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Abstract

In order to learn the mappings from words to referents, children must integrate co-occurrence infor-
mation across individually ambiguous pairs of scenes and utterances, a challenge known as cross-
situational word learning. In machine learning, recent multimodal neural networks have been shown to
learn meaningful visual-linguistic mappings from cross-situational data, as needed to solve problems
such as image captioning and visual question answering. These networks are potentially appealing
as cognitive models because they can learn from raw visual and linguistic stimuli, something previ-
ous cognitive models have not addressed. In this paper, we examine whether recent machine learning
approaches can help explain various behavioral phenomena from the psychological literature on cross-
situational word learning. We consider two variants of a multimodal neural network architecture and
look at seven different phenomena associated with cross-situational word learning and word learning
more generally. Our results show that these networks can learn word-referent mappings from a single
epoch of training, mimicking the amount of training commonly found in cross-situational word learn-
ing experiments. Additionally, these networks capture some, but not all of the phenomena we studied,
with all of the failures related to reasoning via mutual exclusivity. These results provide insight into
the kinds of phenomena that arise naturally from relatively generic neural network learning algorithms,
and which word learning phenomena require additional inductive biases.

Keywords: Cross-situational word learning; Word learning; Concept learning; Multimodal neural net-
works; Mutual exclusivity

1. Introduction

Children effortlessly acquire the meaning of words from sparse and ambiguous sights and
sounds, estimated at a rate of around 10 words per day between when they start speaking until
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the end of high school (Bloom, 2002). How do children pull off this seemingly incredible, yet
ordinary feat? One candidate explanation that has received considerable attention in the lit-
erature is cross-situational learning: the mapping of words to their intended referents can be
determined by tracking the co-occurrences between words and their referents across multiple
individually ambiguous situations. Considerable evidence for cross-situational word learning
has been found in laboratory studies of both adults (Medina, Snedeker, Trueswell, & Gleit-
man, 2011; Trueswell, Medina, Hafri, & Gleitman, 2013; Yu & Smith, 2007) and children
(Halberda, 2003; Smith & Yu, 2008). In addition, research on cross-situational word learning
(and word learning more broadly) has led to a wide array of empirical phenomena and induc-
tive biases associated with this kind of learning, examining the circumstances under which
learners find it easier or more difficult to determine the underlying word-referent mappings in
ambiguous contexts.

Within cognitive science, different types of computational models have been proposed
to explain the mechanisms behind cross-situational word learning and to capture various
empirical phenomena. Computational models based on associative learning track the co-
occurrence statistics between words and referents across situations, typically taking the form
of pairwise counts or associative strengths (Fazly, Alishahi, & Stevenson, 2010; Kachergis,
Yu, & Shiffrin, 2012; McMurray, Horst, & Samuelson, 2012). A second class of models
instead takes a hypothesis testing-based approach, where models only consider a single word-
referent mapping at a time, and staying or switching hypotheses depending on if the observed
data are consistent with the hypothesis or not (Stevens, Gleitman, Trueswell, & Yang, 2017;
Trueswell et al., 2013). A third class of models uses Bayesian approaches to infer lexicons
(the full set of word-referent mappings) with high posterior probability, trading off between
a prior that favors a simple lexicon versus a lexicon that properly captures the observed data
(Frank, Goodman, & Tenenbaum, 2009; Yurovsky & Frank, 2015). These three model classes
successfully account for various behavioral phenomena, but they all share a common limita-
tion: They operate by encoding visual referents as discrete symbols rather than their raw
perceptual inputs, side-stepping a crucial aspect of how cross-situational word learning is
possible in the wild.

In this paper, we look to machine learning for potential solutions to this problem. Recent
advances have led to the development of multimodal neural networks that combine language
and vision information and can be trained from raw data such as images and text. These
networks are capable of learning a variety of vision and language tasks ranging from image
captioning (Xu et al., 2015), visual question answering (Antol et al., 2015; Johnson et al.,
2017), and grounded language learning (Hill, Clark, Hermann, & Blunsom, 2020).1 One con-
sequence of these successes is the intriguing possibility that multimodal neural networks are
effectively performing large-scale cross-situational word learning and are capable of doing so
from naturalistic data. Additionally, their ability to generalize to new exemplars suggests that
they may address some of the shortcomings of symbolic, count-based approaches.

Despite the application-driven successes of multimodal neural networks, it is unclear how
these approaches would fare as accounts of psychological processes. Which empirical phe-
nomena from the cross-situational word learning literature can they explain? Although pre-
vious researchers have explored similar questions, they have typically focused on just one or
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two phenomena. For example, Chrupała, Kádár, and Alishahi (2015) evaluate their model on
measures of word similarity. Other work explores individual phenomena such as fast map-
ping (Hill et al., 2020; Lazaridou, Bruni, & Baroni, 2014) or mutual exclusivity (Gulordava,
Brochhagen, & Boleda, 2020). Moreover, each of these studies differs in the architectures
and training procedures used, suggesting the need for a more comprehensive and standard-
ized account of what these models are capable of.

We simulated two different kinds of multimodal neural networks and their ability to capture
a wide range of key phenomena in cross-situational learning. We base our modeling efforts
on existing, successful architectures in machine learning and natural language processing,
examining the extent to which they capture empirical phenomena out of the box. Since these
methods were developed for machine learning applications rather than cognitive modeling,
it would be entirely unexpected if these models were to provide a complete account of the
behavioral phenomena we consider (indeed, they do not). Instead, our goal is to better under-
stand which kinds of word learning phenomena naturally emerge from this powerful model
class, and which ones require additional mechanisms or inductive biases.

Overall, our results show that the two multimodal neural networks presented in this work
can be trained in an online fashion and reach similar levels of accuracy as humans do from
only a single epoch of training. Their apparent sample efficiency is quite surprising, consider-
ing that neural networks are notoriously data hungry (Geman, Bienenstock, & Doursat, 1992;
Lake, Ullman, Tenenbaum, & Gershman, 2017) and that other associative models require far
more training for successful learning (McMurray et al., 2012). We also find that these net-
works successfully capture a diverse set of phenomena from the literature, and yet they fail
to capture a number of phenomena linked to mutual exclusivity. Although our results pertain
most directly to the two networks used in our simulations, we believe these results are a repre-
sentative, though not exhaustive, account of how simple multimodal networks fare as models
of cross-situational word learning.

2. Model

2.1. Experiment

We start by introducing the standard design of a cross-situational learning experiment,
laying out the kind of inputs to be passed into a multimodal neural network to train it, as
well as how it will be evaluated. An example cross-situational word learning experiment
is shown in Fig. 1a. During the training phase as shown in the top-left panel, participants
are presented with multiple referents alongside multiple words on a single trial (either as
text or heard through speakers), where there is ambiguity between which words map onto
which referents on each trial. However, as seen in the two training trials displayed, the word
“Toma” occurs twice in conjunction with the same referent (a set of colored balls) in both
trials, suggesting that this is what the word “Toma” refers to. Participants then take part in an
evaluation phase as shown in the top-right panel of Fig. 1a, where their knowledge of word-
referent mappings is tested. Each of the words presented during training is tested individually
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Fig. 1. The training and evaluation setup for various cross-situational word learning experiments. Starting at the top
(a), the standard cross-situational word learning experiment involves presenting participants with a set of words
and a set of objects per trial during training (with ambiguous alignment) and testing them on their knowledge
of each word-referent mapping at evaluation time. In the fast mapping setup (b; Experiment 2), participants are
presented with one or a few trials of a novel word-referent pair in an unambiguous fashion and evaluated on
their ability to retain this mapping based on a limited number of presentations. In the mutual exclusivity setup (c;
Experiment 3), participants are presented with a single ambiguous trial of a novel word-referent pair alongside an
existing referent and evaluated on their ability to infer that the novel referent is associated with the novel word.
Finally, in the exemplar generalization setup (d; Experiments 6 and 7), participants are trained exactly like the
standard cross-situational learning experiment, but during evaluation time they are tested on visually similar but
distinct exemplars to the learned word-referent mappings. The correct referent for each case is highlighted with a
green border in each experiment type.

(and perhaps multiple times) by presenting a single target word, such as the word “Toma,”
alongside an array containing the target referent and a number of foil referents. Accuracy for
the evaluation phase is calculated by averaging the number of correct selections of the target
referent during the evaluation phase and is used as a measure of the number of word-referent
mappings learned.

This particular experimental paradigm has been the dominant approach to the study of
cross-situational word learning in both children and adults (Smith & Yu, 2008; Yu & Smith,
2007), as it attempts to isolate the problem of cross-situational learning to its core of
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Fig. 2. The scene-caption multimodal neural network. On each trial, the set of images x and the set of words
w are passed into the image and word encoders, respectively, producing a set of image and word embeddings
(v, u). Separately, we randomly sample from memory a previous set of image and word embeddings (v′, u′). A
triplet-based contrastive loss function is employed to bring the image and word embeddings from the current trial
closer together (green arrows), while separating the image and word embeddings from separate trials (red arrows).
Over the course of training, the network learns to encode images and words to produce multimodal embeddings
in a manner that can disambiguate the underlying word-referent mappings. The object-word network differs by
performing the contrastive loss over individual object-word pairs, rather than across the full scene.

determining the correct mappings of words to a set of referents. In particular, it simplifies
some other aspects of the word learning problem: the various referents are presented as dis-
tinct objects, and the spoken language is simply a list of labels. Therefore, participants do not
need to perform object detection to determine the available referents in a given scene nor do
they need to extract object names from naturalistic speech.

