack of
all trades, master of some, a multi-purpose transformer agent.
Preprint at https://arxiv.org/abs/2402.09844 (2024).

51. Florensa, C., Held, D., Geng, X. & Abbeel, P. Automatic goal
generation for reinforcement learning agents. In Proc. 35th
International Conference on Machine Learning Vol. 80 (eds Dy, J. &
Krause, A.) 1515–1528 (PMLR, 2018).

52. Open Ended Learning Team et al. Open-ended learning leads
to generally capable agents. Preprint at https://arxiv.org/abs/
2107.12808 (2021).

53. Du, Y. et al. Guiding pretraining in reinforcement learning
with large language models. In Proc. of the 40th International
Conference on Machine Learning (eds Krause, A. et al.) 8657–8677
(JMLR, 2023).

54. Colas, C., Teodorescu, L., Oudeyer, P.-Y., Yuan, X. & Côté, M.-A.
Augmenting autotelic agents with large language models.
Preprint at https://arxiv.org/abs/2305.12487v1 (2023).

55. Littman, M. L. et al. Environment-independent task specifications
via GLTL. Preprint at http://arxiv.org/abs/1704.04341 (2017).

56. Leon, B. G., Shanahan, M. & Belardinelli, F. In a nutshell, the
human asked for this: latent goals for following temporal
specifications. In 10th International Conference on Learning
Representations (OpenReview, 2022); https://openreview.net/
forum?id=rUwm9wCjURV

57. Ma, Y. J. et al. Eureka: Human-Level Reward Design via Coding
Large Language Models (ICLR, 2023).

58. Faldor, M., Zhang, J., Cully, A. & Clune, J. OMNI-EPIC:
open-endedness via models of human notions of interestingness
with environments programmed in code. In 12th International
Conference on Learning Representations (OpenReview, 2024);
https://openreview.net/forum?id=AgM3MzT99c

59. Colas, C. et al. Language as a cognitive tool to imagine goals
in curiosity-driven exploration. In Proc. 34th International
Conference on Neural Information Processing Systems (NIPS ’20)
(eds Larochelle, H. et al.) 3761–3774 (Curran Associates, 2020).

60. Wu, C. M., Schulz, E., Speekenbrink, M., Nelson, J. D. & Meder, B.
Generalization guides human exploration in vast decision spaces.
Nat. Hum. Behav. 2, 915–924 (2018).

61. Ten, A. et al. in The Drive for Knowledge: The Science of Human
Information Seeking (eds. Dezza, I. C. et al.) 53–76 (Cambridge
Univ. Press, 2022).

62. Berlyne, D. E. Novelty and curiosity as determinants of exploratory
behaviour. Br. J. Psychol. Gen. Sect. 41, 68–80 (1950).

63. Gopnik, A. Empowerment as causal learning, causal learning as
empowerment: a bridge between Bayesian causal hypothesis
testing and reinforcement learning. PhilSci-Archive https://philsci-
archive.pitt.edu/23268/ (2024).

64. Addyman, C. & Mareschal, D. Local redundancy governs infants’
spontaneous orienting to visual-temporal sequences. Child Dev.
84, 1137–1144 (2013).

65. Du, Y. et al. What can AI learn from human exploration?
Intrinsically-motivated humans and agents in open-world
exploration. In NeurIPS 2023 Workshop: Information-Theoretic
Principles in Cognitive Systems (OpenReview, 2023); https://
openreview.net/forum?id=aFEZdGL3gn

66. Ruggeri, A., Stanciu, O., Pelz, M., Gopnik, A. & Schulz, E.
Preschoolers search longer when there is more information to be
gained. Dev. Sci. 27, e13411 (2024).

67. Liquin, E. G., Callaway, F. & Lombrozo, T. Developmental change
in what elicits curiosity. In Proc. Annual Meeting of the Cognitive
Science Society Vol. 43 (UC Merced, 2021); https://escholarship.
org/uc/item/43g7m167

68. Taffoni, F. et al. Development of goal-directed action selection
guided by intrinsic motivations: an experiment with children. Exp.
Brain Res. 232, 2167–2177 (2014).

