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Machines have achieved a broad and growing set of linguistic competencies, thanks to recent progress in
Natural Language Processing (NLP). Psychologists have shown increasing interest in such models,
comparing their output to psychological judgments such as similarity, association, priming, and compre-
hension, raising the question of whether the models could serve as psychological theories. In this article, we
compare how humans and machines represent the meaning of words. We argue that contemporary NLP
systems are fairly successful models of human word similarity, but they fall short in many other respects.
Current models are too strongly linked to the text-based patterns in large corpora, and too weakly linked to
the desires, goals, and beliefs that people express through words. Word meanings must also be grounded in
perception and action and be capable of flexible combinations in ways that current systems are not. We
discuss promising approaches to grounding NLP systems and argue that they will be more successful, with a
more human-like, conceptual basis for word meaning.
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Psychological semantics is the study of how people represent the
meanings of words and then build sentence meaning out of those
representations. People use language dozens of times a day—to
have conversations and give instructions, to read and write, to label
objects and teach. A theory of psychological semantics must provide
the basis for how people do all those things, choosing which words
to use and understanding the words they read or hear. In this article,
we focus on the mental representation of word meaning.
Human language is still the gold standard for a communication

system, but artificial intelligence (AI) systems have made important
progress in language use. Research on Natural Language Proces-
sing (NLP) develops systems that understand language to the degree
that computers can carry out useful tasks. As described below, such
systems use vast text corpora to learn about words, using neural
networks and other statistical models. The recent explosion of
research in NLP, driven largely by advances in neural networks
(also called deep learning), has resulted in constantly improving
performance on various benchmarks that require interpreting words
and sentences. Systems are now used in interfaces with customers to
make sales or solve problems. Some systems even perform tasks
that were historically assumed to be solely within the purview of

humans, such as translation, summarization, question answering,
and natural language inference.

One way to think about such progress is merely in terms of
engineering: There is a job to be done, and if the system does it well
enough, it is successful. Engineering is important, and it can result in
better and faster performance and relieve humans of dull labor such
as keying in data or making airline itineraries or buying socks.
Ultimately, tasks such as machine translation, automatic summari-
zation, and human–machine communication may change our world
for the better. Doing these things can certainly be described as
semantic processing, but they may not be the same semantic
processing that human speakers and listeners engage in.

The enormous progress of these systems has led some researchers
to suggest that they are potential models of psychological semantics
(see the “NLP as a Theory of Semantics” section). That is, the
representations that they derive for words are functionally similar to
those that people derive through language learning. A stronger (and
more implausible) claim is that the way people learnword meanings
is similar to the waymodels do.Wewill focus on the first claim here,
which is perhaps surprisingly held by a number of psychologists, or
at least considered as a viable hypothesis. Many AI researchers do
not dwell on whether their models are human-like; few would
complain that a highly accurate machine translation system doesn’t
do things the way human translators do. Nonetheless, progress in
NLP is usually evaluated, at least implicitly, against some human
standard, raising the real possibility that progress in NLP translates
to progress on modeling how people understand the meaning of
words. We will argue that contemporary NLP techniques may
indeed do many things well, but models will need to push beyond
current popular approaches in order to provide a theory of psycho-
logical semantics.

We will not suggest that NLP should redirect its efforts to
building models of psychological semantics. As we discuss, NLP
technologies have been tremendously successful at many language
tasks without worrying about the psychological plausibility of their
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semantic representations. For many applications, this engineering-
driven approach will be sufficient. In other cases, we see strong
potential for improving NLP systems by taking a more psychologi-
cal approach to word meaning. That is, although NLP models keep
getting more successful, there may be limits on their performance in
comprehending and producing language that could be overcome
with representations that are more like those people have. And if
these models are intended as psychological theories, they will need
to go beyond current benchmarks to considerations of how people
use language every day, as we will argue below.

Coverage of This Article

We begin by briefly reviewing approaches to word meaning in the
psychological literature (see the “Semantics in Cognitive Science”
section) and introducing desiderata for models of psychological
semantics (see the “Desiderata for aModel of Psychological Seman-
tics” section). We then cover NLP approaches to learning word
representations, starting with those initially constructed by psychol-
ogists and then moving to more recent NLP models in Machine
Learning that learn both word and sentence representations (see the
“Computational Approaches to Word Meaning” section). Our main
question is whether NLP systems are likely to be successful in
representing human semantic knowledge. We argue that current
means of representing words are useful for modeling word similar-
ity, although the details don’t always align with human semantic
similarity (see the “Semantic Similarity” section). These word
representations, however, are not adequate to support the flexible
behaviors for which people rely on their semantic representations.
We discuss five such classes of human behavior and the challenges
they present for models of word meaning (see the “Desiderata”
section). We end by discussing the possibility that building more
realistic models of psychological semantics will also improve NLP’s
ability to handle more advanced and difficult problems of under-
standing and communication.

Semantics in Cognitive Science

Before discussing word meaning in NLP, we first take a brief tour
of the approaches to semantics in linguistics and psychology in order
to understand what it is that such theories must explain. Within most
of philosophy and linguistics, semantics is referential. That is,
linguistic meaning is analyzed as a relationship between words
and the world, and sentence meaning describes a state of affairs that
can be mapped to situations in the world (e.g., Chierchia &
McConnell-Ginet, 1990). For example, a word like dog has a
meaning that allows you to pick out all the dogs in the world.
To a first approximation, the meaning is the set of all such dogs, and
if you use the word to refer to a member of that set, you are using it
correctly (and literally). People who fully understand the meaning of
dog would name all and only dogs with the word (excepting
uninteresting cases such as not fully seeing the object, being
incapacitated in some way, etc.). A problem with this view, how-
ever, is that dogs are coming into and going out of existence at a
rapid rate. Many thousands of dogs are born and die every day.
Thus, the set of dogs is constantly changing from moment to
moment. That is not a very stable basis for a word meaning, which
doesn’t intuitively seem to be changing at all. Indeed, an implication
of a simple referential theory would be that the meaning of dog is

today completely disjoint from what it was 30 years ago, assuming
that nomember of that set of dogs is still with us today. That does not
seem correct.

For this reason, formal linguists have developed more compli-
cated analyses of meaning, such as claiming that dog picks out sets
of objects in an infinite number of possible worlds (see Dowty et al.,
1981). These worlds are keyed to time and context, such that the
extension of dog varies depending on the circumstances. Such a
conception also allows us to refer to dogs within possible worlds that
do not actually exist, such as hypothetical ones (“If there were no
cats, dogs would still find something to chase.”) or fictional ones.
Hypothetical and fictional situations are simply more possible
worlds, which speakers may refer to.

Why do (some) linguists insist on these kinds of analyses, which
often result in seemingly unilluminating statements such as “The
meaning of dog is the denotation [[dog]]”? The reason is an
extremely powerful one, namely that the utility of language is in
its ability to provide information about actual things in the world—
to draw our attention to those things, learn about them, and then to
take action on them (see Chierchia & McConnell-Ginet, 1990,
Ch. 1). Language is not a parlor game in which we only utter
formulas of statement and response. Language presumably evolved
because of situations in which people can say things like, “Look for
blueberries on the other side of the hill,” or “Watch out for that car!”
or “I love you and want to spend my life with you.” The significance
of such statements lies in their ability to communicate life-saving
and life-improving information. The information must relate to the
world if it is to be helpful. Talking about blueberries is only useful if
doing so actually directs us to a particular kind of edible fruit;
warning about a car is only helpful if the hearer then looks out for a
car, rather than for blueberries. If word meanings did not relate to
our world, they would not be helpful.

The fact that language refers to the world seems indisputable, but
exactly how to capture that relation is not as clear. For psychologists,
the problem with the referential approach to meaning is that the
possible-world semantics cannot be something that humans do in
their heads. Even if a speaker is accurate in her use of the word dog,
she cannot keep the entire set of the current world’s dogs in her head,
much less the sets of dogs in all of the infinite number of possible
worlds. Philosophers since Frege have talked about another aspect
of meaning besides the denotative aspect: senses (sometimes
referred to as intensions). The sense of a word is its “mode of
presentation,” as Frege (1892/1960) referred to it, which can be
understood as a way of thinking about the word. For many psychol-
ogists, this has been interpreted as a kind of mental description. A
speaker cannot keep a representation of every dog in the world in her
head, but she can keep a description of what dogs are like, which
then enables her to apply the word to them. We know that dogs have
four legs, teeth, and fur, weigh 5–75 pounds, like to chase smaller
animals and cars, bark, eat scraps that fall on the floor, and so on.We
have detailed knowledge of the faces, colors, proportions, and
sounds of dogs, along with memories of individual dogs. Although
one might argue that some of this knowledge is not strictly part of
the meaning of dog (e.g., that dogs are likely to snap up food that
falls on the floor or personal memories), such knowledge allows one
to pick out many (though likely not all) of the dogs in the world
under variable circumstances. Thus, this mental description of the
word allows people to refer to things in the world and to
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communicate with other people who have similar such descriptions
associated with the word.
Language directly connects to our knowledge of the world, as

attempts to make realistic language processing systems discovered
early on (Schank & Abelson, 1977). For example, imagine the
following conversation.

Marjorie: I can’t come to the reception after the talk, because of
Fred.

Todd: Fred?

Marjorie: Fred is my dog.