2.2. Architecture

This section outlines the details of the multimodal neural network architectures used in this
paper, describing how they can discover word-referent mappings from ambiguous presenta-
tions of multiple images and words. An overview of our method is shown in Fig. 2.

On each trial, the network receives as input a set of images x = [x1, . . . , xN ] and a set of
words w = [w1, . . . , wM], where N is the number of images and M is the number of words.
The network encodes images using an image encoder fθ and words using a word encoder
fφ , mapping images and words, respectively, into a shared multimodal embedding space
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consisting of d-dimensional vectors.2 Over the course of training, images and words will
be encoded into this shared representational space that disambiguates word-referent pairs,
despite the inherent ambiguity present in each trial.

The image encoder consists of a VGG-16 convolutional neural network (CNN) pre-trained
on ImageNet (Simonyan & Zisserman, 2014), with the classifier head removed and replaced
with a non-linear projection head consisting of two fully connected layers (with a Rectified
Linear Unit (ReLU) non-linearity in between) to map images as d-dimensional vectors.3 The
convolutional head of the image encoder is frozen, and only the projection head is learned
in our network. Since the classifier head is removed and replaced with a learned projection
head, this means that the output of the image encoder does not output a discrete category
classification, but rather a distributed embedding representation. The image encoder is applied
to each image on a given trial as follows:

vi = fθ (xi), (1)

where vi ∈ R
d . Similarly, the word encoder consists of a single word embedding layer, such

that each word is mapped to a d-dimensional vector as follows:

u j = fφ (w j ), (2)

where u j ∈ R
d . The set of image embeddings is denoted as v = [v1, . . . , vN ] and the set of

word embeddings as u = [u1, . . . , uM].
Given these two sets of embedding vectors, how does the network determine which words

map onto which referents in a given trial? Since the word embeddings are randomly initial-
ized, there is no relationship between a given word embedding to the corresponding image
embedding of its matching referent at the beginning of training. One popular choice is the use
of a contrastive loss function, which has been employed in a number of other recent multi-
modal architectures (Gulordava et al., 2020; Harwath et al., 2018; Lazaridou, Chrupała, Fer-
nández, & Baroni, 2016). Although our multimodal neural networks share many similarities
with previous approaches, the specific networks we use in the current paper have been simpli-
fied to allow these networks to be trained in an online fashion, mimicking the training process
humans undergo in cross-situational word learning experiments. In the remainder of this sec-
tion, we first provide a high-level description of how the contrastive loss function works and
how it can learn word-referent mappings, followed by the additional technical details.

In supervised learning, the loss function reflects a network’s ability to correctly predict the
output but requires unambiguous labels to do so. On the other hand, contrastive loss functions
can work with weakly labeled data by telling the network which pairs of points should be
more similar to each other, and which pairs of points should be more dissimilar. In our case,
there is some connection between the words and referents that appear together on the same
training trial, and a contrastive loss can use this as a learning signal to embed these entities to
be more similar to each other. On the other hand, the set of words from one trial typically bears
no relationship to the set of referents on a separate trial, and the contrastive loss can likewise
use this as another learning signal to embed these entities to be more dissimilar to each other.
Even though the similarity calculation in the contrastive loss occurs across all words and
referents for a given trial, the network is able to correctly discern the underlying word-referent
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mappings, the similarity calculations favor learning correct word-referent mappings as they
result in a lower overall loss compared to when incorrect word-referent mappings are learned.

To fully specify how the contrastive loss works, the next few sections cover the remain-
ing technical details: (1) How the network samples contrastive items to compare against, (2)
how similarity is computed between words and referents, and (3) how the contrastive loss
is computed.

Memory: In order to sample the contrastive items to compare against, the network has a
memory M = {(v1, u1), (v2, u2), . . .} that stores the set of observed word and referent embed-
dings from previous trials. On a new training trial, the network requires a set of contrasting
words and referents from a previous trial (v′, u′) to compare against the current embedded
words and referents (v, u). This is achieved by sampling a previous trial’s words and refer-
ents randomly from the memory of previous trials, for example, (v′, u′) ∼ M.4 Our model
performs a check to ensure that the set of words and referents from the sampled trial is
not exactly the same as the set of words and referents from the current trial, and if so, will
resample from memory until a proper mismatch is found. After each training trial, the net-
work updates its memory by adding the current set of words and referents to a new slot in
memory.5

Similarity: The similarity score determines how similar a given set of words is to a given
set of referents. For each word ui, we calculate the dot product between the word embedding
to all of the image embeddings. This dot product provides a scalar correspondence score for
any given word and any given image, where a higher score represents a higher correspondence
between a word and an image. We then take the maximum dot product for a given word for
all of the possible referents (capturing the idea that each word maps to a single referent),
and then apply this process across all of the other remaining words. The similarity score is
calculated by taking the mean across these maximal dot products per word,6 as shown in the
equation below:

s(v, u) = 1

M

M∑

i=1

max
v j∈v

(v j · ui). (3)

Contrastive loss: These two components are combined in the contrastive loss function,
which is comprised of three different similarity computations. First, the similarity between the
current set of matching words and referents in the current trial is computed: s(v, u). Second,
a previous trial’s embeddings are sampled from memory (v′, u′) ∼ M. We then compute two
additional mismatching similarity scores, by pairing either the current set of words with the
previously observed set of referents s(v′, u), or the current set of referents with the previously
sampled set of words s(v, u′). Then, the contrastive loss function can be specified via the
following equation:

L(θ, φ) = max(0, s(v′, u) − s(v, u) + η)
+ max(0, s(v, u′) − s(v, u) + η).

(4)
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The loss function contains one hyperparameter η corresponding to a margin variable, which
we set to be 1 in all of our simulations. This margin hyperparameter means that for a given
matching pair s(v, u) and a mismatching pair s(v′, u), the network will adjust their embed-
dings such that the matching similarity score is at least η larger than the mismatching simi-
larity, s(v, u) > s(v′, u) + η. Any further separation does not further decrease the loss.

Initially, as the network has not learned to associate any words with its referents, the simi-
larities scores for the matching words and referents and the mismatching ones will be random.
Over the course of learning, as the network updates its representations of words and referents
on the basis of this contrastive loss function, it begins to correctly output higher similarity
scores for sets of words and referents that match and lower similarity scores for sets of words
and referents that mismatch. Thus, through this training process, it can acquire the correct
underlying word-referent mappings.

Response function: Once the network has been trained, we can evaluate the trained net-
work in the same fashion as a cross-situational word learning experiment. First, we present
the network with a single word w∗, and then an array containing the target referent and a
number of other randomly selected foil referents (x1, . . . , xN ). Second, the network sepa-
rately embeds the target word u∗ = fw(w∗), and each of the referents v = [v1, . . . , vN ] =
[ fθ (x1), . . . , fθ (xN )]. Finally, the network calculates the dot product for the target word
embedding against each of the referent embeddings and selects the corresponding referent
y with the highest dot product as follows:

y = arg max
i∈v

(u∗ · vi). (5)

2.3. Scene-caption network

We consider two slightly different variants of how the network combines the word and
referent embeddings on a given trial into this triplet-based contrastive loss function. The net-
work described in the above equations represents the scene-caption network, as the network
combines all of the available words (caption) and the available referents (scene) in a given
trial as input to the similarity function. This similarity function is closely related to the MISA
(max-image sum-audio) similarity function from Harwath et al. (2018), although the max
operation in our setup is performed over the set of possible referents rather than across differ-
ent patches within a single image.

2.4. Object-word network

We also consider a variant of this architecture, which we call the object-word network,
which computes all pairwise similarities between each word and potential referents instead
of aggregating across a scene as in Equation 3. That is, for each possible word-referent pair
(vi, u j) on the current trial, its dot-product similarity is calculated as follows:

s(vi, u j ) = vi · u j . (6)
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Likewise, the network then will randomly sample a previously observed word-referent pair
(rather than a scene-caption pair) from memory (v′

i, u′
j ) ∼ M, where M now stores previ-

ously observed object-word pairs rather than scene-caption pairs. Finally, the network uses a
modified version of the previous contrastive loss:

L(θ, φ) =
∑

vi,u j∈(v,u)

max(0, s(v′
i, u j ) − s(vi, u j ) + η)

+ max(0, s(vi, u′
j ) − s(vi, u j ) + η), (7)

summing over this contrastive loss for each possible for each potential object-word pair in a
given trial before a gradient update is performed. Thus, in a scene with two words and two
referents, there are four possible word-referent pairs and the network will calculate the com-
bined loss, each time sampling a new contrasting word-referent pair from memory to com-
pare to the current word-referent pair. Again, the model checks that the sampled mismatching
word-referent pair differs from the current word-referent pair, resampling if necessary. The
evaluation procedure for the object-word network is the same as the scene-caption network.

2.5. Dataset

The images we used for these simulations were chosen from the NOUN (novel object and
unusual name) database, consisting of 60 images depicting unusual objects that are commonly
used in word learning experiments (Horst & Hout, 2016). Each image was resized to 224 ×
224 pixels to match the required input size to the image encoder, and the output after passing
an image through this encoder was a 64-dimensional embedding vector. A subset of images
from the NOUN database are depicted in Fig. 2. The inputs to the word encoder are random
indices for each unique word, resulting in a 64-dimensional vector representing each word
from the word encoder, the same dimensionality as the visual embedding.