69. Ten, A., Kaushik, P., Oudeyer, P.-Y. & Gottlieb, J. Humans monitor
learning progress in curiosity-driven exploration. Nat. Commun.
12, 5972 (2021).

70. Baldassarre, G. et al. Intrinsic motivations and open-ended
development in animals, humans, and robots: an overview. Front.
Psychol. 5, 985 (2014).

71. Spelke, E. S. & Kinzler, K. D. Core knowledge. Dev. Sci. 10, 89–96
(2007).

72. Jara-Ettinger, J., Gweon, H., Schulz, L. E. & Tenenbaum, J. B.
The naïve utility calculus: computational principles underlying
commonsense psychology. Trends Cogn. Sci. 20, 589–604
(2016).

73. Liu, S., Brooks, N. B. & Spelke, E. S. Origins of the concepts cause,
cost, and goal in prereaching infants. Proc. Natl Acad. Sci. USA
116, 17747–17752 (2019).

74. Jara-Ettinger, J. Theory of mind as inverse reinforcement learning.
Curr. Opin. Behav. Sci. 29, 105–110 (2019).

75. Arora, S. & Doshi, P. A survey of inverse reinforcement learning:
challenges, methods and progress. Artif. Intell. 297, 103500
(2021).

76. Baker, C., Saxe, R. & Tenenbaum, J. Bayesian theory of mind:
Modeling joint belief–desire attribution. In Proc. Annual Meeting of
the Cognitive Science Society Vol. 33 (UC Merced, 2011); https://
escholarship.org/uc/item/5rk7z59q

http://www.nature.com/natmachintell
https://doi.org/10.1609/aaai.v28i1.8788
https://escholarship.org/uc/item/3hq021qs
https://escholarship.org/uc/item/3hq021qs
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.09844
https://arxiv.org/abs/2107.12808
https://arxiv.org/abs/2107.12808
https://arxiv.org/abs/2305.12487v1
http://arxiv.org/abs/1704.04341
https://openreview.net/forum?id=rUwm9wCjURV
https://openreview.net/forum?id=rUwm9wCjURV
https://openreview.net/forum?id=AgM3MzT99c
https://philsci-archive.pitt.edu/23268/
https://philsci-archive.pitt.edu/23268/
https://openreview.net/forum?id=aFEZdGL3gn
https://openreview.net/forum?id=aFEZdGL3gn
https://escholarship.org/uc/item/43g7m167
https://escholarship.org/uc/item/43g7m167
https://escholarship.org/uc/item/5rk7z59q
https://escholarship.org/uc/item/5rk7z59q

Nature Machine Intelligence | Volume 7 | February 2025 | 205–220 220

Article https://doi.org/10.1038/s42256-025-00981-4

77. Velez-Ginorio, J., Siegel, M. H., Tenenbaum, J. B. & Jara-Ettinger, J.
Interpreting actions by attributing compositional desires. In Proc.
Annual Meeting of the Cognitive Science Society Vol. 39 (eds
Gunzelmann, G. et al.) (UC Merced, 2017); https://escholarship.org/
uc/item/3qw110xj

78. Ho, M. K. & Griffiths, T. L. Cognitive science as a source of forward
and inverse models of human decisions for robotics and control.
Annu. Rev. Control Robot. Auton. Syst. 5, 33–53 (2022).

79. Palan, S. & Schitter, C. Prolific.ac—a subject pool for online
experiments. J. Behav. Exp. Finance 17, 22–27 (2018).

80. Icarte, R. T., Klassen, T., Valenzano, R. & McIlraith, S. Using reward
machines for high-level task specification and decomposition in
reinforcement learning. In Proc. 35th International Conference
on Machine Learning Vol. 80 (eds Dy, J. & Krause, A.) 2107–2116
(PMLR, 2018).

81. Brants, T., Popat, A. C, Xu, P., Och, F. J. & Dean, J. Large language
models in machine translation. In Proc. 2007 Joint Conference
on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (ed. Eisner, J.) 858–867
(Association for Computational Linguistics, 2007).