The mere statement that Fred is Marjorie’s dog explains many
things. We realize that dogs require frequent maintenance. They
must be fed regularly and usually must be let outside multiple times
a day. Furthermore, dogs are social creatures and do not take well to
being left alone for very long stretches of time. None of this is
actually said in that conversation, yet Marjorie expects that Todd
will understand at least some of these things and therefore infer that
she can’t go to the reception because of her need to let Fred out, feed
him, and so on. That is, merely by saying the word dog, Marjorie
allows Todd to access his knowledge of the dogs and their proper-
ties, which he can then use to make necessary inferences to
understand her explanation. If language did not have this property,
then conversations would be inordinately long and laborious.
This example raises the question of where to draw the line

between the semantics of language and world knowledge. Different
disciplines have come to very different answers to this question,
ranging from a very minimal account of word meaning (e.g., dog
means the property of being a dog; Fodor, 1998) to accounts in
which there is no demarcation between word meaning and general
knowledge (Elman, 2014). There was a time when it could be
suggested that a word meaning was simply a definition that deter-
mined when the word could be used. However, with the wide belief
that definitions do not exist for many words (Rosch, 1978;
Wittgenstein, 1953), that simple solution is no longer available,
and one must wonder which features of dog are included in the word
meaning and which are part of some more general knowledge of the
world. We cannot possibly resolve this question here. However, an
advantage of our account (see next) is that word meanings are
embedded in our knowledge of the world, such that hearing the word
dog gives one access to the knowledge necessary to understand the
above interchange. Our discussion will not depend on any particular
way of drawing the line between linguistic meaning and more
general knowledge. NLP models often measure their success in
tasks that likely go beyond the use of word meaning alone, such as
answering multiple-choice questions about the meaning of a para-
graph or text summarization. In evaluating such models, we will
examine whether people and models understand words in the same
way, without worrying too much about the demarcation between
word meaning and general knowledge.
In psychology, the predominant approach to word meaning is that

it is a mapping of words onto the conceptual structure (see Murphy,
2002, ch. 11, for review). That is, people have concepts that are the
building blocks of their world knowledge, and the meaning of a
word is essentially a pointer to some subpart of that knowledge.
Concepts make the connection between language and the world

argued for in philosophical and linguistic approaches to semantics,
but in a psychologically plausible way. That is, when someone tells
you, “Watch out for the car,” the word car activates a concept, which
contains information about what cars look like, enabling you to
identify the object you’re supposed to watch out for. The concept
also contains information about why cars might be dangerous, what
they do, and where they go. So, one plausible response to this
warning would be to jump back onto the sidewalk, since you know
that cars almost always drive on the road. Because a concept like dog
is embedded in a network of other concepts and properties, when the
word dog occurs, it activates that concept which then gives access to
all the other knowledge that one has about dogs, allowing Todd
to interpret Marjorie’s explanation. Thus, the concept that is pointed
to by the word gives access to other information necessary for
comprehension, even if it is not what many would consider part of
word meaning.

Note that we are not proposing a learning theory in which
conceptual structure exists first, and then words are just mapped
onto it (cf., discussion in Lupyan & Lewis, 2019). Learning words
can change one’s concepts, and language is certainly a major way by
which our knowledge of the world is increased. We discuss
both below.

The conceptual approach to word meaning has two advantages as
a psychological explanation over purely referential approaches.
First, we know that people have concepts and knowledge of their
world, so this is a plausible psychological representation, unlike
infinite sets of objects in possible worlds. Second, in this account,
words are connected to the world, because words are connected to
concepts, which are in turn connected to the world, through
perceptual and motor mechanisms. We use concepts to classify
and think about objects in the world even when we are not talking
about them. When we see a dog, that activates various perceptual
representations that eventually activate our concept of dogs, which
could then result in a verbal remark, like “There’s the dog,” or
“I didn’t know you have a dog,” or an action, such as petting the
animal. That is, the use of the word dog is causally connected to the
presence of an actual dog. (The exact nature of this causal connec-
tion is a matter of debate among philosophers.) Of course, speakers
and writers can discuss objects and situations that are not currently
present, but the words used gain their meaning in part through their
connections to concepts that are in fact linked to the world. When a
speaker gives you new information through language, that changes
your representation of the world and will potentially be useful to you
later on.

There is considerable, though not universal (Lupyan & Lewis,
2019), agreement regarding the conceptual approach among re-
searchers of word learning in particular, starting with seminal
proposals of word learning by Eve Clark (1983) and Susan
Carey (1978). Indeed, publications often vary between talking about
word learning and concept learning as if they are the same thing.
And, of course, they often are. Perhaps your child can correctly label
cows when you go to visit a farm. However, you might also correct
the child in some cases by saying, “No, that’s not a cow, it’s a goat.”
By introducing a new word, goat, you are encouraging your child
to note the differences between that referent and the cows: smaller
size, different proportions, longer head, possibly a beard, and so
on, thereby forming a new concept. If you had never mentioned
the word goat, your child might not have formed the concept of
goats and continued to include them in a broader category of cows.
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The requirement to use words the way adults do can act as a stimulus
for children to distinguish objects in the world a certain way
(Mervis, 1987). That is, word learning can influence one’s concepts
because word learning involves learning what kinds of things there
are in the world (see Murphy, 2002, for more discussion).
Our focus is on the representation of words, but this does not mean

that wewill only consider words in isolation. The best way to identify
whether a representation works is to see whether it can function
properly in context—in reference to the world, or as part of a
sentence or utterance. By focusing on words, we mean to exclude
sentence- or discourse-level semantic phenomena, such as sentence
ambiguity, identifying contradictions or oxymorons, sentence entail-
ment, interactions among quantifiers, and similar phenomena that
occupy semanticists. Those issues should be studied with respect to
NLP models but are beyond the scope of the present investigation.
Nonetheless, there will be no shortage of sentences in our examples
as ways of illustrating how a model understands words.

Desiderata for a Model of Psychological Semantics

We have discussed the theoretical basis for this view of meaning
in some detail because it is exactly this connection to world
knowledge, the world, and language use that we argue is largely
missing in current NLP systems. In order to be an adequate theory of
psychological semantics, a proposed representation must provide
the basis for carrying out a number of flexible behaviors—physical,
verbal, and mental—that rely on conceptual representation as
summarized in the list of five desiderata in Table 1. These desiderata
are meant to apply to any theory of psychological semantics,
computational or otherwise. We provide short examples of the
entries here; the remainder of our article goes into further detail.
We should emphasize that these desiderata are by no means
exhaustive. Most of them relate to the most basic functions of
language use that have been studied extensively in cognitive
science. A model that can accomplish all those things might not
talk and understand as people do, but a model that cannot do one or
more of these things would fall far short.
Imagine you are at the dinner table with family. Youmight look at

the table and say, “That knife is dirty.” To produce this description
(Table 1; #1), you clearly must recognize some key objects—place
settings, silverware, residual food crust, along with their relations—
and retrieve the correct words to refer to them. You then drew
attention to a property of one of them, in particular, that one knife is

unsuitable for use. Someone listening might replace the offending
knife with a new knife, thereby carrying out your (implicit) instruc-
tion (#3). That person had to figure out what kind of thing you had in
mind by saying “knife” and get that kind of thing instead of a spoon,
plate, or other handy objects. If you don’t care for the kind of knife
someone hands you, you might say, “I was hoping for a butter
knife.”When you said that sentence, you had formed a goal of what
kind of thing you wanted and then translated that idea into the
English phrase “butter knife” (#2) so that people would know what
to get.

So, evenwith this simple interchange, we can see that words can be
activated by perceptual input and by mental representations and that
they in turn can cause others to form a particular representation and to
take action in the world. Your listener must understand the conceptual
combination “butter knife” as indicating a shorter, blunt knife
specifically made for butter or cheese (#4). Such phrases are con-
structed on the fly in English, and speakers make up and understand
novel ones in everyday use. Finally, if you choose to, you might tell
the children at the table, “Forks go on the left, knives on the right,”
which is not a description of that particular table but rather informa-
tion about knives and forks that you hope (vainly) the children will
add to their store of knowledge about the world (#5). If you are
successful, this could someday result in the children placing forks on
the left (i.e., changing the future world) when they set the table.

The first three desiderata are very basic functions of language.
The final two are illustrative of the connection between language
and knowledge. That is, language requires knowledge to be under-
stood and also acts as a critical medium for increasing our knowl-
edge. These two cases are just two of many possible examples.

Computational Approaches to Word Meaning

This now leads us to consider some typical examples of compu-
tational approaches to meaning, which will contrast greatly with
what we have outlined above. The words semantics andmeaning do
not belong to anyone; there is no law saying that researchers in one
field must use the words in the way another field dictates. Thus,
when we point out these differences, we are not criticizing one or the
other field for not conforming to psychological or linguistic usage.
However, it is important to see what those differences are, so that
there will not be confusion about which problems in “semantics”
have been solved when the term is used differently by different
researchers. If one proposes a theory of psychological semantics, it

Table 1
Five Desiderata. Word Representations Should Support These Basic Functions of Language Use

Behavior to be explained Examples

1. Describing a perceptually present scenario, or understanding such a description. That knife is in the wrong place.
The orangutan is using a makeshift umbrella.

2. Choosing words on the basis of internal desires, goals, or plans. I am looking for a knife to cut the butter.
I need a flight from New York to Miami.

3. Responding to instructions and requests appropriately. Pick up the knife carefully.
Find an object that is not the small ball.

4. Producing and understanding novel conceptual combinations. That’s a real apartment dog.
The apple train left the orchard.

5. Changing one’s beliefs about the world based on linguistic input. Sharks are fish but dolphins are mammals.
Umbrellas fail in winds over 18 knots.
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must be the kind of theory that can do at least the things we described
in Table 1. Here we focus on approaches to word meaning that
derive meanings from text relations, which have been described as
theories of semantics by some of their proponents.

