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Young children develop sophisticated internal models of the world based on
their visual experience. Can such models be learned from a child’s
visual experience without strong inductive biases? To investigate this,

we train state-of-the-art neural networks on arealistic proxy of a child’s
visual experience without any explicit supervision or domain-specific
inductive biases. Specifically, we train both embedding models and
generative models on 200 hours of headcam video from a single child
collected over two years and comprehensively evaluate their performance
in downstream tasks using various reference models as yardsticks. On
average, the best embedding models perform at arespectable 70% of a
high-performance ImageNet-trained model, despite substantial differences
intraining data. They also learn broad semantic categories and object
localization capabilities without explicit supervision, but they are less
object-centric than models trained on all of ImageNet. Generative models
trained with the same data successfully extrapolate simple properties

of partially masked objects, like their rough outline, texture, colour

or orientation, but struggle with finer object details. We replicate our
experiments with two other children and find remarkably consistent results.
Broadly useful high-level visual representations are thus robustly learnable
from asample of a child’s visual experience without strong inductive biases.

Young children develop powerful internal models of the visual world.
Their visual abilities for object categorization'?, segmentation’ and
physical prediction* emerge well within the first year. By the time chil-
drenare4-5yearsold, their object recognition capabilities are already
mature enough that they can outperform highly capable computer
visionmodels in challenging real-world visual object recognition tasks
in head-to-head comparisons>®.

Isit possible to learn such powerful internal models of the world
from a child’s experience without strong, domain-specific inductive
biases? Versions of this ‘nature versus nurture’ question have been
debated for centuries”®, and they continue to shape our understand-
ing ofintelligence. Inthe last couple of decades, some developmental

psychologists hypothesized variousinnate inductive biases related to
objects, agents and space®*’, as well as biases governing the categoriza-
tionand labelling of objects'®". Others, on the other hand, argued for
the feasibility of building internal models of the world without such
inductive biases, relying instead on the richness of the developing
child’s experience®.

Here we approach this age-old ‘nature versus nurture’ question
throughamodernlens: weinvestigate what today’s highly generic deep
neural networks can learn from a representative sample of a child’s
egocentric visual experience. We train state-of-the-art self-supervised
learning (SSL) algorithms on a large-scale, longitudinal, developmen-
tally realistic dataset of headcam videos recorded fromthe perspective
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Fig.1|Schematic overview of the experiments. a, Example video frames

from longitudinal headcam recordings from one of the children in SAYCam®.

b, Training self-supervised embedding models. For purposes of illustration, only
aself-distillation type SSL algorithm is shown, where the high-level goal is to
learn representations that are similar across different views of the same image.

¢, Evaluating the self-supervised embedding models. We evaluate the learned
representations by training lightweight readouts on top of frozen features in nine
downstream classification or segmentation tasks. d, Training self-supervised

generative models. Frames are encoded into a spatially downsampled discrete
code with the help of an optimized codebook. An autoregressive transformer
modelistrained to predict the next tokenin the discrete code. e, Evaluating the
self-supervised generative models. The top half of an evaluation image is given as
context to the model. The model completes the bottom half of the image in the
latent space, and the model-completed latent code is decoded back to the image
space for evaluation.

ofindividual children”. The dataset comprises hundreds of hours of lon-
gitudinal, natural videos recorded over 26 months of early development.
Distinctive to our work, we train models on data from each individual
child, simulating the child’s learning problemas closely as possible. By
using highly genericarchitectures and learning algorithms, we seek to
understand what kinds of perceptual capabilities might be learnable
froma child’s visual experience without strong inductive biases.

We train image embedding models that can be used in a variety
of downstream visual recognition, segmentation, or detection tasks,
and generative models that can be used to generate images and assign
likelihoods to them. We quantitatively evaluate the capabilities of the
trained models, compare their performance against abattery of refer-
ence models and provide qualitative insightsinto the properties of the
learned representations.

Models

We train the two distinct types of models—embedding models and gen-
erativemodels—onarepresentative sample of achild’s visual experience.
Embedding models aimtolearn high-level visual features that are useful
foravariety of downstream visual tasks. Generative models cangenerate
novelimages (both conditional on agiven context and unconditionally)
and assign likelihoods to images, providing a complementary tool for
examining the acquired knowledge. Here we briefly describe the algo-
rithms, architectures, training and evaluation methodsrelating to these
models (Fig. 1). Methods provides additional details.

Embedding models

Self-supervised learning algorithms

SSL algorithms seek to learn useful, high-level representations from
adataset without using any explicit supervision signals like semantic
labels. Instead, they use augmented views of the training examples to
generate self-supervisionsignals (Fig. 1b). We train embedding models
with three different visual SSL algorithms: DINO**, Mugs® and masked
autoencoders (MAEs)™.

Model architectures
Since our goal is to address a question of learnability with minimal
inductive biases, we choose highly generic model architectures with

minimal inductive biases. In particular, we focus mainly onvision trans-
former (ViT) models”. We train models in three standard sizes: ViT-S,
ViT-B, ViT-L (with approximately 21 million, 85 million, 306 million
parameters, respectively), all with 16 x 16 patches. With DINO, we fur-
ther train ViT-B models with 14 x 14 patches, as well as a convolutional
ResNeXt-50 (32x4d) model'® with 25 million parameters.

