
Finding Unsupervised Alignment of Conceptual Systems in Image-Word
Representations

Kexin Luo1, Bei Zhang1, Yajie Xiao1, Brenden M. Lake1,2

1Center for Data Science, 2Department of Psychology, New York University

{kl3108,bz2428,yx1750,brenden}@nyu.edu

Abstract

Advancements in deep neural networks have led to significant
progress in computer vision and natural language processing.
These networks, trained on real-world stimuli, develop high-
level feature representations of stimuli. It is hypothesized that
these representations, stemming from different inputs, should
converge into similar conceptual systems, as they reflect var-
ious perspectives of the same underlying reality. This paper
examines the degree to which different conceptual systems
can be aligned in an unsupervised manner, using feature-based
representations from deep neural networks. Our investigation
centers on the alignment between the image and word rep-
resentations produced by diverse neural networks, emphasiz-
ing those trained via self-supervised learning methods. Sub-
sequently, to probe comparable alignment patterns in human
learning, we extend this examination to models trained on de-
velopmental headcam data from children. Our findings reveal
a more pronounced alignment in models trained through self-
supervised learning compared to supervised learning, effec-
tively uncovering higher-level structural connections among
categories. However, this alignment was notably absent in
models trained with limited developmental headcam data, sug-
gesting more data, more inductive biases, or more supervision
are needed to establish alignment from realistic input.

Keywords: self-supervised learning; image-word representa-
tions; alignment; concept learning; developmental headcam
data

Introduction
Multimodal deep learning, particularly in computer vision
and natural language processing, has made substantial ad-
vances in a variety of vision-language tasks (OpenAI et al.,
2023; J. Li, Li, et al., 2023; Radford et al., 2021; F. Li
et al., 2022). This progress, driven by multimodal models
trained on aligned input data (e.g. images paired with corre-
sponding captions), has spurred extensive research in cogni-
tive science and machine learning, with a specific focus on the
alignment between visual and linguistic modalities. In partic-
ular, studies have focused on examining whether the align-
ment observed in the joint models extends to independently-
trained vision and language models. Utilizing representations
from distinct visual and linguistic embedding spaces derived
from supervised and unsupervised models, these investiga-
tions have revealed a high degree of convergence between
visual features and linguistic representations across various
contexts, including naturalistic object categories and every-
day nouns (Sorscher et al., 2022; J. Li, Kementchedjhieva, &
Søgaard, 2023), verbs (Y. Zhou et al., 2023), and perceptual
adjectives like colors (Abdou et al., 2021). They demonstrate
that, despite being trained separately and optimized based on

different objectives, visual and language models still exhibit a
notable alignment, and a straightforward linear mapping layer
is sufficient to effectively transform representations between
the visual and textual domains.

Given the impressive alignment achieved through linear
mapping, an intriguing question arises: Is it possible to align
the conceptual representation in two modalities, without any
(even weakly) supervised data or supervised-trained linear
projections between them? Roads and Love (2020) recently
studied this question and introduced a method for unsuper-
vised alignment. Using embedding spaces derived via unsu-
pervised methods, they found that the alignment across these
modalities can occur naturally, driven by inherent correla-
tions among them, and without the need for a linear mapping.
This suggests that each concept carries a unique, modality-
independent signature, enabling it to be mirrored across dif-
ferent sensory systems and contributing to a substantial align-
ment naturally. Extending this exploration to humans, Aho,
Roads, and Love (2023) demonstrated how such systems
alignment could aid in the acquisition of early concepts by
children, enhancing the learning of object names in the ab-
sence of supervision. This finding reveals that children’s
early concepts form dense networks ideally suited for sys-
tems alignment, underscoring the significance of alignment
in multi-modal learning among children.