Word Representations

A classic approach to word meaning is distributional semantics,
the idea that words have similar meanings if they have similar
patterns of usage and co-occurrence with other words (Firth, 1957;
Harris, 1954). An influential text-based model based on these
principles was the early work of Thomas Landauer and his
colleagues in forming Latent Semantic Analysis (LSA; Landauer
& Dumais, 1997) and the related system HAL (HyperAnalog to
Language; Lund & Burgess, 1996). We will focus here on LSA,
which was developed much more extensively. Although such
models are no longer state-of-the-art, LSA is still commonly
used in psycholinguistic research as a measure of the relatedness
of words or texts.1 For example, in a priming experiment, you might
try to ensure that the relatedness of primes and targets in different
conditions is the same by showing that their similarities in LSA are
about equal. LSA is also of interest because some of its proponents
specifically argued that it is a model of human knowledge or word
meaning (Landauer, 2007), and models using similar techniques
continue to be tested against human psychological data (e.g.,
Mandera et al., 2017). Such tests seem to imply that LSA and
similar techniques might be a possible model of semantics.
The original LSA model was trained on a corpus of 4.6 million

words (Landauer &Dumais, 1997, p. 218). To fit LSA, the corpus is
divided into sections, called “documents.” Those sections might be
articles (e.g., encyclopedia entries, newspaper stories) or simply
paragraphs of a longer work. The system tags whether each word
occurs in each document, forming a large matrix of words by
documents. This matrix is reduced by singular value decomposition
(SVD) to produce a low-dimensional vector for each word called a
“word embedding” (see Martin & Berry, 2007, for a detailed
explanation). This process has the effect of giving related words
similar vectors because their patterns of co-occurrence were similar
in the original matrix. In LSA, it is not merely each word’s co-
occurrence with other words that is important, but second-order co-
occurrences, such that if two words both co-occur with the same
other words, their LSA meanings (vectors) will be similar.
Thus, according to LSA, word meaning is represented through its

word embedding. The vector is not interpretable in and of itself but
in terms of its relation to other words. Word similarity is measured
by calculating the cosine or dot product of the two vectors. Crude
sentence representations can be constructed by adding together the
vectors of its component words, or other operations analogous to
predication (Kintsch, 2001). The system can be applied to various
tests, such as choosing synonyms, completing a sentence, or evalu-
ating whether a sentence is a good summary of a passage. Related
probabilistic models can also identify topics in documents (Blei
et al., 2003; Griffiths et al., 2007). Finally, Landauer and Dumais
(1997) showed that LSA could even score a “passing” grade on part
of the TOEFL test of English for nonnative speakers.
Models based on text co-occurrence were limited in their ability to

identify semantic relations beyond similarity (see below). However, a
research program arose to augment such models so that they could
serve as the basis for identifying superordinates, synonyms, part–whole

relations, and the like (Baroni, Bernardi, & Zamparelli, 2014; Baroni
et al., 2010). One technique was to start with labeled corpora, in which
the part of speech of each word was identified, allowing better
identification of relational versus substantive terms. Another technique
was to look for specific kinds of patterns that linguistic analysis
suggests would indicate a given relation, for example, noun–verb–
noun phrases, adjective–noun pairings, possessives, prepositional
phrases, and so on. Such approaches were fairly successful in identi-
fying specific lexical relations, but they required linguistic sophistica-
tion and specific analyses to identify each relation of interest, and the
emphasis in the field seems to have returned to less directedmodels that
rely on much more intensive computation, as we describe next.

After the development of LSA and related models, a different
approach arose for deriving meaning from text sources (Mikolov
et al., 2013; Pennington et al., 2014). To distinguish these classes of
methods, Baroni, Dinu, & Kruszewski (2014) called the earlier
approach count models (as they rely on co-occurrence counts of
words) and the newer approach predictive models. As the name
suggests, these models attempt to learn words by trying to predict
the probability P(w | C) of a missing word w given its context C
(alternatively, skip-gram models, which we don’t discuss here,
predict a surrounding context given a word). For example, say
the prompt is, “Chris bit into the juicy<MASK> and placed it on the
kitchen counter.” A plausible guess would be some kind of food,
possibly a fruit like plum or orange.

A popular predictive model is Continuous Bag-of-Words
(CBOW; Mikolov et al., 2013), which is illustrated in Figure 1A.
CBOW has been trained on enormous corpora; for instance, in this
article, we analyze a large-scale CBOW model trained on the
Common Crawl corpus of 630 billion words. CBOW learns a
word embedding for each word in the corpus (Figure 1A; light
blue boxes), which are the analogs of the LSA word embeddings.
CBOW takes a context window C and computes the average
embedding, and then compares this average vector to possible
output words w using the equations,

simðw,CÞ = w⊺
�

1
jCj

X
ci∈C

ci

�
, PðwjCÞ = esimðw,CÞ

P
w
0
esimðw0

,CÞ :

The d-dimensional embedding for each candidate output word is
w ∈ Rd , and the embedding for each word in the context window is
ci ∈ Rd. In essence, the contextual window is summarized by the
average of the word embeddings (Figure 1A; dark blue box). Then,
the similarities must be computed between each of the candidate
words and the contextual summary (via dot product), using a
softmax function to normalize these similarities to become the
probabilities P(w | C) used for prediction. The word embeddings
are the main trainable CBOW model parameters (light blue boxes),
and they are learned via gradient ascent to maximize the (approxi-
mate) log-probability of the masked word.

Averaging (or summing) word embeddings have also been
studied as a means of composition. At a phrasal level, Mikolov
et al. (2013) added together word embeddings to construct phrase

1 A Google Scholar search shows that the original Landauer and Dumais
(1997) article was cited about 643 times in 2020. The citations seem to be
both discussions of computational theories of meaning and papers that use
LSA for evaluating experimental materials. Thus, although LSA is quite old
by NLP standards, it is still influential and used in practice.
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representations. For example, “French” + “Actress” resulted in a
vector most similar to “Juliet Binoche” (a prominent French
actress); “Vietnam” + “Capital” resulted in “Hanoi.” In other
work, Baroni and Zamparelli (2010) studied adjective–noun
compounds using LSA embeddings (“bad luck” or “important
route”), finding that matrix multiplication was better than additive
models at constructing the representation of adjective–noun phrases
(with the adjective as a matrix and the noun as a vector). It is
remarkable that useful phrase representations can be constructed in
such simple ways, but building sentence representation is more
complicated as we will see next.

Sentence Representations

Sentences specify particular relations among the entities and
actions they describe, and comprehension requires recovery of those
relations. The angry dog bit a sleeping snake does not mean the
same as A sleeping dog bit the angry snake. Jumbling the words
usually destroys the semantic representation, though speakers may
be able to figure out what meaning might have possibly been
intended: sleeping angry bit snake dog the a. However, if one
derives sentence meaning by adding together the vectors of the
words in a sentence, one will arrive at the identical representation for
all of the above examples, sensible and nonsensical. Amodel aiming
to build sentence representations from word representations would
need to have a model of syntax and sentential semantics in order to
combine the words to form propositions—an extraordinarily diffi-
cult problem. Computing sentence representations by summing
word embeddings, such as the word embeddings learned by LSA
or CBOW, is a nonstarter for capturing the full richness of sentence
meaning.
More sophisticated predictive models—known as language

models—build sentence representations using neural networks
(e.g., Devlin et al., 2019; Elman, 1990; Radford et al., 2019). As
with CBOW, language models learn representations that are useful
for predicting missing words given their surrounding context.
Although basic CBOW discards word order (see Mikolov et al.,
2018, for an extension that uses it), language models use word

order to learn meaningful syntactic and semantic structure, to some
degree.

Language models are more computationally intensive to train
than mere word representations. To jumpstart learning, language
models can be initialized with the pretrained word embeddings from
a simpler model (CBOW), which make up the first layer of the
language model (Figure 1B and 1C; light blue boxes). During
training, these word embeddings are fine-tuned along with all of
the other downstream parameters. With enough data and a sufficient
network capacity, the hope is that a model trained to predict missing
words will learn syntactic and semantic knowledge about language—
at least enough to solve practical NLP problems.

In pioneering work, Jeffrey Elman (1990) showed that Recurrent
Neural Networks (RNNs) can learn meaningful linguistic structure
when trained to predict the next word in a sequence (predicting the
next step/word in a time series given the past steps is known as
autoregressive modeling). As shown in Figure 1B, RNNs achieve
recurrence by using the previous hidden vectors as additional input
when predicting the next word. Through this mechanism, the hidden
representation of each word is influenced by the representation of
previous words. (Figure 1B shows an RNN with two layers. The
hidden representations are the dark blue boxes above each word.)
Elman showed that RNNs trained on simple artificial sentences can
show emergent lexical classes—implicit in how the word embed-
dings cluster—such as nouns, transitive verbs, and intransitive
verbs. Subsequent work introduced RNNs with more sophisticated
gating andmemory mechanisms, such as Long Short-TermMemory
(Hochreiter & Schmidhuber, 1997) or Gated Recurrent Units (Cho
et al., 2014), allowing networks to store and retrieve information
over longer time scales. For RNN-based language models, sentences
can be summarized and passed to downstream processing through a
variety of methods: Extracting the last time step’s hidden vector,
computing a simple average over hidden vectors across all time
steps, or computing a weighted average over hidden vectors using
weights determined on-the-fly by a downstream process (known as
attention; Bahdanau et al., 2015).