The ViT models and the ResNeXt model incorporate two main
inductive biases: hierarchical composition and translation invari-
ance. These are very generic inductive biases quite different from
the stronger, more domain-specific inductive biases about language,
objects, agents, categories, or places that are sometimes hypothesized
by psychologists. The ResNeXt model incorporates a further spatial
inductive bias with its convolutional filters. Our implementation of
the ViT models, onthe other hand, uses learned position embeddings
thatareinitialized randomly, therefore the ViT models effectively start
out with no spatial inductive biases.

Training data

Our main goalis to evaluate what can be learned from a sample of the
visual experience of adeveloping child. To this end, we use the SAYCam
dataset®, alarge-scale, longitudinal dataset of natural headcam videos
recorded from the perspective of three young children (S, Aand Y)
between the ages of 6 to 31 months (Fig. 1a). The dataset contains 194
hours of video from S (6-30 months), 141 hours of video from A (8-31
months) and 137 hours of video from Y (7-24 months) for a total of 472
hours of video. Data from each child consist of a series of continuous
headcam recordings, usually 1-2 hours of recording per week. These
containbothindoor and outdoorrecording episodes. Videos are sub-
sampled at five frames per second, yielding 9 million frames across
three children. We train models on data from each child individually as
well as on the combined data (denoted as SAY below). Further details
regarding the dataset can be found in ref. 13.

Reference models

To compare SAYCam-learned representations with representations
learned from static photographic images, we train ViT-B/14 models
(with DINO) onImageNet" and randomly sampled subsets of ImageNet
(100%,10% and 1% of the training set). To compare SAYCam-learned
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representations with representations learned from other video data-
sets, we train ViT-B/14 models (with DINO) on 200-hour-long subsets of
Kinetics-700 (ref.20) and Ego4D* datasets (denoted as Kinetics-200h
and Ego4D-200h below). Kinetics-700 consists of very short YouTube
clips of people performing various actions, whereas Ego4D consists
oflong, continuous, egocentric headcam recordings from adults. We
finally consider arandomly initialized, untrained reference model
with the same architecture as the other reference models (ViT-B/14).

Evaluation

We use seven different classification tasks and two different semantic seg-
mentation tasks for evaluation (see Fig. 1c for the fulllist). Theseinclude
aclassificationtask based onalabelled subset of the data from child Sin
SAYCam (LabeledS),common object recognition (ImageNet) and image
segmentation (COCO) benchmarks as well as a place classification task
(Places365). Using a wide range of evaluation tasks and datasets allows
usto arrive at amore complete and robust picture of the overall quality
ofthelearned visual representations. To evaluate visual representations
learned exclusively through SSL, we use either completely non-parametric
evaluation methods or methods thatinvolve learning only asingle layer
of learnable parameters on top of frozen features (Fig. 1c).

Generative models

Self-supervised learning algorithm

Wetraingenerative autoregressive transformer models on childheadcam
data. Wefirstlearnadiscrete codebook with avector quantized generative
adversarial network (VQGAN)?? and then encode each video frame as a
spatial grid of integers from the codebook. These codes are then flattened
andfedintoagenerative pretrained transformer (GPT) model tolearna
prior over the video frames. The GPT modelis trained with the standard
autoregressive language modelling objective®, that s, predicting the
next token given all previous tokens in the flattened code (Fig. 1d). We
refer to the entire combined model asa VQGAN-GPT model.

Evaluation
We consider conditional generation tasks where we take evaluation
images, give the upper half of eachimage as context and ask the model
to complete the bottom half of the image conditional on the upper
half (Fig. 1e).

Results
Embedding models
Quantitative summary. Figure 2 summarizes the evaluation results of the
embedding models, singling out the effects of the SSL algorithm (Fig. 2a),
modelarchitecture (Fig.2b) and pretraining data (Fig. 2c) on downstream
task performance. In Fig. 2a-c, we normalize the performance on each
task by the performance of a ViT-B/14 model trained with DINO on all
of ImageNet, the overall best model. The DINO algorithm performs the
bestin our evaluations, withMugs comingin second and MAE third. Dif-
ferent model architectures perform similarly, except for ViT-S/16, which
performs worse than the other models. Given these results, we focus
most of our subsequent analyses on ViT-B/14 models trained with DINO,
whichis one of our best model and algorithm combinations overall.
Figure 2c compares the performance of SAYCam-trained mod-
els against each of the reference models described above. Figure 2d
further splits Fig. 2c into different evaluation tasks. On average,
SAYCam-trained models perform at 65-70% of a model trained on
the full ImageNet training set, and they are generally comparable
to a model trained with 10% of ImageNet (means + standard errors:
SAY:70.2% + 8.0%, S: 69.7% + 8.4%, A: 66.5% + 7.1%, Y: 64.5% + 7.2%,
ImageNet-100%: 100.0% + 0.0%, ImageNet-10%: 69.7% + 6.0%). Thus,
although SAYCam-trained models are exposed to a very different type
of data (less diverse, temporally extended, noisy headcam videos) than
the ImageNet-trained model, they are able to recover a substantial
fraction of the ImageNet-trained model’s performance.

All SAYCam-trained models substantially outperform the
untrained reference model with random features (Random:
18.6% + 5.7%). Differences across individual children in SAYCam are
relatively small (for example, only 3% relative difference between the
approximately length-matched AandY). Finally, the Ego4D-200h model
performs comparably to the models trained on A and Y and slightly
worse than the model trained on the approximately length-matched
S (Ego4D-200h: 65.6% + 7.1%), whereas the Kinetics-200h model
performs better than all SAYCam-trained models (Kinetics-200h:
74.5% + 6.7%), although the difference is surprisingly small given the
very different nature of the videos inKinetics-200h compared with the
videosinSAYCam or Ego4D (videos inKinetics-200h are much shorter
and more diverse in content).