2.6. Training

For the majority of our simulations, we report results of our networks trained in an online
manner. On each trial, a single set of matching words and referents is presented to the net-
work, a mismatching set of words and referents is sampled from memory, and the network’s
parameters are updated via a contrastive loss function, as shown in Fig. 2. Additionally, the
network was only trained for a single epoch, updating its parameters only a single time for
each trial. This training procedure mimics the trial-by-trial learning found in cross-situational
learning experiments, in contrast with standard, epoch-based training where the network
cycles over the data many times. Despite the very limited nature of the training data and
parameter updates—compared to previous associative models of cross-situational word learn-
ing (McMurray et al., 2012) and neural networks more generally (Geman et al., 1992)—we
observe that our networks can indeed uncover the underlying the word-referent mappings.

All of our networks were trained using stochastic gradient descent, with a learning rate of
0.01. The results of each condition within each simulation were averaged across 20 indepen-
dent runs, randomly selecting the subset of images from the NOUN database presented to the
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model in each run. This ensured that the resulting number of word-referent mappings learned
by the network was not a by-product from any specific set of images from the database.

3. Experiments

In this section of the paper, we catalog the range of experiments we conducted with these
two multimodal neural networks. We selected a broad range of empirical phenomena related
to cross-situational learning and word learning. Although we covered a large range of phe-
nomena, this is not meant to be an exhaustive list, and it would be valuable for future work
to examine how well other multimodal neural networks with additional inductive biases or
learning mechanisms could capture other aspects of cross-situational learning.

The seven simulations we investigated were (1) referential ambiguity, (2) fast mapping, (3)
mutual exclusivity, (4) relaxation of mutual exclusivity, (5) learning from Zipfian distribu-
tions, (6) exemplar generalization, and (7) learning visual representations from scratch. For
each simulation, we first describe the key empirical phenomena. We then present simulation
results from both network types, examining whether they can reproduce the critical behav-
ioral findings.

As mentioned, we had no expectation that these multimodal neural networks would cap-
ture all of the phenomena under consideration. Indeed, our aim is to catalog which findings
are captured and which are not, given straightforward machine learning approaches that work
at scale and address practical applications. To foreshadow our results, we find that the net-
works capture four out of the seven phenomena. Additionally, the three remaining phenom-
ena the networks are unable to capture are all linked to mutual exclusivity. We address the
implications of our findings in the respective sections covering these simulations and in the
general discussion.

3.1. Experiment 1: Referential ambiguity

In the first set of simulations, we investigated whether or not our two multimodal neural
networks could capture the referential ambiguity effect. This phenomenon refers to the degree
of uncertainty for which words map onto which referents in a given scene. Increasing the
number of words and referents in a given scene increases the number of potential mappings
between words and referents to consider. Therefore, the increased uncertainty of determining
which words map onto which referents reduces the likelihood of learning any given word-
referent mapping (Yu & Smith, 2007). The training setup from the top-left panel of Fig. 1
illustrates learning with two objects and two referents per scene for example.

This phenomenon was empirically demonstrated in Experiment 1 from Yu and Smith
(2007), where adult participants were presented with 18 different word-referent mappings
in a standard cross-situational word learning experiment, as illustrated in the top-left panel of
Fig. 1. Each word-referent mapping was presented six times over the course of training, where
the degree of referential ambiguity was controlled by showing participants either two words
and two referents (2 × 2), three words and three referents (3 × 3), or four words and four
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Fig. 3. Referential ambiguity simulation results. Our results show that both neural networks exhibit decreased
accuracy with increasing referential ambiguity in scenes. Additionally, we find that accuracy across the referential
ambiguity conditions is comparable to humans even from a single epoch of training. The dotted line represents
chance accuracy, and error bars depict 95% confidence intervals.

referents (4 × 4) per trial.7 After training, participants’ knowledge of word-referent mappings
was evaluated by presenting them with a target word along with the target referent and three
other randomly selected foil referents and asking them to select the referent that matched
the given word, as depicted in the top-right panel of Fig. 1. The critical finding from this
study showed that the average number of word-referent mappings participants were able to
learn decreased with additional referential ambiguity. As shown in Fig. 3 (left), participants
learned 16 out of 18 words on average when trained on two-words two-referents. In contrast,
they learned 13 out of 18 when trained on three-words three-referents, and 10 out of 18 when
trained on four-words four-referents.

Simulation: The networks were trained in a manner that matched the experimental
designs, in terms of the number of presentations for each word-referent mapping (six pre-
sentations each) as well as the number of words and referents per trial (two, three, or four
depending on the condition). During the evaluation phase, the referent selected by each model
was determined by the one whose dot-product similarity was highest for the target word on
each trial.

Results: In Fig. 3, we show results from the simulations with the scene-caption and
object-word networks alongside the behavioral findings from Yu and Smith (2007). As men-
tioned in the introduction, these results show that both multimodal neural networks are able
to learn a comparable number of word-referent mappings as humans from a single epoch
of training, despite receiving the same amount of trial-by-trial experience. We observed that
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accuracy in both models in the 2 × 2 condition was slightly lower than human performance
but was indeed comparable for the 3 × 3 and 4 × 4 conditions.

How do both our networks obtain such high accuracy even with such limited experience?
First, the contrastive loss function aims to adjust the image and word embeddings closer for
words and referents presented together on the same trial and further apart for words and
referents paired from different trials. Since the embeddings are high dimensional, there are
many feasible ways of adjusting the embeddings to align with the observed data. Furthermore,
because there is a consistent relationship between the true word-referent mappings, only a
handful of gradient updates that align these pairs may be sufficient to disambiguate between
correct and incorrect mappings.

In addition to achieving human-level accuracy, both networks also captured the referential
ambiguity effect, showing an increased difficulty in acquiring word-referent mappings when
additional words and referents at present on each trial. This is also consistent with the above
explanation. In situations where there is less referential ambiguity within trials, the embed-
dings will update to quickly disambiguate the true word-referent pairs. However, in situations
with higher referential ambiguity, the embeddings will stay consistent with multiple map-
pings, requiring more examples and more gradient updates to resolve the ambiguities present
from the observed data. A closer look at the attention maps as shown in Fig. 4 aligns with
this explanation, where low referential ambiguity situations like the 2 × 2 condition allow
the model to easily resolve almost all of the word-referent mappings in the experiment with
a single epoch of training. However, higher referential ambiguity means that the correspon-
dence scores for each word are more diffuse to the set of referents, highlighting the increased
uncertainty of determining the correct word-referent mappings. Furthermore, we also see that
training the model for additional epochs allows the model to resolve almost all of the word-
referent pairs regardless of the degree of referential ambiguity.

3.2. Experiment 2: Fast mapping (retention)

The second set of simulations we conducted looked at whether a multimodal neural net-
work can retain the knowledge of word-referent mappings from a small number of exposures,
as captured in studies from fast mapping (Carey, 1978; Carey & Bartlett, 1978). In a typical
fast mapping experiment, participants are first presented with either one or multiple instances
of a novel word and asked to choose from an array of referents which one they think the novel
word refers to (referent selection). At some point after the initial presentation, participants
are then tested on their knowledge of this novel word-referent pair and checking whether
they remembered this association (retention). It is this latter aspect of fast mapping that we
examine in this simulation, as referent selection is the focus of subsequent experiments.

Previous studies involving children show that children can flexibly map novel words to
novel objects via referent selection (Carey & Bartlett, 1978; Golinkoff, Hirsh-Pasek, Bailey,
& Wenger, 1992), with the ability emerging around the age of 24 months (Horst & Samuel-
son, 2008). However, there remains an active debate whether children can retain these fast
mapped words after this initial referent selection trial. In the original studies by Carey and
Bartlett (1978), children were able to retain a novel color word (“chromium”) when tested
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Fig. 4. Attention map visualizations for the scene-caption network from Experiment 1. Here, we show the resulting
attention maps after a single epoch of training, or after 20 epochs across the three referential ambiguity conditions.
Each row indicates the degree to which each word is associated with each referent based on the dot product (with
lighter colors indicating a higher correspondence and darker lowers showing a lower correspondence, and attention
values scaled uniformly to lie between 0 and 1). Our results show that after a single epoch, the network learns
more word-referent pairs when there is less referential ambiguity, but with sufficient training almost all pairs are
resolved.

again many weeks later after the initial training session. On the other hand, Horst & Samuel-
son (2008) showed that even after a 5-min interval children were unable to retain any of the
fast mapped words they had previously learned, except under conditions with ostensive nam-
ing events, where the experimenter provided the child with additional explicit instruction by
directly holding the target referent after each naming trial in a clear and unambiguous fashion,
to highlight that the novel word was linked with the novel referent, and not the other refer-
ents in the scene. Due to some of the experimental differences across these studies, we were
motivated to test our models ability to perform fast mapping under the simplest conditions,
focusing on a minimal number of unambiguous presentations.