A new architecture, the Transformer, has started to dominate
the leaderboards for language modeling and other NLP tasks

Figure 1
Popular Neural Net Architectures, Including CBOW (A), RNN (B), and BERT (C)

(B) (C)(A)

average

Note. Models (A) and (C) predict a missingword (“toward”) given its context (“She swims<MASK> the bank”), while (B) predicts each word in
the sentence given the previous words. Light blue boxes indicate word embeddings (vectors), and dark blue boxes indicate hidden embeddings
(also vectors) after incorporating context. The hollow arrows in (C) are residual connections. See the online article for the color version of this
figure.
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(Vaswani et al., 2017). A Transformer architecture is shown in
Figure 1C. Transformers are neural networks that operate on sets: A
transformer layer takes a set of isolated embeddings as input
(Figure 1C; light blue) and produces a set of contextually informed
hidden embeddings (dark blue). Residual connections (large arrows
in the figure) help preserve the identity of these word representations
as they flow through each layer, meaning that each input element
(word embedding) corresponds more strongly to one element in the
output set (the transformed word embedding). As with RNNs,
transformer layers can be stacked for deeper contextualization
(Figure 1C shows two layers). Unlike RNNs, Transformers use a
“self-attention” mechanism that facilitates direct interaction
between each element in the set with all other elements, without
relying on an indirect recurrent pathway.
The isolated input embeddings aim, as with CBOW, to represent

the meaning of words in isolation (Figure 1C; light blue).2 As a first
step, these input word embeddings are concatenated with positional
information to mark word order. Through each transformer layer,
the word embeddings are updated based on the other words in the
sentence; for instance, a homonym like “bank”must, in some sense,
have a word embedding that captures multiple meanings of the word
in isolation (Figure 1C; light blue box above “bank”). When pre-
sented in context, such as “She swims toward the bank,” the hidden
representation should resolve to mean river bank rather than finan-
cial institution (Figure 1C; dark blue boxes above “bank”). We
examine this type of contextual resolution in more detail later in the
article.
As with RNN language models, Transformers can be trained as

autoregressive models that predict the next word in a sequence,
leading to networks that can seamlessly generate text but incorporate
context in only a unidirectional manner (left-to-right in English).
Below we examine GPT-2, a massive autoregressive Transformer
with 1.5 billion parameters (Radford et al., 2019), trained on a
corpus of 45 million webpages linked from Reddit. (The new,
much larger GPT-3 from Brown et al., 2020 was not available
for evaluation at the time of writing. We consider the implications of
GPT-3 in the General Discussion.) Alternatively, Transformer-
based language models can be trained on the Cloze task of pre-
dicting randomly masked words given their bidirectional context (as
shown in Figure 1C). We examine a popular model of this flavor
called BERT, with 340 million parameters, trained on a corpus of
3.3 billion words that combines Wikipedia and a corpus of books
(Devlin et al., 2019).

NLP as a Theory of Semantics

These large-scale neural networks have been remarkably success-
ful in NLP. They certainly do things that could only have been
dreamed of 25 years ago, and they provide help in many tasks such
as translation, summarization, question answering, and natural
language inference. They have limitations (see below), but they
are still a work in progress in a dynamically changing field. They
will continue to improve. However, what is their status as a theory of
psychological semantics?
The driving force in NLP is the development of more powerful

models that accomplish specific tasks rather than hypotheses about
semantics. In most cases, NLP articles do not make claims about the
relation of their models to psychology or linguistics (there are
exceptions, e.g., Baroni et al., 2010). Rather, most NLP articles

are motivated by applications. Interestingly, the people who have
been most likely to claim that these models could be theories of
psychological semantics seem to be psychologists. For example,
Landauer (2007) explicitly argues that LSA provides a theory of
semantics (see Kintsch, 2007, for a more nuanced approach). Others
have tested the ability of such models to explain human data
(e.g., Baroni, Dinu, & Kruszewski, 2014; Ettinger, 2020; Hill
et al., 2015; Lewis et al., 2019; Louwerse, 2007; Mandera et al.,
2017; Marelli et al., 2017; Rogers et al., 2020). That is, the models
are tested in the same way one would test a theory of lexical
representation. To the extent that we see agreement between humans
and models, one can take this as evidence for the validity of these
approaches as psychological models. Whether or not modelers
intend their models as psychological accounts, we believe it is
important to explicitly outline the challenges of interpreting all these
models as psychological theories. (Earlier critiques of this approach
within psychology are discussed in the “Summary of Desiderata”
section.)

To work up to our argument, we first discuss older computational
theories that have also been proposed as representations of psycho-
logical semantics and whose shortcomings are well known.

Early Computational Theories of Psychological
Semantics

Perhaps the first computational theory of meaning in psychology
was provided by Charles Osgood and his colleagues (Osgood et al.,
1957). Working within a behaviorist framework, Osgood did not
have a vocabulary to talk about mental representations as later
researchers would. Therefore, he attempted to operationalize seman-
tics in terms of behavioral measurements, in particular, rating words
on adjectival dimensions like fast–slow and happy–sad. Osgood did
this for many different scales and then submitted the results to a
factor analysis, which was (often) able to reduce the data to three
orthogonal scales, which he called evaluative (good–bad), potency
(strong–weak), and activity (tense–relaxed). Words with similar
values on these scales behaved similarly in certain tests; experi-
mental manipulations had sensible effects on the words’ values on
those dimensions.

Other approaches followed some years later, when new techni-
ques of psychological scaling were invented. The creation of
multidimensional scaling and clustering algorithms allowed re-
searchers to represent the similarity of stimuli in comprehensible
terms (Shepard, 1974). Within semantic memory research, Rips
et al. (1973) famously fit scaling solutions for a set of mammals and
birds (separately) and showed that these scaling solutions helped to
predict categorization performance. First people rated the similarity
of all the pairs of stimuli (e.g., bear–mouse). Then these data were
combined and reduced into a low-dimensional spatial representation
that simultaneously represented the similarities of all the items at
once. Such scaling solutions can be seen as semantic representations
and can predict human performance. For example, the distance
between an item and its category name (e.g., bear-mammal, penguin-
bird) predicted how long it took subjects to classify items in a

2 While our discussion uses the term “word embeddings” for simplicity,
more complex tokenizations based on pieces of words are typically used in
large-scale systems (e.g., Sennrich et al., 2016).
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sentence evaluation task (e.g., true or false: “All bears are mam-
mals”; “All birds are penguins”).
Scaling solutions are useful for predicting behaviors that require

comparing items to one another (e.g., classification, memory con-
fusions) because these models represent the overall similarity of the
scaled items. However, scaling solutions and Osgood’s proposal
suffer from the same problem, namely that they do not include the
critical information that people must know in order to actually use
those words in normal language activities. For example, in the
scaling solution for mammals, Rips et al. noted that their solution
seemed to indicate two main dimensions: size of the animal and its
predacity (i.e., was it a predator or prey?). However, those dimen-
sions do not specifically pick out particular mammals well enough to
identify them. That is, which mammal is a midsized moderately
predacious one? Which is large but very much prey? People know
hundreds of animals. In order to knowwhen to use names like sheep,
goat, or cow, language users must know what they look like, what
they eat, where they live, how they move around, and many other
facts. If you see a drawing of a lone sheep, you can immediately
label it “sheep,”without the drawing indicating the animal’s size and
without seeing it being preyed on. Osgood’s three dimensions also
simply don’t tell us what the word means. You could know a word’s
evaluation, potency, and activity to three decimal places, but you
still wouldn’t knowwhether the word is a noun or a verb, concrete or
abstract, or even what semantic domain it was in (as Osgood et al.,
1957, p. 323, acknowledged).
Scaling solutions of this sort are good at representing the simi-

larity of various concepts or words to one another, but they simply
do not contain the body of knowledge people have about those
things that controls the use of those words. Furthermore, the
dimensions discovered in the scaling solutions are typically ones
that help to distinguish the stimuli as a whole but often do not
include information that is essential to understanding a specific item.
Distinguishing sheep from goats might require knowledge of the
specific bodily shapes, proportions, and parts of the two creatures,
most of which is missing from the low-dimensional space. Scaling
solutions do not address the primary desiderata of a theory of
semantics (Table 1): Describing a perceptually present scenario,
explaining what listeners understand when they hear that descrip-
tion, or choosing words based on desires and goals. If you are
thinking that you hope to see goats at the farm, perhaps generating a
mental image of what you hope to see, that would not match the
information in the multidimensional scaling or in Osgood’s dimen-
sions sufficiently to pick out the word “goat” instead of the names of
other farm animals. To be fair to early researchers in this area, there
literally was not enough computing power in the world to run the
kinds of sophisticated and massive NLP models that exist today, nor
was there the know-how needed to construct the deep learning
models that are now ubiquitous.
The low-dimensional scaling solutions are precursors to LSA

embeddings and other NLP techniques developed since the 1990s,
facilitated by the availability of large text corpora and more power-
ful computers. Scaling solutions based on human similarity judg-
ments can be laborious to produce, especially for a large number of
items. The similarity matrix for N items requires N*(N−1)/2 entries,
each of which is an average of multiple human ratings. LSA skips
the tedious step of collecting lexical judgments and instead assumes
that a lot of information can instead be acquired from the co-
occurrence patterns of words in text corpora. We do not question

this assumption; a vector of 400 values (or larger in recent models)
can certainly contain much information. Our central question,
however, is whether modern NLP models provide an account of
a language’s semantics, as the question is understood in either
linguistics or psychology. Do these modern approaches go far
enough in closing the gap between early scaling methods and
our desiderata for a theory of semantics?

Semantic Similarity

A basic method for analyzing word embeddings is to look at their
nearest neighbors, as reported in a number of articles by model
proponents (see below). It would be ideal to be able to identify the
semantic features underlying each word, which would tell us when
the model would apply those words. But since these models do not
have readily interpretable features, researchers have looked at the
words that are similar to them to try to understand what the models
think the words mean. The way to do this is to identify words that
have similar embeddings, which are the semantic representations
that control word use and understanding in these models. These
similar words should be from the same semantic domain and
hopefully from the same category, with overlapping features. Words
that are merely associated or that have some other kind of relation,
like part–whole, object-attribute, or complementary functions are
generally not semantically similar (in the sense of Tversky, 1977)
and so are not used in the same way. For example, one of us has
trouble distinguishing SUVs from minivans and is apt to apply one
name to the other kind of vehicle. But he still has a general idea of
what these words refer to and can usually be understood even when
he makes a mistake with one of them. However, if he instead
confused “SUV” with “wheel,” one would have to say that he was
very confused about at least one of those words—even though
wheels are part of SUVs and have an obvious semantic relationship.
All SUVs have wheels, but they are not similar to wheels; they are
similar to minivans. A number of models have problems with just
this kind of confusion (see Hill et al., 2015, for a full discussion),
although we will show that more recent NLP models seem to do
much better.