82. Rothe, A., Lake, B. M. & Gureckis, T. M. Question asking as
program generation. In Advances in Neural Information Processing
Systems 30 (eds Von Luxburg, U. et al.) 1047–1056 (Curran
Associates, 2017).

83. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M.’A. & Huang, F. J. in
Predicting Structured Data (eds Bakir, G. et al.) Ch. 10 (MIT Press,
2006).

84. van den Oord, A., Li, Y. & Vinyals, O. Representation learning
with contrastive predictive coding. Preprint at https://arxiv.org/
abs/1807.03748v2 7 (2018).

85. Charity, M., Green, M. C., Khalifa, A. & Togelius, J. Mech-elites:
illuminating the mechanic space of GVG-AI. In Proc. 15th
International Conference on the Foundations of Digital Games (eds
Yannakakis, G. N. et al.) 8 (Association for Computing Machinery,
2020).

86. GPT-4 Technical Report (OpenAI, 2023).
87. Mann, H. B. & Whitney, D. R. On a test of whether one of two

random variables is stochastically larger than the other. Ann.
Math. Stat. 18, 50–60 (1947).

88. Castro, S. Fast Krippendorff: fast computation of Krippendorff’s
alpha agreement measure. GitHub https://github.com/
pln-fing-udelar/fast-krippendorff (2017).

89. Radenbush, S. W. & Bryk, A. S. Hierarchical Linear Models.
Applications and Data Analysis Methods 2nd edn (Sage
Publications, 2002).

90. Hox, J., Moerbeek, M. & van de Schoot, R. Multilevel Analysis
(Techniques and Applications) 3rd edn (Routledge, 2018).

91. Argesti, A. Categorical Data Analysis 3rd edn (Wiley, 2018).
92. Greene, W. H. & Hensher, D. A. Modeling Ordered Choices:

A Primer (Cambridge Univ. Press, 2010).
93. Christensen, R. H. B. ordinal—regression models for ordinal

data. R package version 2023.12-4 https://CRAN.R-project.org/
package=ordinal (2023).

94. R Core Team. R: A Language and Environment for Statistical
Computing Version 4.3.2 https://www.R-project.org/ (R Foundation
for Statistical Computing, 2023).

95. Long, J. A. jtools: analysis and presentation of social scientific
data. J. Open Source Softw. 9, 6610 (2024).

96. Lenth, R. V. emmeans: estimated marginal means, aka least-squares
means. R package version 1.10.0 https://CRAN.R-project.org/
package=emmeans (2024).

97. Davidson, G., Todd, G., Togelius, J., Gureckis, T. M. & Lake, B. M.
guydav/goals-as-reward-producing-programs: release for DOI.
Zenodo https://doi.org/10.5281/zenodo.14238893 (2024).

Acknowledgements
G.D. thanks members of the Human and Machine Learning Lab and the
Computation and Cognition Lab at NYU for their feedback at various
stages of this project. We thank L. Wong for helpful discussions on
which questions to prioritize in the human evaluations of our model
outputs. We thank O. Timplaru and https://vecteezy.com for the use of
the illustration in Fig. 1a. G.D. and B.M.L. are supported by the National
Science Foundation (NSF) under NSF Award 1922658. G.T.’s work on
this project is supported by the NSF GRFP under grant DGE-2234660.
T.M.G.’s work on this project is supported by NSF BCS 2121102.

Author contributions
G.D. designed and executed the behavioural experiments and
analysed their data. G.D. and G.T. jointly designed and implemented
the GPG model and designed the human evaluations. G.D. led human
evaluation data collection and analysis. G.D.and G.T. led the writing of
the paper. J.T. advised on computational modelling and helped write
the paper. T.M.G. and B.M.L. jointly advised all work reported in this
manuscript and helped write the paper.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s42256-025-00981-4.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s42256-025-00981-4.

Correspondence and requests for materials should be addressed to
Guy Davidson.