The following qualitative analyses focus on models trained with
the headcam data from child S only. The results for the other two chil-
dren are qualitatively similar; they can be found in Supplementary
Figs.1-4.

Learning to localize semantic categories without location super-
vision. The semantic segmentation results in Fig. 2d (DAVIS-2017 and
COCO) show visual representations learned from a child’s headcam
dataare much better thanrandom representations atlocalizing seman-
tic categoriesin animage, given dense (pixel-level) semantic feedback.
These representations can also supportlocalizing semantic categories
without any explicit location feedback, using only information from
alinear classifier trained on a downstream classification task. The
last-layer feature maps of the model can be linearly combined with the
classifier weights for a given class, generating a class activation map
(CAM)*. Figure 3aillustrates CAMs for four different categories from
the Labeled S evaluation dataset. Qualitatively, the semantic localiza-
tion obtained from CAMs is reasonably accurate in many, though not
all, cases. Common failure cases include difficulties with localizing
smaller objects and overbroad activation maps that extend into neigh-
bouring objects or surfaces. Thismay be related to the relatively global,
background-sensitive nature of the representations learned by models
trained with the child headcam data, as discussed next.

Learning more global, background-sensitive representations. Vis-
ual representations learned from the child headcam datatend tobe less
object-centricand more sensitive to background and low-level surface
features (for example, contours) compared to ImageNet-learned repre-
sentations. Thisisillustratedin Fig.3b, which compares the mean atten-
tion maps (averaged over all attention heads) of ViT-B/14 models trained
onlmageNetand ontheheadcamdatafrom childS. These observations
are quantitatively supported by the performance of the models on
CORe50 (Fig. 2d), which evaluates the background-invariance of the
models’ object representations. Models trained with small subsets of
ImageNet are also less object-centric (Supplementary Fig. 8), suggest-
ing thatlearning object-centric, background-invariant representations
may require seeing the foreground objects against a sufficiently large
and diverse set of backgrounds.

Learning broad semantic categories without any labelled exam-
ples. A rich semantic structure emerges in the embedding space of
the models trained with the child headcam data. Figure 4 shows a
t-distributed stochastic neighbor embedding (¢-SNE) visualization
of the mean embeddings of the 1,000 ImageNet classes (estimated
over the validation set) obtained from a model trained on child S.
Classes belonging to the same broad semantic categories, such as
dogs, birds, reptiles, insects, vehicles, musical instruments, food,
clothing, and so on, tend to be clustered together in the embedding
space. Notably, the modellearns this structure automatically without
any labelled examples. This structureis either absent or much weaker
inthe embedding space of untrained, random models (Supplementary
Fig. 6; also see Supplementary Figs. 3-5 for embeddings from other
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Fig.2| Quantitative evaluation of the embedding models. a,b,c, The

effect of algorithm (a), model architecture (b) and pretraining data (c) on

the performance in downstream evaluation tasks. All scoresina, band care
relative to the ViT-B/14 model trained with DINO on all of ImageNet, our best
model overall. Error bars represent standard errors. In a, means and standard
errorsare calculated over n =3 x 4 x 9 =108 different combinations (3 models,
ViT-S/16, ViT-B/16 and ViT-L/16; 4 datasets, SAY, S, Aand Y; and 9 evaluation tasks),
represented by the individual grey dots. Inb, the algorithm s fixed to DINO

and the means and standard errors are calculated over n = 8 x 4 = 32 different
combinations (8 evaluation tasks, omitting DAVIS-2017; and 4 datasets). In ¢, the

algorithmis fixed to DINO, the model architecture is fixed to ViT-B/14,

and the means and standard errors are calculated over n =9 evaluation tasks.

d, Performance of SAYCam-trained models compared with the reference models
inall 9 evaluation tasks. Asin ¢, here we again fix the algorithm to DINO and the
model architecture to ViT-B/14. SAYCam-trained models are shown in orange;
models trained on other video datasets are shown in magenta; ImageNet-trained
models are shown in cyan; and the untrained reference modelis shownin green.
Dashed horizontal lines show chance-level performance for the classification
tasks. Note that performance is not normalized ind. acc., accuracy; J&F,

region and contour similarity; loU, intersection over union.

trained models). Interestingly, the semantic structure that emergesin
the embedding spaces of SAYCam-trained models is representation-
ally most similar to the semantic structure ina model trained with the
egocentric headcam data from adults (Ego4D-200h), followed by the
other models that perform similarly in the downstream evaluation
tasks (Supplementary Fig. 7).

Nearest neighbours reveal semantic structure in the embedding
space. Figure 5shows query images from the OpenImages V7 dataset®
(leftmost column) and their ten nearest neighbours in two different

embedding spaces. Retrievals from the embedding space of a model
trained with the headcam data from child S are often semantically
related to the queryimage (Fig. 5a). The failure cases usually preserve
some semantic relationships (for example, retrieval of horses, dogs,
or other animals for the bird query in the sixth row of Fig. 5a) or display
visual similarities with the texture or the overall shape of the object
depictedinthe queryimage (for example, the food item queriedin the
second row of Fig. 5a and the other food itemsretrieved in response to
it have similar visual textures and/or shapes). The retrievals from the
embedding space of an untrained, random model, on the other hand,
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Fig. 3| Qualitative evaluation of the embedding models. a, CAMs for four
different classes in Labeled S: basket, car, cat, foot. In each case, the top row
shows the originalimages, and the bottom row shows the corresponding class
activation maps. The class activation maps shown here are from a ResNeXt-
50 model trained with DINO on data from child S only. More examples can

be found at the accompanying code repository. b, Example images and the

corresponding attention maps (averaged over all attention heads) for ViT-B/14
models trained on all of ImageNet training set and on data from child Sin
SAYCam, respectively. The attention maps were computed with respect to the
cls token. Images from Flickr. Credits (left to right): Henry Zbyszynski, Franco
Vannini,John Hritz, sonder3, Lisa Zins.

seem to be primarily driven by the overall colour similarity between
the query and theretrieved item (Fig. 5b).