Simulation: In our simulations, we examine whether multimodal neural networks can
retain the knowledge of word-referent mappings by testing the network’s ability to remember
the correct referent for a novel word with minimal experience. The setup for our fast mapping
simulations is illustrated in the second row in Fig. 1B. The first aspect of training involved
presenting a single novel word-referent pair (“Toma”) in an unambiguous manner at some
point during training, such that the network only saw the novel word and the novel referent
together without any other referents. One point of departure from this setup relative to empir-
ical work studying fast mapping is that the presentations of the novel word-referent pair to
the model are unambiguous. This is closest to the ostensive naming procedure from Exper-
iment 2 of Horst and Samuelson (2008), and we chose to simulate retention via this design
(rather than including additional familiar referents), to first check that these networks could
indeed learn and retain word-referent mappings with minimal exposure.

We varied the number of times the network saw the novel word-referent mapping (1, 3, or
5 times), as well as the timing of the presentation of these unambiguous trials (either at the
start, middle, or end of training). As additional background training to the fast mapping trials,
the networks were also trained on 10 regular word-referent pairs, with individually ambigu-
ous trials consisting of two words and two referents. Each of these word-referent pairs was
shown six times each, matching the previous simulation, where our results showed that six
presentations were sufficient to reach a high degree of accuracy for learning word-referent
mappings. These regular word-referent mappings served as the familiar referents upon which
we tested whether our networks could demonstrate evidence of fast mapping. After the train-
ing phase, we evaluated whether the networks had retained the novel word-referent mappings
(Fig. 1B, right panel) by presenting the single novel word along with the novel referent and a
second foil referent (randomly selected from the set of 10 familiar referents observed during



W. K. Vong, B. M. Lake / Cognitive Science 46 (2022) 15 of 37

Fig. 5. Fast mapping simulation results. Both the scene-caption and object-word networks displayed evidence for
fast mapping, even from a single example, but only if presented at the middle or the end of training. A slight
benefit was observed for additional presentations for the object-word network too. However, in both cases, the
presentation of the novel word at the beginning of training before seeing any other scenes, resulted in a failure to
learn. The dotted line represents chance accuracy, and error bars depict 95% confidence intervals.

training), performing 20 separate evaluations per run. Accuracy was scored as the average
proportion the network selected the novel referent instead of the foil referent.

Results: Results for Experiment 2 are shown in Fig. 5. Our results show that both net-
works demonstrate retention in fast mapping, if the unambiguous novel word-referent pair is
presented at the middle or end of the training. Additionally, we see that even with a single
example, the network correctly selects the novel referent, matching some of the empirical
evidence that a single novel word used in a naturalistic context is sufficient for fast mapping
(Carey & Bartlett, 1978). Higher accuracy scores were observed by providing the object-word
network with additional unambiguous examples of the novel word-referent pair. These results
extend the findings from Experiment 1, highlighting that multimodal neural networks can pick
up word-referent mappings with minimal experience. One reason this may be accentuated in
this particular experiment is that the network is provided with unambiguous information for
a single word-referent pair, allowing the contrastive loss to adjust the network in a manner
that makes the novel word-referent pair distinct from what was observed in the background
training where other words and referents were presented together in an ambiguous fashion.

A failure was observed for both of these networks if the fast mapping trials were presented
at the very beginning of training, and neither network was able to perform above chance
during the evaluation phase. One explanation for this failure is a form of catastrophic for-
getting (French, 1999), where the additional word-referent mappings presented after these
initial presentations interfered with the existing knowledge of the novel word-referent pair. A
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second potential explanation is that since all of these unambiguous trials are presented at the
beginning of training, the networks cannot apply contrastive learning to learn the novel word-
referent pair because it does not have other examples to properly contrast against. Regardless,
this issue could be alleviated with some kind of additional experience replay mechanism
(McClelland, McNaughton, & O’Reilly, 1995), allowing the network to also sample pre-
viously observed trials as matching examples (rather than the current memory mechanism
which only samples mismatches).

This ability to retain words from fast mapping was also recently demonstrated in Hill et al.
(2020) in a more complex simulated three-dimensional environment where the agent was first
presented with a novel label (when fixating on a particular novel object), and in a room with
multiple other novel objects, and then afterwards asked to pick up the indicated novel object.
In contrast to our setup, the additional complexity of their environment required a more spe-
cialized multimodal architecture with multiple kinds of loss functions, as well as extensive
training via reinforcement learning before it could consistently demonstrate evidence of reten-
tion from fast mapping.

3.3. Experiment 3: Mutual exclusivity

For the third experiment, we explored whether multimodal neural networks capture mutual
exclusivity, the assumption that each object has a single label associated with it (Halberda,
2003; Markman & Wachtel, 1988). The setup for our mutual exclusivity simulations is illus-
trated in the third row in Fig. 1C. In a typical experiment, children are presented with one
familiar object and one novel object and asked to “Show me the Toma” (evaluation scene),
where “Toma” is a novel word. If children select the novel object over the familiar object,
they are applying the principle of mutual exclusivity: since the familiar object already has
a label, the child infers that the novel word must refer to the novel object.8 Reasoning by
mutual exclusivity has been widely observed in children, with experiments showing success
in this task as early as 17-month olds, with an increasing preference for mutual exclusivity as
children get older (Halberda, 2003).

Simulation: Our setup for examining mutual exclusivity is illustrated in the third row
of Fig. 1. Similar to the fast mapping simulations, both the scene-caption and object-word
networks were trained with a set of 10 background word-referent mappings with six presen-
tations for each word-referent pair, with two objects and two referents per trial. This set of 10
word-referent mappings served as the basis for the set of familiar objects in this experiment.

At the end of training, the networks were presented with a single mutual exclusivity trial
consisting of a single novel word, along with a novel referent and another randomly selected
foil referent (from one of the 10 familiar objects the network was already trained on). This
provides the network with ambiguous information about which one of the two referents the
novel word should be mapped to. This setup contrasts with the fast mapping simulation that
unambiguously introduced a novel word attached to a single novel referent, making the mutual
exclusivity task more difficult, where the model needs to recognize that the novel word should
be mapped to just the novel referent. For both of the networks, we treat the presentation of
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Fig. 6. Mutual exclusivity simulation results. We examined whether networks could learn a word-referent mapping
from a novel word presented ambiguously with a novel and familiar referent. Both networks showed a preference
for the novel referent when placed against other referents observed for training in the All condition, but for the
tougher Foil condition, only the scene-caption network showed a slight preference for mutual exclusivity. The
dotted line represents chance accuracy, and error bars depict 95% confidence intervals.

the novel word in an ambiguous setting as a training trial (and allow the network to perform
a gradient update), in order to reflect the typical “Show me the Toma” wording of the eval-
uation prompt.9 After this single mutual exclusivity trial, the network was evaluated for its
preference of mutual exclusivity in two different ways. In the All condition, the novel word
was paired with the novel referent and a randomly selected referent from training. In the
more challenging Foil condition, the foil referent was the familiar referent that appeared with
the network during the mutual exclusivity trial, and therefore success on these trials would
require the network to correctly infer that the novel word mapped to the novel referent and
not the foil referent that co-occurred with it. These two conditions were designed as different
measures for capturing the extent to which the two multimodal neural networks could display
a mutual exclusivity bias.

Results: The results of the mutual exclusivity simulations are shown in Fig. 6. Examin-
ing the results from the All condition, we find that both networks reliably selected the novel
referent compared to a randomly selected referent from the set of other learned word-referent
mappings. In the more challenging evaluation Foil condition, we do not observe a consistent
pattern of success. The scene-caption network demonstrates evidence of mutual exclusivity
on these trials, selecting the novel referent 75% of the time over the foil referent, while the
object-word network shows no preference to either the novel or the foil referent. However,
despite the success observed from the scene-caption network and the failure of the object-
word network shown here, under a wider range of configurations varying the learning rate
and degree of gradient clipping our results showed that mutual exclusivity could not be
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consistently demonstrated in either network, in contrast to the robust demonstrations of
mutual exclusivity in children and adults (Halberda, 2006). The additional results are pre-
sented in Appendix A. This lack of mutual exclusivity has been observed in other deep neural
network architectures looking at more traditional tasks such as classification (Gandhi & Lake,
2020), and it suggests that standard multimodal architectures do not capture mutual exclusiv-
ity reliably without additional mechanisms.

A recent paper by Gulordava et al. (2020) was able to reproduce the mutual exclusivity bias
using a model similar to the object-word network, but with slight differences in their training
procedure. In their setup, the model was allowed to sample the novel word or novel referent
as negative items in the contrastive loss during the background training process, providing
the model with implicit negative evidence that these novel items should not be associated
with any of the background words and referents. In contrast, in our setup, the gradient update
performed on the final ambiguous trial is the first time our networks obtain the relevant infor-
mation about the novel word and referent. However, it is not clear whether sampling the novel
word and referent pairs as negative items counts as true evidence for mutual exclusivity, as
they are no longer truly “novel” when they are presented on the final mutual exclusivity trial
like our setup. Another approach they explored to induce mutual exclusivity was adding an
extra pragmatic reasoning step into the referent selection mechanism, by comparing the novel
referent to all of the words in the vocabulary, in a similar manner to earlier work (Alishahi,
Fazly, & Stevenson, 2008). However, this step may have also been influenced by observing
novel items as negatives during the training process, suggesting that further work may be
needed to tease out when and where multimodal neural networks can consistently display
mutual exclusivity. In the next two simulations, we explore the need to capture mechanisms
such as mutual exclusivity during the learning process too.