Consider the nearest neighbors of dog reported by Dennis (2007)
in the LSA Handbook: barked, dogs, wagging, collie, leash, bark-
ing, lassie, kennel, andwag. (Readers may easily test the model with
their own words at http://lsa.colorado.edu/.) Of the nearest neigh-
bors, one is an inflected form of dog, four are actions, two are
associated things, and two are subordinates. We find this list
problematic. The subordinates (collie and lassie) are clearly similar
in meaning to dog. However, the actions are not. Actions are from an
entirely different semantic domain with different semantic proper-
ties, such as whether they are extended in time or punctate, which do
not apply to objects. Barking and wagging are certainly actions that
dogs do, but these actions should not have highly similar semantic
representations to dogs. Similarly, the associated objects like leashes
and kennels are obviously related to dogs, but a dog is not similar to
a kennel. Dogs are animals that live and breathe and reproduce;
kennels are human-made structures made of metal and wood. The
properties of dogs are not properties of kennels and vice versa. The
words semantically similar to dog should have been names for other
midsized, domesticated mammals, like cat, and other canines, like
wolf and coyote. Superordinates of dog, like pet and mammal, are
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similar in meaning but are not in the list. See Lund and Burgess
(1996), for similar issues with HAL’s neighbors.
LSA, like most NLP models, keeps inflectional and morphologi-

cally modified versions of words separate; that is, dog and dogs are
two separate words, a consequence of analyzing text rather than
linguistic entities such as morphemes and stems. The output doesn’t
always correctly identify such words as being highly similar,
however. Computed has a similarity value of only .35 to compute
(cosine similarity; retrieved from the LSA website). The word
saddle is more similar to horse than horses is (.91 vs. .83). This
could be a matter of insufficient data to fully identify the representa-
tions of less frequent forms, but it could be that in fact compute and
computed occur in slightly different contexts, and the model is
correctly identifying that. The problem is that the two words are
synonymous except for tense. Surely they are more similar in
meaning than compute is to valuation and inventory, which are
rated as more similar. Thus, if the LSA representation is “correct” in
distinguishing these two-word forms because they do not occur in
the same contexts, then it is incorrect in claiming that its vectors
represent semantic similarity.3

More sophisticated models may organize their semantic repre-
sentations differently, and thus we examined the nearest neighbors
of more recent NLPmodels. We tested a CBOW system trained on a
much larger corpus of 630 billion words (fastText implementation;
Mikolov et al., 2018). The nine nearest neighbors of “dog” accord-
ing to CBOW are as follows: dogs (0.85 cosine similarity), puppy
(0.79), pup (0.77), canine (0.74), pet (0.73), doggie (0.73), beagle
(0.72), dachshund (0.72), and cat (0.71).4 While LSA included
actions and objects as close associates, CBOW does not; it only
includes domesticated mammals and doesn’t stray into other seman-
tic domains. The nearest neighbors strictly include inflectional and
morphological variants (dogs and doggie), subordinates (beagle and
dachshund), a superordinate (canine), and other close semantic
associates (puppy, pup, pet, and cat). CBOW appears to be
muchmore successful than LSA in computing semantic similarity—
a result that aligns with past work (Baroni, Dinu & Kruszewski,
2014)—although corpus size and selection may be a critical factor.
Hill et al. (2015) tested models on a particularly challenging set of
word pairs, some of which were highly associated but not similar.
They generally found that both count and prediction models were
overly influenced by word association when judging similarity. (See
also Lupyan & Lewis, 2019, for examples of both successes and
shortcomings of such models.)
CBOW may even outperform more sophisticated language mod-

els on semantic similarity, since it focuses solely on learning word
representations rather than sentence representations. Nevertheless,
we examined the word embeddings of two large-scale language
models, BERT (Devlin et al., 2019) and GPT-2 (Radford et al.,
2019), as implemented in the Huggingface Transformers library.5

As with CBOW, we found semantically coherent neighbors. The
word embeddings were extracted from the first layer of both models
(the “embedding layer”; Figure 1C; light blue), before the self-
attention layers that mix the word representations together. The nine
nearest neighbors of “dog” according to BERT are dogs (0.67 cosine
similarity), cat (0.44), horse (0.42), animal (0.38), canine (0.37), pig
(0.37), puppy (0.37), bulldog (0.37), and hound (0.35). Like with
CBOW, all of these neighbors are from the same semantic domain.
The details are not always exactly correct; surely canine and puppy
are more semantically similar to dog than horse is; pig should not be

as similar as bulldog is; and other canine animals are missing.
However, the list manages to include only inflectional and morpho-
logical variants, superordinates, subordinates, and other animals.
Similarly, the 11 nearest neighbors for “dog” according to GPT-2
are dogs (0.7),Dog (0.65), canine (0.54),Dogs (0.50), puppy (0.46),
cat (0.38), animal (0.37), pet (0.37), horse (0.35), pup (0.35), and
puppies (0.35). The list is similar to BERT’s except that GPT-2 is
case sensitive. Again, the model may not be picking up some details,
as horse appears before other canines.

The more powerful NLP approaches also seem to better capture
inflectional and morphological variants. Unlike LSA, the stronger
NLP models find that the most similar word to horse is its plural
form horses (this pattern is also found for dog, dolphin, knife, bank,
etc.). Similarly compute and computed are close neighbors in these
models but not in LSA. Thus, these more recent models seem to
have escaped some of the shortcomings of the earliest count models,
although it still should be mentioned that saddle is more similar to
horse than many other mammals are (e.g., thoroughbreds, mule,
donkeys, and greyhound for CBOW; colt, thoroughbred, zebra, and
bull for BERT). Overall, the models are now in the right semantic
ballpark but have not yet gotten the details right.

A more difficult test of semantic representation involves homo-
nyms, like bank that have multiple meanings, for example, a river
bank or a financial institution. Homonyms are a challenge for word
embeddings: These words have multiple meanings but have only one
embedding to represent them. (See Kintsch, 2007, for a good
discussion of approaches to ambiguity in statistical models with a
single meaning for each word.) Transformers, however, are not
restricted to isolated word embeddings. They can incorporate context
from much larger chunks of text, with hope that the hidden embed-
dings for bank can be refined appropriately (Figure 1C; dark blue;
see also Ethayarajh, 2020). Previous work has argued that Trans-
formers are especially well-suited to resolve the meaning of homo-
nyms through context (word sense disambiguation; McClelland
et al., 2019;Wiedemann et al., 2019), as anymodel of psychological
semantics must be capable of doing. Here, we test some simple cases
on homonym resolution with a Transformer.

3 One way to resolve this issue is to recognize that these embeddings
reflect many types of relations simultaneously, and that classifiers (or other
downstream processing) are needed to distinguish how two words—which
are similar via cosine—actually relate to one another. This approach can be
effective for detecting hypernymy (Roller et al., 2014) and other semantic
relations (part–whole, contradiction, cause–effect, etc., Baroni, Bernardi, &
Zamparelli, 2014; Lu, Batra, et al., 2019). Relatedly, the high-dimensional
embeddings can be projected along selected axes to create more interpretable
dimensions (size, dangerous, etc., Grand et al., 2018). Still, the need for these
methods implies that LSA and similar models alone, and as typically used in
psycholinguistics, are insufficient in representing semantic similarity.

4 We used the CBOW implementation trained on Common Crawl pro-
vided by the fastText library (Mikolov et al., 2018). The nearest neighbors
were also lightly filtered to exclude tokens with punctuation like “dog—”.
The results seem to depend on the size of the corpus and model details.
Mandera et al. (2017, p. 75) report nearest neighbors of the word elephant
for a CBOW model trained on movie subtitles, and the results are much like
the LSA results–a mixture of words related in various ways—unlike the
CBOW results we report here.

5 We used the largest available models, bert-large-uncased and gpt2-xl,
from https://huggingface.co/transformers/. The nearest neighbors were
lightly filtered to exclude repeated instances due to spacing differences,
and tokens with punctuation and numbers.
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To evaluate homonym resolution, we first presented the word
“bank” in an ambiguous sentence that is consistent with eithermeaning,
“She sees the bank.” The top-layer hidden embedding of “bank” was
extracted (Figure 1D; top dark blue box above “bank”) and compared
with the embedding of related top-layer embeddings of other words
(treasury, ATM, shore, and beach) given the same framing, for
example, “She sees the treasury” or “She sees the shore.” We can
make only targeted comparisons between particular embeddings rather
than evaluate all of a word’s neighbors, since evaluating sentences is
computationally expensive. The results of these targeted tests are
summarized in Table 2. As with the isolated embeddings, BERT
sees bank in the ambiguous context as more similar to the financial
words treasury and ATM than it does to words related to bodies of
water, shore and beach. However, if the framing for bank instead
suggests an aquatic meaning, “She swims toward the bank” (Table 2;
row 2), the contextualized embedding for bank is now more similar to
the embeddings for shore and beach than it is to treasury and ATM.
Finally, if the framing for bank more clearly suggests the financial
meaning—“She deposits it in the bank”—the words treasury and ATM
are again themost similar to bank (Table 2; row 3). Thus, BERT seems
promising as an architecture for resolving meaning given context, at
least as measured through embedding similarity. Replacing the pro-
noun “She” in Table 1 to either “He” or “I” gave similar results. For this
test of bank disambiguation, we found that GPT-2 behaved similarly
to BERT.
To further examine BERT’s abilities, we examined another

homonym, “lead,” meaning an advantage versus a type of metal.6

When presented in an ambiguous context (“She has the lead.”), the
embedding for lead is slightly closer to meanings of advantage and
win (Table 3; row 1). However, when presented in a context that
evokes interacting with a physical object or substance (“She lifted
the lead.”), the embedding for lead is now more similar to iron and
metal than to advantage and win (Table 3; row 2). In a context that
evokes sports (“She scored and took the lead.”), the embedding for
lead is now more similar to advantage and win than it is to the other
words (Table 3; row 3). Unlike BERT, we found that GPT-2
preferred the advantage interpretation in all cases. Taking these
results and related studies together (Ethayarajh, 2020; Wiedemann
et al., 2019), it’s clear that BERT has some ability to resolve the
meaning of homonyms given context.
We must note that this test is not extremely difficult, as it shows

that the word’s representation in context shifts toward the correct
meaning rather than actually representing the correct meaning in
detail. A complete model would have to arrive at a specific
representation of the word meaning in detail, for example, a heavy,
flexible metal, poisonous to consume, able to block radiation, and so

forth, while rejecting the properties from other noun and verb
senses. Moreover, simpler models can also disambiguate some
polysemous words through their surrounding words, either by
computing the average embedding of the neighbors (Erk, 2012)
or by inferring the latent topic (Griffiths et al., 2007). It’s notable,
though, how natural the Transformer architecture is for disambigu-
ating meanings, without using any auxiliary machinery or training.