Generative models

Generative models offer an alternative and intuitive route to studying
learnability from a child’s visual experience, as their outputs can be
visualized directly. Here we use animage completion task to probe the
visual knowledge acquired by generative models trained on the child
headcam data. We provide the model with the upper half of animage
and generate the bottom half from the model with sampling. Figure 6a
shows different images (columns) from child Y’s data together with
completions generated by amodel trained on another child (child S) as
wellasamodel trained on all of ImageNet. Similarly, Fig. 6b shows dif-
ferentimages from the Konkle objects dataset and the corresponding

completions. All of these completions are ‘zero-shot’in that the mod-
els have not seen any examples from these datasets during training.
Although the model trained on child S can usually generate comple-
tions that match the colour, texture, orientation and rough outline of
the object (or objects) givenin the context (for example, the compass
in Fig. 6b; second image from the right), it is not very successful at
generating finer details of the objects (for example, itis not very good
atgenerating plausible looking legs for the dog in Fig. 6b). The model
trained onall of ImageNet, onthe other hand, is muchbetter at gener-
ating finer object details. We measure the quality of the completions
generated by different models through Fréchet Inception Distance
(FID) scores evaluated on two datasets under different conditions (see
Methods and Supplementary Table1). The FID scores broadly confirm
our qualitative observations. In particular, the model trained on all
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Fig. 4| t-distributed stochastic neighbor embeddings of the ImageNet
classes. The embeddings are obtained from a ViT-B/14 model trained with DINO
ondata from child S only. Each point corresponds to a different ImageNet class.
The class embeddings are computed as the mean embedding over all validation
images belonging to that class. Different colours represent 12 different super-

classes (indicated in larger font) extracted from the WordNet hierarchy. Five
classes are labelled individually for each super-class. For legibility, the other
classes are not labelled individually. The visualizations for models trained on the
other childrens’ data are qualitatively very similar (Supplementary Figs.3and 4).
More t-SNE visualizations can be found at the accompanying code repository.

of ImageNet consistently outperforms the SAYCam-trained models
on images from the Konkle objects dataset, although the generation
quality of SAYCam-trained models on this dataset can be improved
substantially with a small amount of finetuning.

Discussion

In this article, we investigated what state-of-the-art SSL algorithms
can learn from a sample of a child’s longitudinal, egocentric visual
experience without strong inductive biases. Our analyses reveal
both strengths and weaknesses of the representations learned from
achild’s visual experience with current SSL algorithms. On the one
hand, with the equivalent of a few weeks of visual experience only,
models trained with data fromindividual children already performat
65-70% of a high-performance ImageNet-trained model in a diverse
range of downstream evaluation tasks (Fig. 2). They can also learn to
localize semantic categories in animage without any explicit location
supervision (Fig. 3a), and they can learn broad semantic categoriesin
an unsupervised way (Fig. 4). Thus, despite substantial differences
between the visual experience of a developing child and the standard
datasets used for training state-of-the-art computer vision models?,
models trained with arealistic proxy of a child’s visual experience still

display highly non-trivial visual capabilities. These capabilities are also
surprisingly consistent across models trained on different childrenin
SAYCam (Fig. 2c; also see Supplementary Fig. 7), even with substantial
individual differences in the environments and behaviours of these chil-
dren®.Onthe other hand, these models seem to be less object-centric
than models trained with large-scale, photographicimage datasets like
ImageNet (Fig. 3b), and in generative tests with out-of-domain stimuli,
they seem to struggle with fine object details, even though they can
successfully extrapolate the texture, colour, orientation and rough
outlines of objects (Fig. 6).

In our experiments, we used reference models trained on dif-
ferent types of visual data to better situate the capabilities of the
SAYCam-trained models. Some of these reference models display
visual capabilities comparable to the models trained onindividual chil-
drenin SAYCam (Fig. 2c), for example, ImageNet (10%), Ego4D-200h,
even Kinetics-200h to some extent, despite substantial differences
between these visual data. Thisresult suggests a considerable degree of
robustnessinthe emergence of these general visual capabilities. Some
earlier works, on the other hand, emphasized the special properties
of child-centric visual data from a representation learning perspec-
tive””?°, Our results are not necessarily inconsistent with these studies;
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Fig. 5| Nearest neighbours in the embedding space. a,b, The leftmost column
shows six query images; the next tenimages in each row are the ten nearest
neighboursin theembedding space. Results froma ViT-B/14 DINO model trained
onchildS (a) and from arandom, untrained model with the same architecture (b)

Model trained on child S

Random model
10 nearest neighbours.
>4 .

r.\.A’ |

BN . ‘
are shown. Nearest neighbours are with respect to the Euclidean metric.
Both the query and the nearest neighbours are from the Open Images V7
dataset®. Detailed image credits can be found in Supplementary Table 2.

because we focused on relatively broad measures of performance in
our qualitative and quantitative evaluations, we cannot rule out more
fine-grained differences between the models that might be hidden
behind their comparable overall performance. However, isolating the
causes of such potential fine-grained differences would be difficult
inour case, as our reference datasets differ across many dimensions.