3.4. Experiment 4: Relaxation of mutual exclusivity

The fourth simulation, we examined the relaxation of mutual exclusivity effect observed
in Kachergis et al. (2012), demonstrating that not only do people employ the principle of
mutual exclusivity to learn word-referent mappings but that they can also relax this principle
to endorse multiple mappings for a given word or referent when provided with sufficient
evidence to do so. A summary of the cross-situational learning task used in this experiment is
shown in Fig. 7.

First, during the early training phase, participants were trained on a trial drawn from a
set of six word-referent pairs (w1 − x1, . . . , w6 − x6), with two words and two objects per
trial. Second, during the late training phase, participants were trained on trials drawn from an
additional six word-referent pairs (w7 − x7, . . . , w12 − x12). In this second phase, some word-
referent pairs (e.g., w7 − x7) always co-occurred with another word-referent pair (w1 − x1),
suggesting that w1 and x7 are also paired in a secondary sense (likewise for w7 and x1). During
a subsequent evaluation phase, participants were tested on each word twice. The first test
asked participants to select the target referent for the word (w1), with its early referent as the
target (x1 shown, x7 not shown) and 10 other objects as distractors. The second test presented
the same word, but swapped the target object, so participants saw the same word (w1) but
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Fig. 7. Experimental design for the relaxation of mutual exclusivity simulations. Here, we simulated a subset of the
conditions in the original study from Kachergis et al. (2012). In the early training phase, participants learned six
early word-referent pairs, with two objects and two referents per trial, and six presentations of each word-referent
pair. During the late training phase, participants learned six late word-referent pairs, where each trial consisted of
an early word-referent pair always appearing with the same late-referent pair, and this was repeated either three,
six, or nine times. In the evaluation phase, participants were evaluated on the four possible word-referent pairings
possible from the set of matched early and late word-referent pairs.

now with the late referent as the target (x1 not shown, x7 shown) and 10 other distractors. This
process was mirrored for all of the late words. This evaluation design was chosen to examine
which of the four possible mappings between early and late word-referent pairs participants
would endorse (w1 − x1, w1 − x7, w7 − x1, w7 − x7). The number of presentations of both the
early pairs was varied between subjects (0, 3, 6, or 9), and late pairs (3, 6, or 9) were varied
within subjects.

Two critical findings emerged from this work. First, even after only three presentations of
the late word-referent pairs (always in conjunction with the same early word-referent pair),
participants showed high accuracy in selecting this pair (w7 − x7). Kachergis et al. (2012)
argued that this result can be explained as an inference using mutual exclusivity. As this pair
was always shown with w1 − x1, and participants would have learned this particular word-
referent mapping from the first phase of training, participants should be able to infer that
the new word (w7) should map onto the new referent (x7) through mutual exclusivity, rather
than endorsing the two possible mappings between the first and second phases of training
(w1 − x7 or w7 − x1) despite their patterns of co-occurrence. This provides evidence that peo-
ple can employ mutual exclusivity not just during evaluation with novel words (as shown
in Experiment 3) but also during the learning process itself as a means of quickly acquiring
new word-referent mappings. The second major finding was that as the number of presenta-
tions increased in the late training phase, participants began to display a relaxation of mutual
exclusivity. That is, in addition to endorsing w1 − x1 and w7 − x7 during the evaluation phase,
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Fig. 8. Relaxation of mutual exclusivity simulation results. The left panel shows the human results from Kachergis
et al. (2012), indicating that participants initially employed mutual exclusivity to exclude certain word-referent
mappings, and then gradually relaxed mutual exclusivity given a sufficient number of late pairs. However, the two
panels on the right show that neither of the two networks captures the same qualitative phenomena. The scene-
caption network shows an effect of mutual exclusivity for the early word-referent pair w1 − x1 but not for the
late pair w7 − x7. On the other hand, the object-word network learns all four possible mappings strongly, ignoring
any kind of mutual exclusivity. The dotted line represents chance accuracy, and error bars depict 95% confidence
intervals.

participants also increased their endorsements of w1 − x7 or w7 − x1, mapping each word to
multiple referents (rather than a single referent as the mutual exclusivity bias would entail),
although the proportion these cross mappings were selected were lower on average than the
true mappings. This pattern of results is displayed in the left panel of Fig. 8.

Simulation: We simulated a subset of the conditions from Kachergis et al. (2012) to
examine whether our two multimodal neural networks capture these findings; in particular,
whether they can use mutual exclusivity to aid cross-situational word learning, as well as
relax mutual exclusivity when provided with sufficient evidence during the late training phase.
More specifically, since there were no substantive differences between varying the number of
times each early pair was shown in the original experiment, we only considered the condition
where the six early word-referent pairs were shown six times each (and excluding the 0, 3,
or 9 repetition conditions). However, we varied the number of late word-referent pairs to be
either 3, 6, or 9 repetitions, and pairing each late pair with an early pair in the same manner as
the original experiment. Finally, the evaluation trials matched the original experiment, where
each word was presented twice alongside 11 possible referents to select from: once with the
early referent, but not the late referent, and then a second time with the late referent, but not
the early referent, and both cases alongside the 10 remaining referents. This allowed us to
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determine which of the four possible pairings between early and late word-referent mappings
the networks would endorse.

Results: The simulation results are summarized and compared with human behavior in
Fig. 8. Each plot shows the four possible word-referent mappings that are tested, with results
averaged across the six different early-late word-referent pair combinations. We find that both
networks capture some, but not all of the qualitative patterns of learning as humans in this
particular study, with both networks showing distinct preferences for each of the four types of
word-referent mappings that were evaluated. Both networks, but the scene-caption network
in particular broadly accounts for the same level of accuracy as humans in this experiment.

In the scene-caption network, we note a couple of patterns starting with the case with three
presentations of the late word-referent pairs. First, the accuracy of w1 − x1 is highest as this
was the least ambiguous word-referent pairing. On the other hand, the corresponding accuracy
for w1 − x7 is lowest indicating that the network was hesitant to form an additional mapping
to a second referent. With three presentations of the late word mappings, the network learns
both possible mappings (w7 − x1 and w7 − x7) equally well. The lack of a preference for
either w7 − x7 or w7 − x1 suggests that this network was not employing mutual exclusivity
during training by limiting mappings from one word to one referent, and where the greatest
divergence between human behavior appears. Finally, with additional presentations of the late
word-referent pairs, we find that the network’s preference for each of these four mappings
increases in line with human behavior.

In the object-word-network, a very different pattern was observed for both the results from
human participants and the scene-caption network. Even after three presentations of the late
word-referent pairs, the object-word network selected the intended referent for all of the four
word-referent mappings we evaluated, and this increased with additional presentations. Here
the differences between the two networks are more pronounced than in some of the ear-
lier simulations. We hypothesize that the similarity calculation in the scene-caption network
which aggregates across all of the words and referents, through the use of the max operator,
leads to different patterns of update where only the word embedding for the maximally active
referent is updated. On the other hand, in the object-word network, each potential word–object
pair in a given scene is considered a matching pair, and since the same early and late word-
referent pairs are matched for multiple trials, the network treats all of these pairs as equally
valid. This causes the network to update the embeddings to be consistent for all possible
pairings, regardless of whether they were observed early or late during training.

Overall, neither of the two networks captures the full set of trends found in the behavioral
results in Kachergis et al. (2012). However, both networks are capable of endorsing multiple
mappings without issue, indicating that their inductive bias towards mutual exclusivity may
be less strict or non-existent relative to humans. Leveraging mutual exclusivity during the
learning process may enable faster learning, but this study also demonstrates how models of
cross-situational word learning also need to accommodate cases when a single word maps to
multiple referents and vice versa, and our results suggest that neither network captures both
of these tendencies.
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Fig. 9. Learning from Zipfian distributions simulation results. The left panel shows the data collected from Exper-
iment Two of Hendrickson and Perfors (2019), showing that the Zipfian condition led participants to learn more
words for the subset of words whose frequency matched the uniform condition. Although the accuracy for the
Zipfian condition in the scene-caption network is comparable to human-level accuracy, its performance in the uni-
form condition is also equivalent, and thus does not qualitatively match the behavior of human participants. On
the other hand, the object-word network exhibited low overall performance, from the large amount of referential
ambiguity and the absolute number of words to be learned. The dotted line represents chance accuracy, and error
bars depict 95% confidence intervals.

3.5. Experiment 5: Learning from Zipfian distributions

The fifth simulation is based on a recent study by Hendrickson and Perfors (2019), com-
paring cross-situational learning between word-referent pairs that were distributed either uni-
formly or as a Zipfian distribution, showing a benefit for cross-situational word learning in the
Zipfian case to a uniform distribution. In the uniform case, each of the possible word-referent
mappings is presented the same number of times throughout training, akin to many of the pre-
vious simulations reported earlier in this paper. In the Zipfian case, a few word-referent pairs
are presented many times over the course of training, while the remainder of the word-referent
pairs is only presented a few times. This skewed distribution is intended to be more represen-
tative of real-world language learning, where children may hear some words many times and
others very infrequently. As shown in the left panel of Fig. 9, Experiment Two from Hen-
drickson and Perfors (2019) showed that participants in the Zipfian condition learned roughly
twice as many words as participants in the Uniform condition, when comparing words that
were matched in the frequency of presentation.10 Hendrickson and Perfors (2019) argued
that under a Zipfian distribution, the very frequent word-referent mappings would be learned
first. Then, on subsequent trials containing these easily learned words and referents, partic-
ipants could reason using mutual exclusivity to exclude these known words/referents when
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reasoning about unknown words/referents, effectively reducing the degree of referential ambi-
guity based on existing knowledge. On the other hand, under a uniform distribution, partici-
pants would be more limited in their ability to reduce the space of potential space of word-
referent mappings. Therefore, learners would have higher referential ambiguity throughout
the course of the experiment, leading to a decrease in word-referent pairs learned relative to
the Zipfian condition, which is what was empirically observed.