This study builds on the methodology proposed by Roads
and Love (2020) to further investigate the alignment of visual
and linguistic systems using unsupervised methods, adopting
a paradigm relevant to the noisy, naturalistic, multi-modal in-
put streams observed by children. Our first advancement in-
volves the use of neural network embeddings extracted from
raw, pixel-level images, a shift from the reliance on object co-
occurrence labels as primarily analyzed by Roads and Love
(2020). Furthermore, we extend our analysis across a va-
riety of established vision models and training methodolo-
gies, placing a particular emphasis on self-supervised learn-
ing methods. The choice of self-supervised learning is key, as
such models have not only excelled in vision tasks (Oquab et
al., 2023; J. Zhou et al., 2022), but also offer a closer analogy
to human learning experiences (Orhan & Lake, 2024; Kon-
kle & Alvarez, 2022). Unlike supervised learning, which re-
lies on synchronous label mapping from images to text, self-
supervised learning extracts meaningful patterns from un-
labeled data, better reflecting the label-sparse environments
typical of children’s everyday visual development.



Additionally, to mirror a child’s real-life experiences as
closely as possible, we test these methods using models
trained from scratch on just a single child’s egocentric devel-
opmental data from Sullivan et al. (2021) (Baby-S from the
SAYCam corpus). Previous research has highlighted that uni-
modal deep models trained on this corpus of children’s devel-
opmental data can generate meaningful image and text repre-
sentations (Orhan & Lake, 2024; Wang et al., 2023). This ap-
proach probes whether conceptual alignment can emerge or-
ganically, without supervision or specific guidance in human
learning. It also questions whether the two systems are inher-
ently prepared for alignment or if certain learning prerequi-
sites are essential for such alignment to manifest. This explo-
ration not only enhances our understanding of deep learning
models but also offers valuable insights into the developmen-
tal processes in humans.

In this study, we present consistent unsupervised alignment
between image representations from both supervised and self-
supervised computer vision models and common word em-
beddings. When aligned with the same word embedding
space, self-supervised vision models show a higher degree
of alignment, potentially due to their capacity to uncover hi-
erarchical structural connections among concepts. Examin-
ing models trained on a single child’s egocentric develop-
mental data reveals a lower alignment degree compared to
established models, suggesting prerequisites for multi-modal
alignment from more realistic input.

Methods
Established Self-Supervised Models
In this section, we studied the potential for unsupervised
alignment between the visual embeddings and word embed-
dings from pre-trained language and vision models1.

Vision Models We included 7 computer vision models in
our analysis, spanning three families of training methods: su-
pervised Vision Transformer (ViT) (Dosovitskiy et al., 2021)
and ResNeXt (Xie et al., 2017), self-supervised ViT and
ResNet with DINO (Caron et al., 2021) and iBOT (J. Zhou
et al., 2022), as well as ViT with CLIP (Radford et al., 2021).
All ViTs selected are the ‘Base’ variant with 16×16 input
patch size (with 86M parameters), and both ResNeXt and
ResNet included have 50 layers (with 25M parameters). A
randomly-initialized ViT is used as a reference of baselines
analysis, while the CLIP model, trained on aligned data, is ex-
pected to demonstrate the highest alignment and thus serves
as the comparative upper limit. Model details are in Table 1.

Language Models For our study, to match with the analy-
sis by Roads and Love (2020), we primarily utilized GloVe
(Global Vectors for Word Representation) (Pennington,
Socher, & Manning, 2014) to obtain word embeddings. This
unsupervised learning algorithm provides pre-trained word
vectors, which we used for alignment with most of the vi-

1Code available here: https://github.com/cindyLuo99/
image-word-alignment

Model Methods Training Data
ViT-B/16 Random NA
ResNeXt-50 Supervised

ImageNet
(Russakovsky et al., 2015)

ViT-B/16 Supervised
ResNet-50 SS: DINO
ViT-B/16 SS: DINO
ViT-B/16 SS: iBOT

ViT-B/16 CLIP
400M Text-image pairs
(Radford et al., 2021)

Table 1: 7 computer vision models used in the analysis.

sion models. We chose single-word embeddings to ensure
straightforward concept alignment and to facilitate compari-
son with models trained on SAYCam-S. However, for models
trained using CLIP (Radford et al., 2021), we incorporated
the CLIP text encoder to align with the CLIP-based image
representations.