What are the implications of our results for the ‘nature versus
nurture’ question regarding the acquisition of basic visual capabili-
ties, such as real-world object recognition? Motivated by the early
emergence of some visual capabilities in infants, developmental

psychologists postulated various innate constraints related to objects,
agents, space and categories®** ™", hypothesized to be critical for subse-
quentlearning. However, arigorous computational test of these claims
requires considering both a sufficiently realistic proxy of a child’sactual
visual experience and powerful, generic, scalable learning algorithms
and models. Arguably for the first time in history, we now have both
ingredients, thanks to advances in the collection of large-scale longi-
tudinal developmental datasets like SAYCam™ and advances in deep
learning, giving us powerful generic learning algorithms and architec-
tures. Together with ahandful of other recent studies®**°~*, this work is
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a Image probes from child Y

@4

Original
image

Model trained on
child S

Model trained on
ImageNet (100%)

b Image probes from Konkle objects

Original
image

Model trained on
child S

Model trained on
ImageNet (100%)

Fig. 6 | Qualitative evaluation of the generative models. a,b, Conditional
samples from two different models (trained on child S in SAYCam or on all

of ImageNet) seeded with images from child Y in SAYCam (a) or with images
from the Konkle objects dataset (b). In each case, the upper half of the image is

given to the model as context, and the lower halfis generated by the model. All
model completions are zero-shot (the models have not seen any prior examples
from these datasets). More examples can be found at the accompanying code
repository.

among thefirstto take advantage of these new opportunitiesto address
fundamental questions in cognitive science. Our results, for example,
suggest that strong inductive biases like a taxonomic generalization
bias oraninnate ability to segment objects may be unnecessary, as our
generic self-supervised models already do a reasonably good job of
learning to segment objectsinimages (Fig. 3a) or to categorize objects
based ontheir kind (Fig. 4) from limited and noisy visual data available
to a child without such inductive biases. However, the models’ ability
to cleanly segment and generate objects isimperfect (Figs. 3b and 6),
soitremains an openempirical questionifthey canattain human-level
understanding of objects by simply being trained on developmentally
more realisticamounts of data or if stronger object-centric inductive
biases may still be necessary to achieve this***.

There are several differences between our experimental setting
and the actual learning problem faced by children. These differences
should be keptinmind when considering theimplications of our results
for developmental psychology. First, even the combined data from
SAYCam amount to roughly 40 days of visual experience (factoringin
12 hours of sleep per day). To extend this to developmentally realistic
amounts of datawould require roughly two orders of magnitude more
data than we currently have. The capabilities of the current models
would undoubtedly improve with additional data at this scale even
without any other changes, but it is an open empirical question how
muchthey wouldimprove. Second, here we only considered visual data,
butachild’sactual experience ismultimodal, with auditory, hapticand
sensorimotor components, inaddition to vision. The capabilities of the
current models would again likely improve with these complementary
sources of information. Third, our models are trained with stochastic
gradient descent, which is biologically implausible in the context of
deep networks?®. To the extent that biological learning must satisfy
demanding constraints that are not relevant for deep learning, our
results may overestimate what canbelearned froma child’s visual expe-
rience with biologically plausible learning mechanisms. Compared to

deep learning models, this may necessitate more reliance on innate
inductive biases in humans.

Another difference is that children are interactive learners. They
learn their own behavioural policies regarding how to interact with
objectsor other agentsinthe environment. This allows them to shape
andstructure their own sensory experiences. Our models, onthe other
hand, are passive learners. The learnability results here thus relate to
what is learnable from a visual stream that is, to some extent, already
structured by the child. Interactive models that can actively shape
their own experiences, as children do, might learn more effectively
compared to passive learners”, in which case our results would under-
estimate what canbe learned from child-like visual experience without
strong inductive biases.

There arealsoimportant differences between the raw visual inputs
received by our models and those received by children. The SAYCam
frames have relatively low spatial resolution (640 x 480 pixels) com-
pared tothe humanretina. They contain a substantialamount of motion
blur artefacts, and the image quality is generally poor in low lighting
conditions. Effortsto collect higher quality headcam datawith better
cameras are already under way*®. Modern SSL algorithms often use
heavy data augmentation strategies like colour jittering or random
resized cropping (the particular data augmentations used by each of
our SSL algorithms are detailed in Methods). These augmentations
increase the effective sample size to the benefit of the models. It is
unclear whether similar processes in humans could implicitly expand
theinputinabiologically plausible way. Foveation represents aninter-
esting examplein this respect, withits functional similarity to random
resized cropping.

We hope that our work will inspire new collaborations between
machine learning and developmental psychology®***, as the impact
of moderndeep learning on developmental psychology hasbeenrela-
tively limited thus far. One key reason for this is the datagap*’ between
machine and human learners; for example, today’s computer vision
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models are typically trained with visual data that are very different
in content, style and amount from a child’s visual experience (for the
models, millions, sometimes billions, of static photographic pictures
scraped fromtheinternet versus, for the child, a few years of continu-
ous, egocentric data streams from the world). Here we bridged this
data gap by training the same models on a realistic proxy of a child’s
egocentric visual experience and demonstrating these models’ pow-
erful visual capabilities. Future algorithmic advances, combined with
richer and larger developmental datasets, can be evaluated through
the same approach, further enriching our understanding of what can
belearned froma child’s experience with minimal inductive biases.