Simulation: In their experiment, participants learned 28 word-referent mappings, with
four words and four referents per trial.11 In the uniform condition, participants were shown
each word-referent mapping 10 times throughout the course of training. In the Zipfian condi-
tion, the most frequent word-referent pair appeared 62 times throughout the course of training,
the next most frequent word-referent pair appeared 33 times, and the 12 least frequent word-
referent pairs occurred five or fewer times. To generate trials for the Zipfian condition, we
randomly generated training trials consisting of four words and four referents that matched
the frequency counts from the Zipfian condition in the original paper for the 28 word-referent
pairs. Due to the skewed distribution in the Zipfian condition, mismatches are sampled from a
memory that is also distributed in the same Zipfian fashion. The evaluation phase consisted of
a challenging 28-way classification, testing each target word against all the potential referents
observed during training.

Results: A summary of the simulation results is shown in Fig. 9. We find that for the
scene-caption network, the accuracy in the Zipfian condition matches the qualitative and
quantitative aspects found in the human data, which is quite remarkable given the network
was only trained for a single epoch and the evaluation involved identifying the correct ref-
erent among 28 options. As expected, the network is more accurate on higher frequency
items. Moreover, the level of accuracy matches what we find in humans at the three levels of
frequency. This high level of accuracy arises because the process for sampling mismatched
scenes and captions will often involve these high-frequency items, providing a strong training
signal for these particular word-referent pairs. Despite these successes, this network does not
capture the critical finding showing a benefit for humans in the Zipfian condition compared to
the uniform condition for the words whose frequency of presentations were matched. Rather,
the performance in the uniform condition was equal (and better than human performance).
Instead of relying on mutual exclusivity to learn word-referent mappings, the performance of
the scene-caption network may be explained by the fact that it observed a sufficient number
of presentations to learn these word-referent pairs in both the Zipfian and uniform conditions,
regardless of the kind of referential ambiguity from other words and referents present on
each trial.

For the object-word network, we see a reversal in performance compared to Experiment 4.
Here, we find that performance of the network in both distribution conditions is low across
all frequency groupings, and surprisingly the most frequent items result in the lowest accu-
racy scores. Due to these discrepancies, the network fails to capture any of the qualitative
patterns from the human data in this experiment. Because the network considers all 16 pos-
sible pairings per trial as viable, one possible explanation for this network’s failures is that it
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learns multiple incorrect word-referent mappings due to the high level of referential ambigu-
ity. This is further enhanced as the process for sampling mismatches will be skewed towards
the high-frequency words and referents, but incorrectly paired with other referents or words
that co-occurred on previous trials.

3.6. Experiment 6: Exemplar generalization

In the sixth simulation, we examined whether multimodal neural networks could gener-
alize to visually similar referents. Although it is quite common in developmental studies to
examine generalization to novel exemplars of a word (Carey & Bartlett, 1978; Samuelson &
Horst, 2007; Taxitari, Twomey, Westermann, & Mani, 2020; Wojcik, 2017), previous models
of cross-situational word learning do not capture this form of generalization as referents are
symbolically encoded, bypassing the problem of generalization completely.12 This leads us
to question whether multimodal neural networks can naturally capture this kind of general-
ization to novel exemplars. Due to the limited number of words and referents used in all of
the previous simulations, one hypothesis for how multimodal neural networks is successful
is that they converge to something like a discrete code that matches words to referents, akin
to a symbolic encoding. Such a representation, however, would fail to generalize for novel
referents of a concept, as these may not necessarily map to the same discrete encoding for the
learned referent. Another hypothesis is that these networks instead learn a distributed repre-
sentation in a manner that satisfies the constraints of the contrastive loss function. In this sce-
nario, generalization to novel referents from an existing word-referent pair occurs as visually
similar referents are mapped close together in embedding space, in a manner that preserves
the strength of the correspondence score with the corresponding original word embedding. In
this simulation, we find that both multimodal neural networks we use to capture this kind of
generalization via their use of distributed representations, in line with the latter hypothesis.

Simulation: The setup for the exemplar generalization simulation is depicted in the bot-
tom row in Fig. 1D. For this simulation, training is the same as the basic cross-situational
learning procedure (Fig. 1A), where the model observes multiple words and referents per
trial, but multiple presentations of each word-referent pair across trials. However, during
evaluation, in addition to testing the word-referent pairs seen during training, the network
is also asked to classify novel exemplars of a concept (Fig. 1D). Concretely, we used a dif-
ferent subset of the NOUN database consisting of 30 images grouped into 10 categories with
three exemplars each, where each of the exemplars was similar in shape but varied by color
or texture. Despite the simplicity of the visual generalization demonstrated here, we were pri-
marily motivated to use the same kinds of stimuli that are often found in developmental stud-
ies of exemplar generalization (Twomey, Ranson, & Horst, 2014; Wojcik, 2017), rather than
more complex, naturalistic images from other work (Chrupała et al., 2017). The network was
trained on 10 word-referent pairs, using only one out of the three exemplars per category. Two
words and two referents were presented on each trial, with a total of six presentations for each
word-referent pair, matching the training setup for many of the previous simulations. During
the evaluation, the network was tested by pairing each target words with either the set of
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Fig. 10. Exemplar generalization results. The left bars show performance on the evaluation trials for the scene-
caption network, while the right bars show performance for the object-word network. Performance is separated
into the trials that evaluated the word with familiar examples of a concept (train) versus novel examples (gener-
alization). Both networks are easily generalized to novel examples with an accuracy comparable to the training
examples, although a slight performance advantage was observed in the scene-caption network relative to the
object-word network. The dotted line represents chance accuracy, and error bars depict 95% confidence intervals.

referents observed during training (train accuracy) presented alongside two other foil refer-
ents observed during training. Second, the networks were also evaluated using the held out
set of the two other referents for each category (generalization accuracy), presented along-
side two other novel foil referents from other categories, which controlled for the familiarity
of observed referents.

Results: A summary of the results is shown in Fig. 10. Both the scene-caption and the
object-word networks exhibit high accuracy on the evaluation trials, regardless of whether
familiar or novel exemplars of a category were evaluated, with slightly higher accuracy in the
scene-caption network. The networks were able to generalize existing learned word-referent
mappings to novel exemplars not seen during the training process, utilizing the fact that
the image encoder can map novel (but similar looking) visual referents in the embedding
space close to the embedding of the original referent, retaining a high similarity score to the
corresponding word embedding that was paired with the original referent. This result high-
lights a strength of distributed representations compared to purely symbolic models of cross-
situational word learning, and that it automatically emerges as a by-product after training.

3.7. Experiment 7: Learning multimodal representations without pre-training

In all of the previous simulations, we relied on a pre-trained CNN for the image encoder.
The visual representations were learned from another dataset and fixed throughout train-
ing, allowing the networks to focus on acquiring the word-referent mappings. In this final
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simulation, we train convolutional networks from scratch to explore whether useful visual rep-
resentations can be acquired solely through the process of cross-situational learning. Answer-
ing this question in the affirmative would provide evidence that the methods here need not rely
on pre-trained features obtained from fully supervised training (like all of the previous sim-
ulations); instead, it would provide a proof of concept for how these networks could account
for learning at larger scale, more naturalistic settings such as those experienced by children
during development. We also study, as in Experiment 6, how these networks generalize to
novel exemplars of a category. The next two parts of this section describe the dataset used to
train this network, followed by how the network architecture and training process was adapted
for these simulations.

Dataset: A much larger dataset than the NOUN database is needed to train a CNN from
scratch. For these simulations, we used MNIST (LeCun, 1998), a standard machine learning
dataset, consisting of 60,000 training examples and 10,000 test examples of 28 × 28 px
handwritten digits from 0 to 9. Based on these images, we created our own Multi-MNIST
training and evaluation sets. The training sets were generated by randomly sampling a certain
number of digits per scene from the original MNIST training set. The number of digits per
scene was either 2, 3, or 4, similar to the referential ambiguity simulations from Experiment
1. We also generated a matching caption specifying the digit labels (in a permuted order).
We varied the total number of exemplars presented during training—using either 480, 1,920,
4,800, 19,200, or 48,000 digit exemplars—thus, the total number of exemplars presented was
controlled regardless of how many digits were shown per scene.

The evaluation dataset was generated in a manner similar to previous simulations. We gen-
erated 100 distinct evaluation trials for each digit (so 1,000 in total). On each trial, the network
was presented with a target digit word alongside an array of digits from 0 to 9, each of which
was randomly sampled from the original MNIST test set. Similar to Experiment 6, the net-
work is tested on its ability to generalize to novel exemplars—as all the test images are new
to the network—providing a stronger test of the network’s generalization capabilities when
trained from scratch.