Image Stimuli and Representations For the visual stim-
uli in our evaluation, we selected images from the ImageNet-
1k Dataset (Russakovsky et al., 2015). Our selection pro-
cess began by defining four major domains for category se-
lection: Birds, Mammals, Vehicles, Fruits&Vegetables. To
facilitate accurate image-word mapping, we filtered the Ima-
geNet categories to find overlaps with words in the GloVe em-
bedding system. For categories named with multiple words,
we considered the last word as the representative label (e.g.,
’brown bear’ as ’bear’). We then manually assigned each
category to its respective domain based on the WordNet hier-
archy and selected 20 representative categories per domain.

For each category, we generated visual representations by
embedding 100 images using the respective vision model. To
verify that the quantity of images sampled did not influence
our analysis, we conducted additional tests with larger sam-
ples of 500 and 1000 images for each category and found
consistent results. ResNet and ResNeXt models produced a
single 2048-dimensional vector per image. For ViT models,
we used the 768-dimensional CLS token representation from
each image. These vectors were then averaged to obtain a
representative vector for each category. In the case of ViT-
B/16 trained with CLIP, we extracted the CLS states before
the projection layer, after passing both the image and text in-
puts through the model.

Word Representations For all models except those trained
with CLIP, we employed the pre-trained 300-dimensional
word vectors from GloVe, using Wikipedia 2014 and Giga-
word 5 corpora (Pennington et al., 2014). Since GloVe pro-
vides a single vector for each word, we directly used these
embeddings for our analysis. To obtain word embeddings
from the CLIP text encoder, we followed the method intro-
duced in Radford et al. (2021) by inputting a full prompt ‘A
photo of a {category}’ together with the corresponding image
and replaced {category} with the word. We then extracted the
pooled states (EOS token representations), which serve as a
summary of the entire input text, for use in our analysis.



Models Trained Using SAYCam-S

In this section, we introduced the models trained using
SAYCam-S, a dataset derived from Child-S’s headcam data,
and compare the alignment with those analyzed previously.

Vision Models We included two vision models: the ViT/B-
16 and the ResNeXt-50, both trained using the DINO frame-
work as detailed by Orhan and Lake (2024). These models
were trained with visual inputs from Child-S’s headcam data
and have shown remarkable performance when fine-tuned for
various vision tasks.

Language Model For the word embedding space, we uti-
lized an LSTM model trained on transcribed child-directed
speech from Child-S’s headcam data. This model, described
in the work by Wang et al. (2023), could generate word
embeddings that capture meaningful semantic and syntactic
structures.

Labeled-S Dataset To ensure the models generate mean-
ingful representations and to mitigate out-of-distribution is-
sues, our alignment evaluation employed the Labeled-S
dataset, a curated subset of SAYCam data provided by Orhan
and Lake (2024). This dataset includes 22 visual concepts
that match with those in the word embedding space. Fol-
lowing the methodology used in the previous section, we ob-
tained image embeddings by averaging the outputs from pro-
cessing up to 100 images per category through each vision
model. The 512-dimensional word embeddings were derived
from the LSTM model’s embedding space.

Evaluations of Alignment

Alignment Correlation First, a similarity matrix was con-
structed for each embedding space by computing the cosine
similarity between all pairs of concept embeddings within the
same modality. Essentially, this matrix captures how closely
related each pair of concepts is within its own space. We then
quantified the alignment correlation between the two embed-
ding systems using Spearman’s rank correlation coefficient
(ρ). This was done by correlating the upper triangular parts
of the similarity matrices (excluding the diagonal). Since
Spearman’s correlation assesses rank correlation, it is robust
against differences in the scales of similarity values.

Alignment Strength We used the Alignment Strength met-
ric, as introduced by Roads and Love (2020), to assess how
often misaligned mappings show lower correlation compared
to the true mapping system. For each actual mapping, we cal-
culated an alignment correlation value, ρ∗, using the Spear-
man correlation method mentioned earlier.