Methods

Evaluation tasks for the embedding models

Here we describe the nine tasks used for evaluating the embedding
models, each associated with a dataset.

Labeled S.Labeled S contains~58,000 manually labelled frames from
child SinSAYCam®’. We use the temporally x10 subsampled version of
this dataset (0.1frames per second) containing -5,800 images from 26
different classes. Temporal subsampling reduces the temporal correla-
tionsinthe dataset and makes the classification task more challenging.
We then randomly split the data in half, use the first half for training
and the second half for evaluation. This is our only within-domain
evaluation task for models trained on SAYCam, specifically for models
trained on data from childS.

Konkle objects. This is a public dataset available from ref. 41. The
images in this dataset depict common everyday objects in isolation
against a uniform white background*’. We only use a subset of the
categories from the dataset that contains a sufficiently large number
of exemplars, that is, 16 or 17 exemplars. This subset contains 4040
images from 240 different object categories. We split the data in half,
use the first half for training and the second half for evaluation.

CORe50. This is a public dataset available from ref. 43. The dataset
contains 50 different everyday objects undergoing various continuous
transformations (complex combinations of 3D rotations and transla-
tions) againstavariety ofbackgrounds**. The datasetis originally invideo
format, but we sample the videos at five frames per second to make an
image dataset. Each objectis shot against the same set of 11 unique back-
grounds. We use six of these backgrounds for training and the remaining
five backgrounds for evaluation (90,000 images in total for training,
75,000 images for evaluation). This task thus tests whether a model
can (1) ignore the background and primarily respond to the foreground
objectinstead and (2) generalize over continuous transformations. Note
thatamodel primarily responding to the background would performat
near chancelevels (2% top-laccuracy) in this task, since the background
does not have any predictive value for the object identity.

ImageNet. ImageNet (ILSVRC-2012) is a large and diverse dataset of
high-qualityimages from theinternet' andis a very popular benchmark
for real-world visual object recognition. The dataset is publicly avail-
able fromref. 45. We use the standard training-validation split for this
dataset, containing ~1,280,000 training images and 50,000 validation
images from1,000 semantic classes.

ImageNet OOD. To evaluate the robustness, or out-of-distribution
(OO0D) generalization capabilities, of the trained models, we also con-
sider out-of-distribution versions of the ImageNet benchmark***. The
ImageNet OOD benchmark contains 17 different out-of-distribution
versions of ImageNet generated by applying various transformations
toimages from the ImageNet validation set. These include transforma-
tions suchas taking the silhouettes of the objectsin theimage, stylizing
the image, adding different types of noise to the image, changing the

coloursintheimage, etc. For evaluation, we use the OOD accuracy met-
ric, whichisjustthe meantop-1accuracy over all 17 out-of-distribution
datasets”. This evaluation dataset is publicly available from ref. 48.

Ecoset. Ecoset can be thought of as an ecologically more realistic ver-
sion of ImageNet containing images from 565 basic-level categories
only, selected for their concreteness and frequency of usage in lan-
guage®. The dataset comes with a standard training-validation split
containing~1,440,000 trainingimages and 28,250 validation images,
which we use for training and evaluation, respectively. The dataset is
publicly available from ref. 50.

Places365. Because the SAYCam dataset contains examples of vari-
ous scene categories (living room, dining room, kitchen, bathroom,
playground, beach, street, porch, and so on) in addition to object cat-
egories, we areinterested in evaluating the capacity of SAYCam-trained
modelstorecognize places as well as objects. For this purpose, we use
the Places365 dataset®. Places365 contains ~1,800,000 training images
and 36,500 validation images from 365 different place categories. The
dataset is publicly available from ref. 52.

DAVIS-2017. A good visual representationisideally ageneral-purpose
representation that can be used profitably not justin visual recognition
tasks, butinabroader range of downstream tasks. For this reason, we
also evaluate the SAYCam-learned representations in two dense pre-
diction tasks. DAVIS-2017 is a video object segmentation task where
the modelis given a ground-truth segmentation mask for the initial
frame of ashortvideo clipandis expected to predict the segmentation
masks for the following frames in the video®. In common evaluation
protocols used for this task, the predicted segmentation masks for the
non-initial frames are computed with a non-parametric message pass-
ingtypealgorithmthat uses the representations of the frames and the
predicted segmentation masks for nearby frames. This task essentially
evaluates how robust the model’'srepresentations of the objectsin the
video clip areto spatiotemporal transformations that take placein the
clip: morerobust representations are expected to propagate the initial
ground-truth segmentation masks better. The evaluation set consists
of30video clips, each containing -67 frames and -2 objects on average.
The dataare publicly available from ref. 54.

COCO. We also evaluate our models on the semantic segmentation
component of the COCO benchmark®. COCO is publicly available to
download fromref. 56. Recall that in semantic segmentation the goal
is to label each pixel of the image with the semantic category label of
the object (or ‘stuff’) occupying that pixel. We use a subset of COCO
that contains the 21 categories present in the Pascal VOC dataset. This
subset has~92,500 trainingimages and 5,000 validationimagesintotal.
For all evaluation tasks except DAVIS-2017 (including the COCO
semantic segmentation task), we use linear readouts trained on top of
frozen features, also known as a linear probe. For DAVIS-2017, as men-
tioned above, we use astandard non-parametric label propagation algo-
rithmto predict the segmentation masks®’. We use standard evaluation
metrics for all our evaluation tasks: top-1accuracy for the classification
tasks, meanintersection over union for the COCO semantic segmenta-
tion task and the mean region and contour similarity for DAVIS-2017.