Network: The results in this simulation rely on a variant of the scene-caption network
used throughout this work, but with three notable changes.13 First, rather than using a pre-
trained VGG-16 CNN as our image encoder, a separate CNN was constructed and randomly
initialized. This CNN consisted of two convolutional layers (with 32 and 64 feature maps)
with ReLU non-linearities in between, and then followed by a single 2 × 2 max pooling
layer. This was followed by a layer of dropout, and a single fully connected layer, resulting in
an image embedding of size 128. For the word encoder, the digit labels were embedded using
a single embedding layer as before, but mapping the digit labels to word embeddings of size
128 to match the dimensionality of the image embeddings.

As the trial-by-trial performance was not of interest in this simulation, the network was
trained instead using minibatches (of size 256), as is standard practice. Due to this change,
mismatching examples for the contrastive loss were sampled from other scene–caption pairs
within the same batch, as is common in other papers employing a contrastive loss function
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Fig. 11. Learning representations from scratch. Results show the evaluation performance of a multimodal neural
network from scratch. We find that performance increases as the network is provided with more examples during
training, while the same qualitative decreases occur with greater referential ambiguity. However, networks trained
with the maximum number of scenes achieved close to perfect performance, showing that these networks can be
trained from scratch given enough data. The dotted line represents chance accuracy, and error bars depict 95%
confidence intervals.

(Harwath et al., 2018), and removing the need for a memory mechanism as used in previous
simulations. Finally, all of the networks were trained for 10 epochs using the Adam optimizer
with a learning rate of 1e-4.

Results: The results from this experiment are shown in Fig. 11. Overall, the network
is successful at solving the cross-situational word learning problem via a randomly initial-
ized CNN but also reveals a number of other interesting findings. First, it can acquire visual
representations from scratch that generalize well to novel exemplars in different categories,
even in the condition with the fewest number of examples. Second, regardless of the degree
of referential ambiguity, evaluation accuracy approaches perfect performance as the number
of training examples increases. This provides strong evidence that these multimodal neural
networks can indeed be trained from scratch entirely from trials that are individually ambigu-
ous, learning to resolve cross-situational mappings and generalize to novel exemplars (Lewis
& Frank, 2013). Finally, the degree of referential ambiguity affected evaluation accuracy in
the same manner as observed in behavioral findings (Yu & Smith, 2007) and simulated in
Experiment 1. Notably, this referential ambiguity effect attenuates when more examples are
provided during training and model accuracy approaches ceiling.
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Other work has also demonstrated the ability of multimodal neural networks to learn
visual representations from scratch with different kinds of training. For example, Harwath
et al. (2018) showed that a similar contrastive learning method between paired images of
visual scenes and speech descriptions could be used to train a CNN from scratch. Another
paper from Desai and Johnson (2020) showed that performing an image captioning task
(predicting a language description for a given image) was also effective for training a CNN
from scratch and demonstrated strong performance on a number of downstream tasks after
this pre-training procedure. Our results and these other findings suggest a distinct advan-
tage for multimodal neural networks over other classes of models for cross-situational word
learning. The scalability of this approach suggests that these models can not only capture the
learning of novel word-referent pairs in the lab by using a pre-trained CNN but also as a model
for cross-situational word learning during development, starting from a randomly initialized
CNN and jointly learning and aligning visual and language embeddings without any explicit
prior knowledge.

4. General discussion

In this work, we evaluated two different multimodal neural networks on a variety of cross-
situational word learning experiments, examining their ability to explain key empirical phe-
nomena from the psychological literature. Our primary motivation was to understand the
kinds of phenomena that emerge from training relatively generic neural networks on mul-
timodal data. Just as importantly, we want to understand which kinds of phenomena do not
naturally emerge from such an account, suggesting additional learning mechanisms or induc-
tive biases may be responsible for these behaviors in humans. Our approach is shared by a
number of other recent works using state-of-the-art architectures from machine learning to
provide insights into human cognition, such as using pre-trained models in categorization
(Lake, Zaremba, Fergus, & Gureckis, 2015; Peterson, Abbott, & Griffiths, 2018) and in the
language (Arehalli & Linzen, 2020; Manning, Clark, Hewitt, Khandelwal, & Levy, 2020).

Our investigation was instructive in understanding the capabilities of relatively generic
multimodal neural networks; they were able to capture four diverse empirical phenomena,
out of the seven phenomena we studied. Some of these phenomena have previously been
shown to be accounted for by other symbolic models (Fazly et al., 2010; Frank et al., 2009;
Kachergis et al., 2012; Yu & Smith, 2012). Moreover, the successes we observed in the last
two simulations involving exemplar generalization are something that traditional symbolic
accounts have had difficulty capturing. Our results show that exemplar generalization occurs
naturally as a by-product of using CNNs to encode visual referents, by embedding visually
similar images close together in representational space. Another advantage of these networks
is their ability to learn from a single epoch of stimuli presented in an online manner, matching
the amount of experience presented to human participants. This was a surprising finding to
us, but it appears to be in line with other recent findings using multimodal architectures that
employ a contrastive learning procedure for word learning; a single epoch of training can be
sufficient to disambiguate ambiguous word-referent mappings (Lazaridou et al., 2016).
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The failures we observed in some simulations do not imply that all other multimodal neu-
ral network architectures will perform identically. The two models we considered were, in
some sense, minimal instantiations of a contrastive learning account using multimodal neural
networks, and therefore our results imply a floor of performance for this class of models, not
the ceiling. Other work has explored ways this base model could be modified, such as adding
extra forms of attention or accounting for social interactions (Lazaridou et al., 2016), using
other kinds of similarity or loss functions, such as finding the optimal mapping between words
and referents on a single trial (Gulordava et al., 2020; Harwath et al., 2018), or increasing the
number of negative mismatches to contrast against (Oord, Li, & Vinyals, 2018; Radford et al.,
2021).

4.1. Failures relating to mutual exclusivity

We observed a striking qualitative discrepancy between human behavior and the models in
three of the seven simulations: in Experiment 3 (mutual exclusivity, except in limited cases),
Experiment 4 (relaxation of mutual exclusivity), and Experiment 5 (learning from Zipfian
distributions). Despite the differences between simulations, there was a correlated failure
mode: neither network seemed to utilize mutual exclusivity in a manner similar to humans.
Both networks showed evidence of cross-situational learning in these tasks, but key behavioral
findings were not evident in either of the networks. The failures of the object-word network
appeared to be more pronounced than the scene-caption network, displaying less human-like
responses for all three of these simulations.

In each of these three simulations, it has been argued that the principle of mutual exclu-
sivity is employed by humans to solve these tasks (Halberda, 2003; Hendrickson & Perfors,
2019; Kachergis et al., 2012). In Experiment 4, participants leveraged knowledge about prior
learning of the word-referent mapping w1 − x1 to quickly form a new mapping for the late
word-referent pair w7 − x7, even though the raw co-occurrence counts were equally consistent
with other hypotheses. In Experiment 5, participants used the knowledge obtained from fre-
quent word-referent pairs in the Zipfian condition to reduce the referential ambiguity on later
trials, again applying the assumption of mutual exclusivity to do so. This commonality across
these three experiments suggests that solving the singular problem of building an inductive
bias for mutual exclusivity into the learning process for these networks may be sufficient for
capturing all three of these results, rather than requiring distinct architectural changes for each
of these three phenomena.

Reasoning by mutual exclusivity remains a challenge for standard deep learning architec-
tures, despite the promised benefits of incorporating this inductive bias. Earlier computational
accounts of cross-situational word learning proposed multiple mechanisms to handle mutual
exclusivity, via inductive biases for novelty (Kachergis et al., 2012) or by applying Bayesian
inference over a prior that favors simpler lexicons (Frank et al., 2009). However, these earlier
computational accounts rely on the symbolic encodings of referents that implicitly encode
novel referents as distinct entities from familiar referents, a procedure that cannot be easily
translated to how multimodal neural networks embed words and referents into a continuous
multidimensional embedding space. In particular, having a learnable word embedding for
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each novel word that is distinct from other word embeddings would likely be insufficient to
produce mutual exclusivity, as the novel word embedding would also need to produce a corre-
sponding similarity score for any possible novel referent and not any of the observed referents.

In recent work, Gandhi and Lake (2020) showed that many architectures actually have a
bias against mutual exclusivity. Given a novel input, networks tend to respond with a famil-
iar output response, rather than a novel output response. However, there have been some
successes in getting neural networks to demonstrate mutual exclusivity by training models
via memory-augmented meta-learning, allowing the networks to learn this inductive bias
(Lake, 2019; Santoro, Bartunov, Botvinick, Wierstra, & Lillicrap, 2016). Gulordava et al.
(2020) proposed more sophisticated referent selection mechanisms that incorporated prag-
matic reasoning, although their approach required that the novel word and novel referent to
be sampled as negative contrasting items. Furthermore, while each of these approaches can
utilize mutual exclusivity at evaluation time, the behavioral phenomena studied in Experi-
ments 4 and 5 suggest that people also apply mutual exclusivity during training too. One
potential avenue for future research would be to investigate how mutual exclusivity could be
incorporated as another learning mechanism during the training process, which could both
speed up word learning and enable more human-like patterns of cross-situational learning.