For each level of mapping accuracy, we generated up to
10,000 random mapping systems. We then calculated the
alignment correlation for each of these misaligned systems
to form a distribution of alignment correlations (ρmisaligned).
After running permutations across all levels of mapping ac-
curacy, we determined the percentage of cases where ρ∗ ex-
ceeded ρmisaligned. This percentage represents the alignment

strength between the two systems. The script for this analysis
was adapted from Roads and Love (2020).

Accuracy Correlation Following the approach of Roads
and Love (2020), we also examined the relationship between
mapping accuracy and the average alignment correlation of
the conditionally sampled 10,000 misaligned systems. Ac-
curacy correlation could reflect whether more accurate map-
pings lead to higher alignment.

Recovery Accuracy In addition, we explored the accuracy
of recovering the true mapping by identifying which mapping
system exhibited the highest alignment correlation among all
systems generated in the previous analysis. This approach
tests the effectiveness of using alignment correlation to guide
the recovery of the true mapping. To minimize the influence
of random seed, we calculated the mean and standard devi-
ation of the recovery accuracy across 50 random seeds from
the previous analysis.

Results
Alignment Analysis - Established Models
The alignment analysis results, using all 80 categories across
four domains, are presented in Table 2. A distinct trend of in-
creasing alignment correlation is evident, beginning with the
untrained ViT model, which sets the baseline for our anal-
ysis. This is followed by the supervised ViT model. The
self-supervised ViT models, utilizing both DINO and iBOT,
demonstrated higher alignment correlations compared to their
untrained and supervised counterparts. As hypothesized, the
highest alignment was observed within the embedding spaces
of CLIP, which signals the image-word alignment during the
phase of model training. Additionally, variations across net-
work architectures were notable. For instance, the supervised
ResNeXt model displayed a relatively high alignment corre-
lation, similar to some self-supervised models, whereas the
alignment correlation of the ResNet-DINO was akin to that
of the supervised models. This variation could potentially be
attributed to differences in model performance in various vi-
sion tasks, as both ResNeXt and ViT models have been shown
to achieve higher accuracies when employed as backbones for
downstream vision tasks.

Alignment strengths closely mirror the observed align-
ment correlations. Models with higher alignment correla-
tion consistently exhibit greater alignment strength, indicat-
ing a reduced likelihood of embedding space mismatches
leading to inaccurately high alignment correlations. An ex-
ception is noted in the supervised ViT model; despite its lower
alignment correlation relative to other models, it achieves
a high alignment strength of 0.9994, suggesting robustness
of the true mapping against random alternatives. The accu-
racy correlations also reinforce the presence of alignment,
demonstrating that systems with a greater number of correctly
mapped pairs tend to show higher alignment correlation.

Finally, the model’s recovery accuracy consistently corre-
sponds with its alignment strength. Models demonstrating



Model Alignment
Correlation

Alignment
Strength

Accuracy
Correlation

Recovery
Accuracy (%)

ViT-B/16 - Random 0.272 0.9925 0.893 89.18 (± 5.06)
ResNeXt - Sup 0.396 0.9990 0.938 94.88 (± 2.20)
ViT-B/16 - Sup 0.312 0.9994 0.954 95.18 (± 1.62)
ResNet - DINO 0.332 0.9964 0.898 91.73 (± 4.19)

ViT-B/16 - DINO 0.478 0.9994 0.959 95.88 (± 1.86)
ViT-B/16 - iBOT 0.486 0.9993 0.958 95.25 (± 1.29)

CLIP - GloVe 0.646 0.9997 0.963 96.53 (± 0.80)
CLIP - CLIP 0.648 0.9999 0.953 96.55 (± 1.29)

Table 2: Results of the alignment analysis between image and word embedding spaces across all concepts. Except for the last
row, all the word embedding spaces used in the analysis were from GloVe.

high alignment correlations and strengths tend to achieve high
recovery accuracies, as exemplified by the self-supervised
ViT models, each surpassing 95% recovery accuracy. This
consistency underscores the effectiveness of high alignment
in recovering accurate mapping in practical applications. Ad-
ditionally, models with lower alignment correlations not only
show reduced accuracy in recovering the true mapping but
also exhibit greater variability in their effectiveness as a
method for identifying the correct mapping system.
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Figure 1: Within domain alignment correlations across mod-
els. The gray dotted line represents the alignment correlation
obtained from the untrained ViT.