SSL algorithms for the embedding models

Here we describe each of the three SSL algorithms we used for training
ourembedding models. These algorithms represent a range of different
modern approaches to self-supervised representation learning from
staticimages or frames.

DINO. DINO is a self-distillation type representation learning
algorithm', where a teacher model and a student model iteratively
improve each other. During training, the teacher and the student
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Table 1] List of all trained embedding models (49 models in total)

Algorithms Data

Models

ResNeXt-50

ViT-B/14

ViT-L/16 ViT-B/16 ViT-S/16

SAY v

v v 4

S

v
A v
Y v

v v 4
v v v
v v v

DINO Ego4D-200h

Kinetics-200h

ImageNet (100%)

ImageNet (10%)

NIENIENI RN AN AN RN NI AN

ImageNet (1%)

SAY

Mugs

MAE
A

Y

STISISISNSISN NSNS
SISISISISN NN S
SNTISISISNIS NSNS

The trained combinations of algorithm, data and model are indicated by check marks.

receive different copies of the same image, transformed in various
ways with a set of data augmentation methods, and the objective of
the algorithm is to push the representations of these copies towards
each other, because they share the same semantic content. The data
augmentation methods used in DINO are colour jitter, random resized
crops, horizontal flips, grey-scaling, Gaussian blur and solarization.

Mugs. Mugs is a hybrid SSL algorithm combining ideas from
self-distillation and contrastive learning to learn multi-granular visual
representations”. Mugs uses the same set of data augmentations as
DINO.

Masked autoencoders. MAEs use reconstruction of masked image
patches as the SSL objective'. By learning to predict masked patches
fromvisible patches, the algorithm expects tolearn higher level, seman-
tically useful regularities in visual scenes (for example, learning that
the face, the legs and the tail of a dog often appear in a particular con-
figuration). MAEs use amuch lighter dataaugmentation pipeline than
otheralgorithms, requiring only randomresized crops and horizontal
flips. As recommended', we use a large masking ratio of 75% during
training, that s, 75% of the image patches are randomly masked out.

We generally use the default hyperparameter choices and train-
ing configurations recommended for these algorithmsin the original
papers, with minor modifications. We use the same data augmentation
pipeline for every model trained with a given algorithm. Further details
canbefoundinthe corresponding training codes that canbe accessed
from our main public repository.

Reference datasets for the embedding models

Kinetics-700 consists of short YouTube clips of people perform-
ing various actions, representing 700 different action categories™.
Kinetics-700is publicly available for download fromref. 58. The video
clips in Kinetics-700 are typically shorter than ten seconds, hence
the dataset overall is expected to be much more diverse in style and
contentand temporally much less correlated than SAYCam. Ego4D, on

the other hand, has more similar temporal characteristics to SAYCam;

the videos are temporally extended, continuous, egocentric headcam
recordings, with recording sessions lasting tens of minutes on aver-
age?’. The main differences from SAYCam are (1) the videos are taken
from the perspective of adult camera wearers, not from the perspec-
tive of young children, and (2) the recordings are made by many more
individuals than the SAYCam recordings. In Ego4D, each individual
contributes ~4 hours of recording on average, so a 200-hour-long
subset of the dataset would be expected to contain recordings from
roughly 50 different camera wearers, in contrast to a single child in
SAYCam.Ego4Dis publicly available fromref. 59 (after signing alicense
agreement). We use 200-hour-long subsets of these datasets, because
200 hoursisroughly equal to thetotal length of the video data we have
available from one of the children in SAYCam, namely S. To obtain
these 200-hourlong subsets, we use the first 128 clips from each class
in Kinetics-700 and select a continuous chunk of videos from Ego4D
with arandom starting point until the total length of the videos in the
selection roughly equals 200 hours.

Training details for the embedding models

We train each model for four days on four A100 graphics processing
units (GPUs) with 80 GB GPU memory, using data parallelism (the
ViT-B/14 DINO model trained on all of ImageNet was trained for four
additional days to make sure it was not under-trained). We use the
Adam optimizer to train all models®’. In each experiment, we use either
abatch size of 512 or the largest batch size we could fit on four GPUs,
in those cases where we could not fit a total batch size of 512 on the
GPUs. Batch sizes and learning rates thus vary across experiments.
Inspection of the training losses confirms that they all saturate, hence
under-training is unlikely for any of our pretraining runs (all training
logs are made available in our public repository). Table 1 presents a
concise list of allembedding models trained for this work.

Class activation maps

Invisualizing the CAMs showninFig. 3a, we first normalize the linearly
combined and upsampled feature map to have zero mean and unit vari-
ance, wherethe meanand variance are estimated over abatch of images
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Table 2| List of all trained generative models (23 modelsin
total)

Pretraining data Finetuning data

Konkdle (iid) Konkle (non-vehicle) None

SAY v v v
S v v v
A v v v
Y v v v
ImageNet (100%) v v v
ImageNet (10%) v v v
ImageNet (1%) v v v
None 4 v

The trained combinations of pretraining and finetuning data are indicated by check marks.
‘None’ means pretraining (or finetuning) was not applied.

from the same class, pass the normalized map through a pointwise
sigmoid nonlinearity and then scale it by 255 so that the values in the
final map are between 0 and 255 (or, in torch notation: m = 255 * torch.
sigmoid((m-torch.mean(m))/torch.std(m)). We then alpha-blend this
activation map with the original image using ablending coefficient of
0.8 for the map and 0.2 for the image.