Their imperfections notwithstanding, large-scale predictive mod-
els appear to be much improved compared to LSA. The NLPmodels
can capture important aspects of semantic similarity, including that
nearest neighbors should come from the same semantic domain and
that word meanings can be resolved with context. LSA is still widely
used in psychological studies, but these examinations and the work
of others (Baroni, Dinu & Kruszewski, 2014) speak to replacing
LSA with stronger word embeddings from techniques such as
CBOW, which are readily available in pretrained form (see fastText
software; Mikolov et al., 2018). Next, we discuss more quantitative
tests than the nearest neighbor analyses popular in this literature, as
well as more direct comparisons with human judgments.

Human Behavioral Judgments and Ratings

Researchers have sometimes compared the judgments of NLP
models to those of humans who rated pairs of items on various
dimensions. Positive results for such comparisons would seem to
give credence to the notion that the models represent meaning as
people do. Pennington et al. (2014) compared GLoVE similarity
ratings to human similarity and relatedness ratings, for example,
finding that correlations ranged from 0.48 to 0.84 on a variety of data
sets. More recently, Mandera et al. (2017) tested various models on
their abilities to predict word similarity and relatedness ratings. The
authors note that a major test of lexical access is semantic priming,
and so they also employed the models to predict the size of priming
effects of word pairs from a large database of priming studies. The
results are difficult to summarize, but one important generalization
(p. 75) is that the large text corpora were best for vocabulary-type
tests (like TOEFL), but smaller corpora based on film scripts and
subtitles were quite good for association and priming. In general,
predictive models did better than count models, consistent with
findings from Baroni, Dinu and Kruszewski (2014). Given that
some of these comparisons were performed by psychologists and
appeared in psychological journals, this seems to imply that such

Table 2
Cosine Similarities Between the Top-Level Embedding of “Bank” in
Context (Rows) and Underlined Words in a Neutral Frame, “She
sees the _____” (Columns) in the BERT Model

Fillers for “She sees the _______ .”

Context sentence treasury ATM shore beach

“She sees the bank.” 0.62 0.73 0.61 0.60
“She swims toward the bank.” 0.48 0.51 0.74 0.63
“She deposits it at the bank.” 0.55 0.66 0.51 0.53

Note. The two highest-rated word completions are in boldface.

Table 3
Cosine Similarities Between the Top-Level Embedding of “Lead” in
Context (Rows) and Words in a Neutral Frame, “She has the
______” (Columns) in BERT

Fillers for “She has the ________ .”

Context Sentence advantage win iron metal

“She has the lead.” 0.55 0.59 0.54 0.54
“She lifted the lead.” 0.53 0.54 0.58 0.59
“She scored and took the lead.” 0.58 0.67 0.47 0.46

Note. The two highest-rated word completions are in boldface.

6 Actually, this word is highly polysemous, covering six large pages in the
OED. We focus on these two common senses of the word, testing it in
sentence contexts that make clear it is a noun.
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models provide accounts of psychological semantics. For example,
(Mandera et al., 2017, p. 57) describe their project as investigating
“the relevance of these models for psycholinguistic theories,” and at
the end conclude that “we can unequivocally assert that distri-
butional semantics can successfully explain semantic priming
data” (p. 75), although they do not draw specific psychological
conclusions.
One important point is that not all of these tests are providing

windows onto word meaning per se. That’s not to say that there is no
influence of semantics, but some tests are primarily (or equally)
subject to other variables. For example, consider word priming and
association. Both of these are strongly affected by the frequency and
co-occurrence of words (and their referents). Indeed, for a long time,
it was a controversial question as to whether semantic similarity
caused lexical priming at all when the words were not actually
associated. In a meta-analysis, Lucas (2000) found semantic simi-
larity does cause priming, but less than association does (about half
the effect of association priming). The problem with association is
that it is often reliant on contiguity, and although similar things may
certainly co-occur in life or in language—for example, cats and
dogs—so do things that are not similar, like cat and meow, cat and
tuna, cat and whiskers, or cat and bowl. Knowing that “cat” is related
to “bowl” and so on does not tell you what a cat is, what it looks like,
or what things in the world should be called cat. Thus, capturing
word associations in a model does not necessarily mean that one has
captured word meaning. If it is claimed that the cosines of word
embeddings can predict both similarity and associations (priming,
etc.), this suggests a conflation of theoretical constructs that needs to
be clarified, as these are not psychologically the same things. This
also has implications for the use of LSA and other models for the
purposes of experimental control: It must be carefully considered
exactly what the similarity of word (or phrase) representations in a
model is measuring (e.g., association? relatedness? similarity?)
when such models are used to equate materials.

Desiderata

So far, we have examined newer NLP models in terms of close
semantic similarity and found the results to be promising. However,
semantic similarity is only one component that a model of psycho-
logical semantics would need to explain. At the beginning of this
article, we asked what human behaviors a theory of lexical seman-
tics should explain. We suggested five desiderata (Table 1). Next,
we review these desiderata in the context of recent achievements in
NLP and AI more generally. We conclude that despite the expand-
ing capabilities of modern systems, they are not yet plausible
accounts of psychological semantics.
The following sections examine each of the desiderata in turn. In

general, we find that the purely text-based NLP systems that are
most cited in psycholinguistics research can be quickly shown to be
inadequate. However, there are many recent models that are less
well known to psychologists and that showmuch more promise. We
review the most relevant such systems for each desideratum and also
analyze where its shortcomings may still lie. Many of these models
include interfaces with vision and action, allowing them to verbally
describe or act on the world based on linguistic input. Because
models have been extended in different ways, we consider different
ones in each section. It is conceivable that eventually, such models
could be linked up to create a complete system (or that one model

could be integrated with different input and output modules). In fact,
many problem-specific systems use the same pretrained word
embeddings or language models as their starting point.

It is important to emphasize that we are not requiring a model of
semantics to actually interact with the world in all the ways we
discuss below. However, a potential theory of semantics needs
representations of objects, properties, relations, categories, and so
on that could describe the world if appropriate interfaces were
provided. A model can be a potential theory of human semantics
even if it doesn’t have all the elements necessary to actually perform
the task under discussion. However, attaching input and output
modules to the model provides one way of making sure it forms
semantic representations that allow its use of language to make
contact with the world.

Word Representations Should Support Describing
a Perceptually Present Scenario, or Understanding
Such a Description

We understand that none of the NLP models discussed so far has
the interface to actually interact with the world: no cameras,
microphones, mechanical hands, and so forth. More importantly,
their word representations are only meaningful in relation to other
words; perceptual features and actions associated with the word’s
referent are not represented. For example, the word embedding of
knife will be related to words that describe the shape, parts, and
functions of knives (say blade and sharp), but those words are not
perceptual features and are represented in terms of their relations to
still other words, and so on. As a result, there is nothing in the word
vectors of text-based models that would allow their users to label an
object or describe a scene (Harnad, 1990). The visual features of a
scene have no links to semantic features of the words. Bender and
Koller (2020) argue that text-only models cannot, even in principle,
learn meaning. In this regard, popular models of NLP are clearly
inadequate as models of word meaning. We should note that this
issue is not confined to computational models of semantics, as it has
been a point of dispute about psychological theories of concepts and
symbols, as represented by the debate over embodied cognition (see
the “Past Critiques Within Psychology” section). The essence of that
debate is whether traditional theories of cognition can explain how
mental symbols are connected to perceptual representations (Barsalou,
1999). Thus, this question has importance beyond the present discus-
sion of NLP models.

The limitations of being based solely on text do not mean that
NLP models will never serve as accounts of psychological seman-
tics, however. There is a research area that combines computer
vision with NLP models in ways that have greater promise for
developing a more realistic model (see Baroni, 2016, for a review).
Kiela et al. (2016) propose embodiment in virtual environments as a
long-term research strategy for AI. Reviewing evidence from
cognitive neuroscience, McClelland et al. (2019) argue that lan-
guage representations are deeply integrated with multisensory per-
ceptual representations, as well as representations of situations and
events. They propose that languagemodels should be placed into the
context of other modules, of perception, action, memory, and so
forth. Bisk et al. (2020) describe a roadmap for NLP that incorpo-
rates multimodal, embodiment, and social factors. In this section, we
follow previous work in highlighting the multi-modal nature of
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psychological semantics, while also discussing how its conceptual
basis may need to go beyond current work in multimodal machine
learning.
Psychological semantics supports far more than word similarity.

As we have noted, for human speakers the word meaning of knife
contains information about the shape, parts, functions, and likely
locations of knives, such that when they see or think about some-
thing having these properties, they can produce the word knife. A
complete model would also understand the uses and implications of
the concept (e.g., sharpness, dangerousness). If they hear, “I got the
knife, but the blade was dull,” they should understand that the blade
is part of the knife, and the blade is supposed to be sharp for carrying
out certain functions (slicing, dicing, etc.). Similarly, if they hear,
“I got the knife, but the handle was broken,” they should understand
that the knife will be more difficult to use but is still potentially
dangerous. Finally, if they hear “I didn’t have a knife, so I grabbed
my keys to open the packing tape,” they understand that the concept
of a knife is characterized, in part, by a functional role that other
objects can satisfy in some circumstances. A model must represent
the parts and properties of knives in a coherent fashion in order to
understand events described in the text. Not everything one knows
about knives must be included in the lexical representation, but
enough must be so that basic sentences can be understood and
appropriate inferences drawn.
AI researchers are certainly working on various forms of multi-

modal learning. A recent flurry of work has focused on integrating
vision and language, leading to creative combinations of computer
vision and NLP models. Active research areas include image-
caption generation (Chen et al., 2015; Vinyals et al., 2014; Xu
et al., 2015), visual question answering (Agrawal et al., 2017;
Das et al., 2018; Johnson, Hariharan, van Der Maaten, Fei-Fei,
et al., 2017), visual question asking (Mostafazadeh et al., 2016;

Rothe et al., 2017; Wang & Lake, 2021), zero-shot visual category
learning (Lazaridou et al., 2015; Xian et al., 2017), and instruction
following (Hill, Lampinen, et al., 2020; Ruis et al., 2020). The
multimodal nature of these tasks grounds the word representations
acquired by these models, as we discuss below.