Within Domain Alignment Examining the alignment cor-
relation within each domain reveals that the vehicles domain
consistently exhibits a high degree of alignment across all
models, as detailed in Figure 1. Remarkably, this pattern
holds true even for the untrained ViT, which shows signifi-
cant alignment within the vehicles domain.

Comparing within-domain alignment to overall concept
alignment highlights that CLIP embeddings maintain strong
alignment both within individual domains and across the en-

tire concept system. In contrast, self-supervised models,
while displaying somewhat weaker within-domain alignment
as compared to other models, achieve high overall alignment.
This suggests self-supervised models might excel at iden-
tifying cross-domain relationships, enhancing their general
alignment level.

Qualitative Analysis As shown in Figure 2, a dendro-
gram based on GloVe word embeddings revealed structural
insights into the word embedding space. The hierarchical
clustering indicated four distinct domains (Birds, Mammals,
Fruits&Vegetables, Vehicles). There was a notable mixing of
the Birds and Mammals clusters (also suggested by the simi-
larity matrix), reflecting their shared animal classification.

The t-SNE visualization of the word embeddings further
supported these findings. It depicted intersecting clusters of
Mammals and Birds, while clearly separating the Vehicles and
Fruits&Vegetables domains.

Similar to the word embedding space, the clustering anal-
ysis of image embeddings, particularly using the ViT model
trained with DINO, also revealed a coherent cluster structure.
This may explain the high alignment correlation observed
earlier and is indicative of the ability of self-supervised mod-
els to discern cross-domain structures. The clusters showed
a high level of domain purity, with each primarily contain-
ing categories from the same domain. This result also sug-
gests a nuanced understanding of higher-order structures by
the vision model, even without explicit domain labels during
training, based only on learned visual similarity through self-
supervised learning.

Alignment Analysis - SAYCam-S Models
The alignment correlations derived from image and word
embeddings, obtained from models trained from scratch on
SAYCam-S, are lower compared to those observed in estab-
lished pre-trained models. To control for the effect of cate-
gory size, we randomly sampled 22 categories from the 80-
category dataset used in the previous section and conducted
the same set of alignment analyses. The alignment correla-
tion and strength levels of the pre-trained models on the 22-
category subset were consistent as before, yet accuracy cor-
relation and recovery accuracy dropped by 10-15% compared
to the values reported in Table 2.
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(e) Dendrogram for ViT-
DINO
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Figure 2: Qualitative analysis of the structures in the image and word embedding spaces, extracted from GloVe and ViT-DINO.

As detailed in Table 3, image embedding spaces from both
vision models trained on SAYCam-S each exhibit an align-
ment correlation of approximately 0.16 with the word embed-
ding space (for comparison, Vong, Wang, Orhan, and Lake
(2024)’s model trained on aligned SAYCam-S data achieves
0.37 on this test). This weak correlation, coupled with the
stronger correlations for the larger-scale models in the pre-
vious sections, highlights the challenges of finding unsuper-
vised alignment from SAYCam. Additionally, as indicated by
the low average recovery accuracy and high standard devia-
tion, alignment correlation is unable to guide accurate map-
ping between the systems.

Interestingly, substituting the LSTM word embeddings for
the 22 concepts in the Labeled-S dataset with GloVe word
embeddings yields an increase in both alignment correla-
tion and strength, as well as recovery accuracy. These met-
rics reach levels comparable to those of established models,
as outlined in Table 3. This enhancement suggests poten-

tial discrepancies between the embedding spaces of LSTM-
SAYCam and GloVe. Specifically, it appears that GloVe em-
beddings encapsulate more intricate structures that align more
closely with the visual space extracted from the SAYCam vi-
sion models.