Additional details about the generative models

We train customized VQGAN models using the Taming Transformers
repository made available by the authors of VQGAN??. The Taming
Transformersrepository canbe accessed at ref. 61. For the GPT model,
we use a standard 730 million-parameter GPT model that is similar to
OpenAl's gpt2-large model®. Using the same architecture, we also train
reference VQGAN-GPT models on ImageNet, using either 100%, 10%,
or 1% of the training set, as described previously.

For the VQGAN component of the generative models for SAYCam,
we use acodebook withavocabulary size of 8,192 and a spatial resolu-
tionof32 x 32 (thus each frameisencoded asa32 x 32 grid of integers,
where the integers take values between1and 8,192). For the encoded
SAYCam frames, the spatial resolution of 32 x 32 corresponds to a
sequence length of 1,024 tokens. Due to computational constraints,
the VQGAN models for ImageNet use a spatial resolution of 16 x 16
and a codebook with a dictionary size of 16,384. To train the VQGAN
component of the generative model, we use the Taming Transformers
repository (model configuration files are available from our public
repository). The GPT component of the generative models has 36 layers,
20 attention heads and an embedding dimensionality of 1,280 in all
cases (the model configuration is equivalent to OpenAl’s gpt2-large
model). We generate the model completions through exact sampling,
with the softmax temperature set to 7=1.0.

Training and evaluation details for the generative models
SAYCam-trained GPT models were trained for four days on 16 A100
GPUs withabatch size of 96 (the model trained on the combined data
from SAYCam was trained for four additional days to make sure it was
not under-trained). The training logs (all made available from our
publicrepository) confirmthat under-trainingis not a serious concern
for any of our models. The ImageNet-trained models were trained on
eight A100 GPUs with a total batch size of 256 (the model trained on
100% of ImageNet was trained for 6 days, whereas the models trained
on10%and 1% of ImageNet were trained for 2 days only due to the more
limited size of the training datain these cases). Allmodels were trained
withthe Adam algorithm. Table 2 presents a concise list of allgenerative
models trained for this work.

We measure the overall quality of the completions with the
FID between the model generated samples and the ground-truth
images®’. We use three different image completion tasks to

quantitatively evaluate the generative models: Labeled S, Konkle
independent-identically-distributed (iid) and Konkle out-of-
distribution (ood).InLabeled S, we useimages from the validation split
of the Labeled S dataset described above for the image completion
task. In Konkle-iid, we randomly split the Konkle objects dataset in
half, use the first half for training or finetuning the generative models
and use the other half for the image completion task. In Konkle-ood,
we split the Konkle objects dataset into non-overlapping vehicle and
non-vehicle categories, use the non-vehicle categories for training or
finetuning the generative models and use the vehicle categories (144
images in total) for the image completion task. Since this isan OOD
generalization task, it is expected to be more challenging than the iid
condition. Theresults are presented in Supplementary Table 1, which
showsthe FID scores of different modelsin eachimage completion task.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Except for SAYCam, all data used in this study are publicly available.
Instructions for accessing the public datasets are detailed in Methods.
The SAYCam dataset can be accessed by authorized users with aninsti-
tutional affiliation from the following Databrary repository: https://
doi.org/10.17910/b7.564. The ‘Labeled S’ evaluation dataset, which is
asubset of SAYCam, is also available from the same repository under
the session name ‘Labeled S

Code availability

All of our pretrained models (over 70 different models), as well as a
variety of tools to use and analyse them, are available from the following
public repository: https://github.com/eminorhan/silicon-menagerie
(ref. 63). The repository also contains further examples of (1) attention
and class activation maps, (2) ¢-SNE visualizations of embeddings,
(3) nearest neighbour retrievals from the embedding models and (4)
unconditional and conditional samples from the generative models.
The codeused fortraining and evaluating all the modelsis also publicly
available from the same repository.
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second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | Whole brain [ | ROI-based [ | Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.
(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.

S
Q
o
c
=
®
O
O
=
©)
=
—
@
O
O
=1
S
@
wv
c
3
3
D
=
2




	Learning high-level visual representations from a child’s perspective without strong inductive biases

	Models

	Embedding models

	Self-supervised learning algorithms

	Model architectures

	Training data

	Reference models

	Evaluation


	Generative models

	Self-supervised learning algorithm

	Evaluation


	Results

	Embedding models

	Quantitative summary
	Learning to localize semantic categories without location supervision
	Learning more global, background-sensitive representations
	Learning broad semantic categories without any labelled examples
	Nearest neighbours reveal semantic structure in the embedding space

	Generative models


	Discussion

	Methods

	Evaluation tasks for the embedding models

	Labeled S
	Konkle objects
	CORe50
	ImageNet
	ImageNet OOD
	Ecoset
	Places365
	DAVIS-2017
	COCO

	SSL algorithms for the embedding models

	DINO
	Mugs
	Masked autoencoders

	Reference datasets for the embedding models

	Training details for the embedding models

	Class activation maps

	Additional details about the generative models

	Training and evaluation details for the generative models

	Reporting summary


	Acknowledgements

	Fig. 1 Schematic overview of the experiments.
	Fig. 2 Quantitative evaluation of the embedding models.
	Fig. 3 Qualitative evaluation of the embedding models.
	Fig. 4 t-distributed stochastic neighbor embeddings of the ImageNet classes.
	Fig. 5 Nearest neighbours in the embedding space.
	Fig. 6 Qualitative evaluation of the generative models.
	Table 1 List of all trained embedding models (49 models in total).
	Table 2 List of all trained generative models (23 models in total).