Peer review information Nature Machine Intelligence thanks
Cédric Colas and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited
2025

http://www.nature.com/natmachintell
https://escholarship.org/uc/item/3qw110xj
https://escholarship.org/uc/item/3qw110xj
https://arxiv.org/abs/1807.03748v2
https://arxiv.org/abs/1807.03748v2
https://github.com/pln-fing-udelar/fast-krippendorff
https://github.com/pln-fing-udelar/fast-krippendorff
https://CRAN.R-project.org/package=ordinal
https://CRAN.R-project.org/package=ordinal
https://www.R-project.org/
https://CRAN.R-project.org/package=emmeans
https://CRAN.R-project.org/package=emmeans
https://doi.org/10.5281/zenodo.14238893
https://vecteezy.com
https://doi.org/10.1038/s42256-025-00981-4
https://doi.org/10.1038/s42256-025-00981-4
http://www.nature.com/reprints

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-025-00981-4

Extended Data Fig. 1 | Online experiment interface. The main part of the screen presents the AI2-THOR-based experiment room. Below it, we depict the controls.
To the right, we show the text prompts for creating a new game (fonts enlarged for visualization). Our experiment is accessible online here.

http://www.nature.com/natmachintell
https://game-generation-public.web.app/

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-025-00981-4

Extended Data Fig. 2 | Common-sense behavioral analyses. We plot similar information to Fig. 2b, but including additional object categories and predicates.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-025-00981-4

Extended Data Fig. 3 | Our implementation of the Goal Program Generator
model fills the archive quickly and finds examples with human-like fitness
scores. Left: Our model rapidly finds exemplars for all archive cells (that is niches
induced by our behavioral characteristics), reaching 50% occupancy after 400
generations (out of a total of 8192) and 95% occupancy after 794 generations—the
archive is almost full 1/10th of the way through the search process. Middle: Our

model reaches human-like fitness scores. After only three generations, the fittest
sample in the archive has a higher fitness score than at least one participant-
created game. By the end of the search, the mean fitness in the archive is close to
the mean fitness of human games. Right: Our model generates the vast majority
of its samples within the range of fitness scores occupied by participant-created
games, though few samples approach the top of the range.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-025-00981-4

Extended Data Fig. 4 | Human evaluations interface. For each game,
participants viewed the same four images of the environment, followed by the
GPT-4 back-translated description of the game (see Human evaluation methods

for details). They then answered the two free-response and seven multiple-choice
questions on the right. In the web page version, the questions appeared below the
game description; we present them side-by-side to save space.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-025-00981-4

Extended Data Fig. 5 | Mixed model result summary. We summarize the
pairwise comparisons made in Table 1. Each panel corresponds to a set of
columns in Table 1 and each color to one of the seven human evaluation attributes
we consider. We compare the estimated marginal mean scores under the fitted

mixed effect models between each pair of game types listed in the panel title.
As in Table 1, we use the method of estimated (least-squares) marginal means to
compare the three groups of games, accounting for the random effects fitted to
particular games and human evaluators.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-025-00981-4

Extended Data Fig. 6 | Proportion of human interactions activating only
matched and real games in the same cell. Each bar corresponds to a pair of
corresponding matched and real games. In each bar, we plot the proportion
of relevant interactions (state-action traces) that are unique to the matched
game (blue), unique to the real game (green), or shared across both (purple).
A few games (with the bar mostly or entirely in purple) show high similarity
between the corresponding games — under 25% (7/30) share more than half of

their relevant interactions. Most games, however, show substantial differences
between the sets of relevant interactions, with some showing a higher fraction
unique to human games and others to matched model games. The average
Jaccard similarity between the sets of relevant interactions for the matched
and real game is only 0.347 and the median similarity is 0.180 (identical games
would score 1.0, entirely dissimilar games 0).