Our qualitative analysis of embedding spaces derived from
the SAYCam models reveals some interpretable features
within the word embedding space—for example, the close
groupings of “hand” with “foot” and “floor” with “ground” as
indicated in the dendrogram in Figure 3. However, it is chal-
lenging to discern meaningful hierarchical structures, either
because of this limited set of categories (which were labeled
in Orhan and Lake (2024)) or the inherently nosier represen-
tations in models trained from a single child’s perspective.

Discussion
We highlight two contributions of our work. Firstly, by eval-
uating the unsupervised alignment across a range of estab-



Vision Model Language Model Alignment
Correlation

Alignment
Strength

Accuracy
Correlation

Recovery
Accuracy (%)

ViT-B/16 - SAYCam LSTM - SAYCam 0.166 0.748 0.318 26.82 (± 15.03)
ResNeXt - SAYCam LSTM - SAYCam 0.153 0.742 0.301 22.82 (± 14.87)
ViT-B/16 - SAYCam GloVe 0.460 0.978 0.703 60.64 (± 12.68)
ResNeXt - SAYCam GloVe 0.523 0.991 0.742 68.27 (± 10.26)

Table 3: Alignment Analysis between the image and word embedding spaces across 22 concepts in Labeled-S. Sources of the
embedding spaces are illustrated in the table.
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Figure 3: Qualitative analysis of the structures in the image
and word embedding spaces, obtained from LSTM-SAYCam
and ViT-SAYCam.

lished vision models and training methodologies, we validate
the degree of conceptual system alignment between vision
and language. Notably, self-supervised models demonstrate a
higher alignment correlation compared to supervised models
examined, whereas the robustness of such alignment against
random alternatives is less dependent on training methods.
Our results also demonstrate the effectiveness of high align-
ment correlation in guiding accurate mapping between sys-
tems. Secondly, our exploration of system alignment within
the context of human multi-modal learning—using embed-
ding spaces from models trained on a child’s everyday expe-
riences (SAYCam-S)—reveals a comparatively weak align-

ment. This observation suggests that more data, more induc-
tive biases, or more supervision are needed to establish align-
ment from realistic input.

The observed variance in the degree of multi-modal align-
ment, particularly between SAYCam models and established
models, may partly stem from the evaluation datasets un-
derlying the image embeddings. The inherently noisier na-
ture of the Labeled-S dataset poses challenges in generating
representative image embeddings. Unlike ImageNet, where
the focal object often dominates the image, Labeled-S im-
ages do not necessarily emphasize the labeled object, and
SAYCam-trained models are quite sensitive to background
features (Orhan & Lake, 2024). Additionally, the categories
in Labeled-S are broader than the categories in ImageNet
(“car” versus “jeep”), making it hard to form a representative
image embedding for each category.

Our results not only highlighted the importance of the
dataset characteristics used in alignment analysis, they also
underscore the significance of the data used to train the mod-
els when forming the embedding spaces on the first place.
The weak alignment among SAYCam models could also be
related to its limited training data, as compared to the large
dataset used to train those established vision and language
models, hinting at the necessity for more comprehensive data
to support unsupervised multi-modal alignment. Although
SAYCam captures everyday learning experiences, it repre-
sents only a fraction of our broader experiences, raising the
question of whether a more diverse and extensive sampling of
such input could bolster alignment.

In summary, our research outlines the necessary conditions
for successful unsupervised multi-modal alignment. Given
the challenges of unsupervised alignment from a child’s ego-
centric input, a key role for (even weakly and sparsely) super-
vised learning examples shouldn’t be dismissed. This study
also showed how many factors can influence alignment suc-
cess, including type and amount of data, model architecture,
and training methodology. We hope these findings will use-
fully guide future work on multi-modal alignment and how it
arises in cognitive development.
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