Neural architectures for these tasks typically follow one of two
templates. The first template is appropriate for tasks that take visual
input and produce language output, such as caption generation or
question asking. As shown in Figure 2, the basic architecture
involves two neural networks working together: a visual encoder
and a language decoder. These models often start with a pretrained
encoder and, less frequently, a pretrained decoder. The encoder is a
convolutional neural network (ConvNet) pretrained on an object
recognition task, such as ImageNet.7 The encoder produces a “visual
embedding” (analogous to the word embeddings discussed earlier),
and this is passed as a message to the decoder. The decoder is a
language model that generates text, following the RNN language
models discussed previously (Figure 1B). The language decoder
can be trained from scratch, or it can start with pretrained word
embeddings (e.g., CBOW) or a fully pre-trained language model
(e.g., GPT-2). After initialization, the encoder and decoder are
trained jointly (end-to-end) on the downstream task of interest,
such as image captioning, allowing the visual embeddings to link up
with the word embeddings in service of solving the task. The
encoder can communicate with the decoder by passing a single
visual embedding that summarizes the image content (Vinyals et al.,
2014). More powerful models pass a set of visual embeddings from
the encoder to the decoder, using different embeddings for different

Figure 2
A Neural Architecture for Caption Generation (Xu et al., 2015)

Input Image encoder decoder

attention

(A)

(B)

Attention 
maps

Note. (A) An input image is processed with a ConvNet encoder, producing a visual embedding for each spatial
location (red). The encoder passes these messages to the recurrent decoder (blue), which produces a caption word-by-
word. Each decoder step attends to different spatial locations in the input image. (B) Where the decoder is attending
when producing words umbrella and ground as outputs. See the online article for the color version of this figure.

7 ImageNet and all data sets in this article were used only for noncom-
mercial research purposes, and not for training networks deployed in
production or for other commercial uses.
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spatial locations in the image. Using these localized embeddings, the
decoder learns to attend to different parts of the image as it produces
words (Xu et al., 2015). Impressively, these models can show
emergent visual-language alignment; the decoder often attends to
the umbrella part of the image when producing the word “umbrella”
in the caption (Figure 2), perhaps analogous to human attention
when describing scenes (Griffin & Bock, 2000).
The second template for neural architectures is common in

grounded language understanding tasks such as question answering
and instruction following. As shown in Figure 3, the architecture
has two encoders; a visual encoder processes the image (as in
Figure 2) and a language encoder processes the question or instruc-
tion. The encoders feed into another neural network that produces an
output (e.g., the answer to the question, or the actions to perform a
command). Similarly, the challenge is aligning the visual and
language embeddings to successfully perform the task of interest.
These multimodal models can learn useful visual-language align-

ments, as measured through correlational analyses of multimodal
embeddings (Roads&Love, 2020) and better-than-chance predictions
of category labels for novel visual classes based on text-only experi-
ence with those labels (zero-shot learning; Xian et al., 2017). Through
pretraining and fine-tuning, these multimodal neural networks can
absorb truly immense quantities of visual and language experience. In
a typical case, the models learn from a million or more labeled images
for visual encoder pretraining, billions of words through word embed-
ding pretraining, and hundreds of thousands of image-caption pairs for
task fine-tuning over the entire model. Taken together, could multi-
modal models trained on these massive data sets provide that neces-
sary connection between words and the world?
Multimodal models help to provide substance to semantic repre-

sentations, and this promising research direction will undoubtedly
progress further. Nevertheless, as they stand these models are not
satisfactory accounts of psychological semantics; learning to associate
visual patterns with words is not sufficient to provide semantic
knowledge. Returning to the knife, one must ultimately know things
like the relation between the handle and the blade, what their names
are, what each is used for, where andwhen a knife typically occurs, the

function of a knife, how that function would change with a dull blade
or a broken handle, and so on. This information must be abstract
enough to generalize across modalities and be integrated with broader
knowledge (Murphy &Medin, 1985; Rumelhart, 1978). For example,
if Todd says, “I need to open this box somehow,” Marjorie could
answer, “Do you want a knife?” General knowledge of packaging,
cutting, and the functions of various tools can lead to retrieval of the
concept and then the word knife. By their nature, images do not
directly represent functions and goals.

Of course, a proponent of NLP systems might propose that in fact
such models do include detailed information about the structure of
words since that information is embodied in the huge text corpus that
the model is trained on. There may well be sentences in a corpus
about a knife being broken or the handle coming off or a dull knife
being dangerous, the blade in particular being dull, and so forth,
which together might contain exactly the information needed to
recognize and think about knives. If these models are paired with
computer vision modules, they might well be able to create compo-
nential representations about the functions, properties, and parts of
knives that are necessary for word use.

We focus on the concepts suitcase and umbrella as informal tests of
this idea. We could have chosen a number of concepts to test instead
(bird, car, bridge, etc.); we chose suitcase and umbrella in part because
they are well-represented classes in the popular MSCOCO data set of
images labeled with captions (Lin et al., 2014), which focuses on 91
object categories.We tested a strong image captioning system based on
Xu et al. (2015) that was trained on MSCOCO and combines visual
input with language processing in the way we have described (Fig-
ure 2).8 The training set included roughly 1,600 scenes with suitcases
and 2,750 scenes with umbrellas, where each training scene was paired
with five human-generated captions as supervision. Indeed, the trained
network is quite good at generating captions for novel images like those
it was trained on. As shown in Figures 4 and 5, the image captioning

Figure 3
A Neural Architecture for Visual Question Answering

Input 
Image

Question:

visual
encoder

language encoder

Output

Note. An input image is processed with a ConvNet encoder (red), while a question input is
processedwith an RNN encoder (blue). Information from both encoders are combined in another
network (gray) to produce the answer to the question. See the online article for the color version
of this figure.

8 We used an updated version of Xu et al. (2015) for caption generation,
available at https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Ca
ptioning.
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system succeeds at identifying salient suitcases and umbrellas, gener-
ating reasonable captions that mention these classes. Some of the
captions demonstrate impressive acuity: “A couple of cats are laying in
a suitcase” or “A man is sitting on a bench with an umbrella.”
Additionally, NLP systems with word embeddings have a reasonable
sense of what concepts are similar to suitcase and umbrella: The nearest
neighbors of a suitcase in CBOW are suitcases (0.86), luggage (0.73),
duffel (0.7), backpack (0.67), and briefcase (0.67), and the neighbors of
the umbrella are umbrellas (0.7), parasol (0.59), parapluie (0.57),
brolly (0.57), and raincoat (0.54).9 Considering these apparent suc-
cesses, do these systems actually understand the meaning of suitcase
and umbrella?
These vision-meets-language models can identify suitcases or

umbrellas of the sort in their training set, but such tests do not require
the detailed knowledge of objects that we discussed above, that is,
their parts, their functions, and why they have the structure they do.
For instance, we find that the image captioning system overgeneralizes
the words suitcase and luggage to images that share superficial
features with these classes (Figure 6). A car with an open hood shares
some featureswith an open suitcase, but the neural network sees a blue
car with a hallucinated “suitcase on top of it,” demonstrating a shaky
understanding of both suitcases and cars. (Cars are another featured
class in the MSCOCO training set.) A dresser with open drawers
superficially resembles the types of luggage piles present in the
training distribution (Figure 4), but it is certainly not “a wooden
cabinet with a suitcase on top of it” or “a close up of a piece of
luggage.” Indeed, confusing awooden drawer or an entire dresser with
a suitcase would be a very heavy and impractical mistake.
We probe understanding of umbrellas in a different way, using an

“ad hoc umbrella test.” Since the image captioning system is good at

identifying umbrellas in the types of images it was trained on, we
evaluate whether it can generalize from this knowledge to more
abstract meanings of umbrellas that are not directly reflected in the
training corpus. In particular, some animals such as frogs and
monkeys occasionally hold leaves, flowers, and so forth. as natural
umbrellas when it is raining. Figure 7 shows a range of natural
umbrellas. These photos are striking because they are unexpected
yet easily recognizable portrayals of an umbrella, or at least the
function of an umbrella. In contrast, the state-of-the-art in machine
understanding lacks these abstractions. A strong object recognition
system (ResNet50; He et al., 2016) that perfectly identifies the
umbrellas in Figure 5 does not successfully classify any of the
ad hoc umbrellas; in fact, the model ranks the label “umbrella” as
quite unlikely compared to other labels. (The median rank for
“umbrella” is 181 of 1,000. The highest rank is 42.)10

Perhaps readers looking at those images may think, “If I saw these,
I’mnot sure I would spontaneously call them ‘umbrella’.” Perhaps, but
the task given to the ResNet50 is not quite spontaneous labeling—it is
more like comparing the image to its entire vocabulary and seeing
which words are most compatible with it. Therefore, we provide
underneath each picture four labels that the ResNet ranks higher than
the umbrella. The first one is the highest-ranked name. As can be seen,
two of these names are very reasonable (e.g., “tree frog”) but the
others are rather far off (e.g., “goblet, grey whale”). The three names
following are all labels that are ranked higher than “umbrella” for that

Figure 4
Captions Generated by a Neural Network for Scenes Depicting Suitcases

a pile of luggage sitting 
on top of a pile of luggage

a teddy bear is 
sitting in a suitcase

a couple of cats are 
laying in a suitcase

a suitcase that is sitting 
on the ground

a dog that is sitting 
in a suitcase

a cat laying in a 
suitcase on the floor 

Note. See the online article for the color version of this figure.