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-025-00981-4

Extended Data Fig. 7 | Mixed model (including fitness) coefficient summary.
We summarize the fitted model coefficients listed in Extended Data Table 2.
Each panel corresponds to a particular coefficient in Extended Data Table 2 and
each color to one of the seven human evaluation attributes we consider. We plot

the fitted coefficient value and a standard error estimated using the Hessian as
implemented in the clmmR package. We observe the same effects discussed in
Extended Data Table 2.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-025-00981-4

Extended Data Table 1 | Non-parametric significance test results mostly corroborate mixed-model results

Fitness scores show (statistically) significant positive effects on the understandability, fun to play, and human-likeness attributes, and significant negative effects on the helpfulness, difficulty
and creativity questions. Accounting for the role of fitness, the matched group membership shows significant effects only the fun to play and watch, helpfulness, and human likeness
questions. The real group shows significant effects on understandability, fun to play and watch, and human likeness. Standard errors were estimated using the Hessian as part of model-fitting.
We report coefficient significance estimates using the two-sided Wald test. *: P < 0.05, **: P < 0.01, ***: P < 0.001 †: The full measure description is ‘Helpful for interacting with the simulated
environment.’ In most measures, higher scores are better, indicated by the ↑, other than Difficult ↓↑, in which 3 means ‘appropriately difficult’, and scores below and above indicate too easy
and too hard respectively.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-025-00981-4

Extended Data Table 2 | Fitness scores significantly predict several attributes, including understandability and
human-likeness

Fitness scores show (statistically) significant positive effects on the understandability, fun to play, and human-likeness attributes, and significant negative effects on the helpfulness, difficulty
and creativity questions. Accounting for the role of fitness, the matched group membership shows significant effects only the fun to play and watch, helpfulness, and human likeness
questions. The real group shows significant effects on understandability, fun to play and watch, and human likeness. Standard errors were estimated using the Hessian as part of model-fitting.
We report coefficient significance estimates using the two-sided Wald test. *: P < 0.05, **: P < 0.01, ***: P < 0.001 †: The full measure description is ‘Helpful for interacting with the simulated
environment.’ In most measures, higher scores are better, indicated by the ↑, other than Difficult ↓↑, in which 3 means ‘appropriately difficult’, and scores below and above indicate too easy
and too hard respectively.

http://www.nature.com/natmachintell

	Goals as reward-producing programs
	Behavioural results
	Modelling results
	Generated games
	Human evaluations

	Discussion
	Methods
	Dataset collection methods
	Experimental design
	Ethics oversight
	Dataset collection
	Interaction traces
	Natural language to DSL translation
	Goal program interpreter

	Game dataset analysis methods
	Common sense through predicate role-filler analysis
	Compositionality and creativity through abstract structure occurrence

	Fitness function methods
	Fitness function form
	Feature extractor and feature set
	Fitness function learning algorithm
	Final fitness function

	MAP-Elites methods
	MAP-Elites overview
	Behavioural characteristics
	Auxiliary coherence check
	Mutation operators
	Archive initialization

	Ablation methods
	Common sense
	Compositionality
	Coherence
	PCFG-sampling-only baseline
	Held-out data ablation

	Human evaluation methods
	Evaluation dataset
	GPT-4-based back-translation
	Human evaluations structure
	Evaluation statistical analyses
	Mixed-effects models
	Marginal means comparisons

	Sample similarity comparison methods
	Reporting summary

	Acknowledgements
	Fig. 1 Goals as reward-producing programs.
	Fig. 2 Participants in our behavioural experiment create diverse games reflecting common sense and compositionality.
	Fig. 3 GPG model.
	Fig. 4 GPG model produces simple, coherent, human-like games.
	Fig. 5 GPG model produces interesting, novel goals.
	Extended Data Fig. 1 Online experiment interface.
	Extended Data Fig. 2 Common-sense behavioral analyses.
	Extended Data Fig. 3 Our implementation of the Goal Program Generator model fills the archive quickly and finds examples with human-like fitness scores.
	Extended Data Fig. 4 Human evaluations interface.
	Extended Data Fig. 5 Mixed model result summary.
	Extended Data Fig. 6 Proportion of human interactions activating only matched and real games in the same cell.
	Extended Data Fig. 7 Mixed model (including fitness) coefficient summary.
	Table 1 Mixed-model marginal means comparison summary.
	Extended Data Table 1 Non-parametric significance test results mostly corroborate mixed-model results.
	Extended Data Table 2 Fitness scores significantly predict several attributes, including understandability and human-likeness.