4.2. Associations versus hypothesis testing

One longstanding debate in cross-situational word learning is whether people learn word-
referent mappings in an associative manner or through hypothesis testing (Khoe, Perfors, &
Hendrickson, 2019; Yu & Smith, 2012). The manner in which our multimodal neural net-
works gradually update their representations of words and referents over time via contrastive
learning aligns more closely with associative accounts of cross-situational word learning
rather than hypothesis testing accounts (Fazly et al., 2010; Kachergis et al., 2012; McMurray
et al., 2012).

Yet, there is evidence that humans engage in forms of explicit hypothesis testing dur-
ing word learning (Berens, Horst, & Bird, 2018; Medina et al., 2011; Stevens et al., 2017;
Trueswell et al., 2013), suggesting that a fuller explanatory account of word learning would
require the addition of such mechanisms. One difficulty, however, is translating the kinds
of hypothesis testing mechanisms from these computational accounts to the framework pre-
sented in this paper. Existing hypothesis testing models are restricted to generating hypotheses
in a format that requires referents to be symbolically encoded (Stevens et al., 2017; Trueswell
et al., 2013), which means that existing models cannot be used with raw images straight-
forwardly. A plausible hypothesis testing account that could be integrated within a multimodal
neural network would need some other representational format that does not symbolically
encode referents, but would instead need to represent or generate hypotheses for words that
can flexibly deal with high-dimensional embeddings, like the outputs of our vision encoder.

4.3. Incorporating prior linguistic experience

Both of the multimodal neural networks we explored consisted of a pre-trained CNN as our
visual encoder (in all simulations besides the final one), and combined this with a randomly
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initialized embedding layer for the text encoder. Would there be any advantages to also using
a pre-trained text encoder in our simulations, such as word2vec (Mikolov, Chen, Corrado, &
Dean, 2013) or BERT (Devlin, Chang, Lee, & Toutanova, 2018)? We argue this is unlikely to
play a major role, for two reasons. First, cross-situational word learning experiments gener-
ally present participants with novel words rather than familiar words, and pre-trained models
would initially treat these novel words as random embeddings, exactly like our current setup.
Second, cross-situational word learning experiments also typically present the words in a
given trial as a disjoint set of words, rather than embedded in a natural language sentence,
removing any syntactic benefits a pre-trained model might be able to exploit to learn novel
word-referent mappings.

Nevertheless, there could be cases where using pre-trained linguistic or pre-trained multi-
modal models might confer some kind of benefit, especially as one considers the problem of
cross-situational word learning in more naturalistic contexts. For example, pre-trained mod-
els could be used to more closely model the exact natural language instructions provided to
children in these experiments, for example, “bring me the chromium tray, not the blue one,
the chromium one” (Carey, 1978). Models with pre-trained linguistic representations could
also take advantage of their knowledge of syntax to restrict the set of possible referents under
consideration, via processes such as syntactic bootstrapping (Gleitman, 1990).

4.4. Conclusion

In this work, we explored which word learning phenomena arise from relatively generic
multimodal neural networks trained on multimodal data, focusing on capturing the kinds of
phenomena found in human experiments with limited training of novel word-referent pairs.
Our main contribution has been to increase the number of simultaneous phenomena studied
and to perform a more comprehensive evaluation of the capabilities of multimodal networks
using the same training setup across multiple simulations. Nevertheless, some of the phenom-
ena we examined overlap with past work, including fast mapping (Hill et al., 2020; Lazaridou
et al., 2014; Lazaridou, Marelli, & Baroni, 2017) and mutual exclusivity (Gulordava et al.,
2020). Other multimodal architectures have also been used to study word learning phenomena
we did not consider such as the shape bias (Hill et al., 2020) and learning from child-directed
input (Lazaridou et al., 2016). Lastly, although we did not test the use of raw speech for this
work, other research has shown that neural network architectures can be applied to cross-
situational learning with raw speech instead of text using similar contrastive-based methods
(Chrupała et al., 2017; Harwath et al., 2018), suggesting that contrastive learning is a powerful
general-purpose tool to align cross-modal representations from raw sensory input.

One limitation of experimental approaches to cross-situational learning is the degree to
which the learning problem is simplified. In contrast, a child learning language is embedded
in naturalistic contexts that present multiple additional learning challenges. Other work has
explored this problem of scalability in a variety of ways, from early multimodal approaches
(Roy & Pentland, 2002), to more recent work using large-scale naturalistic headcam data
(Orhan, Gupta, & Lake, 2020; Tsutsui, Chandrasekaran, Reza, Crandall, & Yu, 2020) and
studying the ways in which children or machines play an active role in word learning
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(Gelderloos, Kamelabad, & Alishahi, 2020; Zettersten & Saffran, 2019). The fact multimodal
neural networks can be trained from scratch, as demonstrated in Experiment 7 and other works
(Harwath et al., 2018; Radford et al., 2021), suggests that these kinds of networks could be
further developed to provide a unifying account of artificial word learning in the lab and nat-
uralistic word learning in the wild (Meylan & Bergelson, 2021). Finally, while we attempted
to test a broad range of phenomena, our list was by no means exhaustive. Future work should
aim to examine other aspects of word learning not considered here, such as visual grounding
of referents from other kinds of lexical classes such as verbs and adjectives (Ebert & Pavlick,
2020; Nikolaus & Fourtassi, 2021).
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Notes

1 Other recent work has shown that these neural network approaches can also learn not
just from raw images and text but also raw images and raw audio (Chrupała, Gelderloos,
& Alishahi, 2017; Harwath et al., 2018), highlighting the flexibility of these networks
to form cross-modal representations with different combinations of modalities.

2 For all our simulations, we set d = 64, except the final simulation where we set d =
128.

3 Since the purpose of cross-situational word learning experiments is to focus on learning
the mappings between words and their referents, the use of a pre-trained visual back-
bone is intended as a rough proxy for the prior visual experience of participants per-
forming these tasks. However, Experiment 7 demonstrates how to jointly train a CNN
from scratch in this task, showing that using pre-trained representations are not required
with sufficient training data.

4 In all our simulations, we only consider the case where the model samples a single
mismatch. We explored the effect of sampling multiple mismatches in a subset of the
simulations, but we found no qualitative differences in results.

5 In general, contrastive approaches sample the contrastive items from the same mini-
batch rather than from an explicit memory, but because our networks are trained in
an online fashion with a single trial at a time, this necessitated the use of an explicit
memory mechanism to sample contrasting items.

https://osf.io/nh4jk/
https://osf.io/nh4jk/?view_only=e3355708e7104e6f9d4fb1f9c0a4cef3
https://osf.io/nh4jk/?view_only=e3355708e7104e6f9d4fb1f9c0a4cef3
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6 Although it is common in cross-situational word learning experiments to match the
number of words and referents per trial, this form of similarity allows some additional
flexibility in handling situations where the number of words differs from the number
of referents, like when the set of words is a sentence in natural language and not every
word can be mapped onto a visually grounded referent.

7 Because the experiment controlled for the number of presentations of each word-
referent pair, the three conditions each had a different total number of training trials
(54, 36, and 27 for the 2 × 2, 3 × 3, and 4 × 4 conditions, respectively).

8 Note that the ability to perform referent selection in fast mapping experiments can be
explained via the principle of mutual exclusivity, so the results of this section can also
be interpreted as whether multimodal neural networks can perform referent selection in
fast mapping (Carey & Bartlett, 1978; Horst & Samuelson, 2008), in addition to their
ability to display retention as observed in Experiment 2.

9 The prompt, as provided to children, implies that one of the two objects corresponds to
the new word “Toma.” Thus, the network is allowed a gradient update to incorporate
this information; otherwise, it would have no way of knowing whether or not “Toma”
refers to any object in this scene.

10 For our simulations, we only considered the ZipfianFrequency condition where the fre-
quency of words mattered, compared to the ZipfianLength condition where the word
lengths also varied according to a Zipfian distribution, as the difference between the
two conditions in the original work were quite minor and this would not have affected
either network’s predictions.

11 The original experiment had 32 word-referent mappings, but four of these were dis-
played once as check trials for human participants, which we excluded in our simula-
tions, resulting in 70 total trials rather than 71.

12 One such attempt to model this kind of generalization can be found in Lewis and Frank
(2013), where they used a Bayesian cross-situational word learning model (Frank et al.,
2009) combined with a model of Boolean concept learning (Goodman, Tenenbaum,
Feldman, & Griffiths, 2008), although in their model the features were still symbolically
encoded (but at the level of features rather than referents).

13 We did not explore the use of the object-word network for this simulation, as the previ-
ous simulations generally showed better performance with the scene-caption network.
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Fig. A1. Mutual exclusivity results. We further examined the effect of mutual exclusivity under different training
configurations for both networks, varying the learning rate (rows) or the degree of gradient clipping employed
(columns). Both models were also evaluated in the All and Foil conditions.

Appendix A: Mutual exclusivity
As shown in Fig. A1, we ran additional simulations looking at some other factors that influ-
enced whether a model would display evidence for mutual exclusivity. We varied both the
learning rate the models were trained on, as well as the amount of gradient clipping to apply.
In the All condition, where the model is presented with the novel referent and a randomly
selected familiar referent, both the scene-caption and object-word networks show a strong
preference for the novel referent. However, in the more challenging Foil condition where the
familiar referent was the one presented alongside the novel referent, we can observe that there
is a lot of variation in which referent the networks favor, and that results are not as consistent
across the different training configurations. We did not observe this kind of qualitative shift
in any of the other simulation results.