9 These are the five nearest neighbors that aren’t misspellings or alterna-
tive capitalizations.

10 We tested the ResNet50 on umbrellas but not suitcases because only the
former is a class in ImageNet ILSVRC challenge (Deng et al., 2009).
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picture. As can be seen, many of them cannot apply literally or
metaphorically to these scenes, such as “fountain, rotisserie, hook,
stove, walking stick,” or “volcano.”Readers may judge for themselves
whether they find the word umbrella a more appropriate label than
these. Our judgment is that it ismuch better, yet the ResNet50model is
not able to identify the relationships among the objects that make the
scene umbrella-like more than hook-like or volcano-like.
The image captioning system (Xu et al., 2015) does not fare much

better than the object recognition system. Despite generating plau-
sible captions related to umbrellas in Figure 5, the caption system
produces largely inaccurate descriptions of these scenes, including
“A bird that is sitting on a car” and “A close up of a vase with a
flower in it” (the phrases above the pictures in Figure 7). The novel
combination of a natural object used as an umbrella for an unex-
pected animal seems to have disrupted the system’s identification of
the animals. It does use the word “umbrella” once, but notably the
object recognizer did not consider “umbrella” a plausible label for
this same photo, highlighting the issues with abstraction and
robustness. A person may not spontaneously describe each image
in Figure 7 as an animal using an umbrella, but surely they would
recognize the fittingness of the description if asked.
Human word understanding is no doubt related to pattern recogni-

tion, but it is also conceptual and model-based, reflecting our under-
standing of the world around us (Lake et al., 2017). A computer vision
or NLP algorithm learns patterns that distinguish umbrellas from other
entities such as suitcases or cars, while a person also learns simple
models of these concepts that cover their key parts, relations, uses, and
ideals (Rumelhart, 1978). These models go on to support a variety of
tasks: classifying and generating new examples, understanding parts

and relations, inferring hidden properties, forming explanations, cre-
ating new yet related concepts, and so forth. (Lake et al., 2015;
Murphy, 2002; Solomon et al., 1999) and understanding sentences
describing all those things. For example, when children learn about
novel kinds of artifacts, they notice not only their shapes and parts, but
also how those parts relate to the object’s function. If the object is
modified so that it is still similar to learned examples but misses a part
that is essential to the function, children will not label it with the
learned name (Kemler Nelson, 1995). Object recognition is one part of
the input to our semantic system, but there must also be connections to
a deeper knowledge of the type discussed by research on human
concepts if we hope to capture people’s labeling of the world (e.g.,
Gelman, 2003; Keil, 1989; Murphy, 1988).

In sum, recent combinations of computer vision and NLP models
have taken important steps toward grounding text-based representa-
tions, an essential quality of any model of psychological semantics.
These multimodal models can accurately describe some perceptual
scenarios and understand enough to answer certain questions. They are
not yet at human levels of performance, likely because they lack
conceptual knowledge to interpret the visual images they are trained
on. Further progress may come from improvements in the training
data; it’s possible that through training on large-scale video/audio or
richer 3D environmental simulations, models will come to develop
more complete and useful semantic representations for words. How-
ever, our suggestion is that in order to explain how people describe and
understand perceptual scenarios, it will be necessary to use more
detailed and sophisticated representations of objects and scenes, of the
sort provided by “neuro-symbolic” models that use structured repre-
sentations (graphs, programs, etc.) to bridge between modalities rather

Figure 5
Captions Generated by a Neural Network for Scenes Depicting Umbrellas

a umbrella that is 
sitting on the ground  

a woman walking down a 
street holding an umbrella  

a couple of people 
sitting on top of a beach  

a close up of a 
red and white umbrella  

a man holding an 
umbrella in a park 

a man is sitting on a 
bench with an umbrella

a close up of a red 
and white umbrella  

a green and white 
umbrella on a cloudy day 

Note. See the online article for the color version of this figure.
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than relying exclusively on neural mappings (Johnson, Hariharan, van
Der Maaten, Hoffman, et al., 2017; Mao et al., 2019; Wang & Lake,
2021). This is a promising direction for building richer models of
psychological semantics, although current approaches aren’t as devel-
oped as their neural mapping counterparts. However, from a broader
perspective, we conclude that attempts to integrate the knowledge of
words with perceptual input are a promising avenue for developing
word meanings that have true semantic content.

Word Representations Should Support Choosing Words
on the Basis of Internal Desires, Goals, or Plans

We do not only walk around our world labeling the objects we see
and hear. We also mention objects that are not there but should be,
errors, unusual situations, goal states that wewould like to take place in
the future, and facts that we want our interlocutor to know. In some
ways, this issue is the opposite of the one just discussed. People need to
be able to produce words based on external inputs (describing a scene
or labeling an object) but also based on internal ideas. Standardmodels
of language production (Levelt, 1993) propose that a sentence begins
as a thought, a proposition of some kind that the speaker wishes to
communicate.Words are matched to components of the thought, and a
syntactic frame is selected that will match the structure of the
proposition. Further processes spell out the details of the sentence,
the phonetic structure of the words, and the motor sequences involved
in producing them. A theory of word meaning must deal with the
initial step in this process, the translation of idea to words.

The text-based systems we discuss do not have representations of
ideas, per se. That is, the nonlinguistic thoughts that then generate
linguistic representations are not present in them; all their repre-
sentations are in terms of how words relate to other words. Since
thought is not (or not solely) word-based (Fodor, 1975; Murphy,
2002), words must connect to concepts more generally. So far, this
aspect is missing from the systems we have described, and so they
cannot readily serve as models of spontaneous language production
and conversation.

Of course, there are dialog systems that have conversations with
users, and these systems vary in the structure and richness of their
internal states. Current systems tend to fall into two types (Chen
et al., 2017): (a) goal-directed systems with richer internal states
but limited language skills, or (b) text-driven systems with more
sophisticated language skills but limited internal states. Goal-
directed dialog systems often assist a user with specific tasks
like making travel plans or restaurant reservations. Such systems
do often have knowledge of their limited domains (e.g., flight
schedules and costs, travel rules, typical preferences, etc.), and
they choose their words on the basis of achieving goals and
satisfying the user. In a theoretical sense, these systems may be
considered to be semantic systems, in that their words connect to
actual entities, actions, and events in the world. If a customer says,
“Let’s book a morning flight from New York to Miami,” the dialog
system may first translate the natural language utterance into a
formal description specifying entities and relations through the
process of semantic parsing (Eisenstein, 2019). Ultimately, a ticket

Figure 6
A Caption Generation System Is Fooled by Images That Share Superficial Features With the Suitcases
and Luggage Seen During Training

a blue car with a suitcase 
on top of it

a wooden cabinet with a 
suitcase on top of it

a piece of luggage sitting 
on top of a box

a close up of a piece of 
luggage

a white hat on top of a 
pink suitcase

a yellow piece of luggage 
sitting on top of a table

Note. Images from Brady et al. (2008, 2013). See the online article for the color version of this figure.
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may be sold involving a flight that actually will go from New York
to Miami. The semantics of such systems are however limited by
the scope of their applications. The flight-booking system knows
about selling tickets in order to book a reservation, but it doesn’t
know about the paper instantiation of tickets or the visual proper-
ties of airplanes.
Goal-directed systems are a step forward in imbuing word

representations with meaningful semantics; unfortunately, in other
ways, these systems do not have sophisticated word representations.
For language production, these systems typically serve up canned
chunks of text (even more recent neural-network-based dialog
systems do so too, Bordes et al., 2017), prioritizing the usefulness
of the interaction rather than understanding the words it is saying.
They lack the graded word representations that capture useful
aspects of word similarity, as discussed earlier. For language
understanding, many of these systems rely on hand-crafted features
that map specific words (flight, connection, layover, price, tax,
round-trip, etc.) onto internal entities (Young et al., 2013), although
other systems are beginning to integrate neural language under-
standing (Bordes et al., 2017). By strictly limiting the world in
which such a model operates, it is able to manipulate real events and
objects within that world. However, such models lack the linguistic

flexibility and sophistication that allows people to name novel
objects, make and understand novel combinations, and produce
novel thoughts. An airline reservation system can learn about your
specific travel plans, but it couldn’t learn a new fact about air travel
through verbal communication.

If the world could be hand-coded into a representation like that of
an airline reservation system, that could serve as the semantic basis
for a communication system. The problem is that hand-coding the
world is enormously difficult, so the technique of most NLP
programs is to attempt to develop a system that will learn on its
own from existing data. So far, those attempts have not resulted in
structured knowledge of the sort one can create in a hand-designed
system. We are not arguing that such systems cannot be constructed,
and if they could be, they would serve as potential models of
discourse. However, the practical problems of constructing them
have yet to be solved.

The second type of dialog system is more akin to large-scale
language models; they are typically broader in scope and trained on
very large corpora of text-based dialog (Serban et al., 2016; Sordoni
et al., 2015). Although their language skills are much improved,
these so-called “chit chat” systems are characterized by their
undirected and reactionary nature. These systems are trained to

Figure 7
Captions Generated by a Neural Network for Scenes Depicting Natural Umbrellas (Caption Shown
Above Each Image)

a bird that is sitting on a 
car

a bird is perched on a 
bird feeder

a bird that is sitting on a 
branch

a close up of a vase with a 
flower in it 

a close up of a bear with an 
umbrella

a small bird sitting on a 
bird feeder

Note. Below each scene are four category labels that an object recognition system ranks higher than “umbrella.”
Images reprinted with permission from Andrew Suryono and Edwin Giesbers. See the online article for the color
version of this figure.
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react to user utterances in statistically appropriate ways, rather than
formulating words based on internal desires, goals, and plans. If
these systems have analogs to these internal states, it’s only in the
most implicit sense. Their lack of grounding has been one factor that
critics have cited for the unfortunate tendency of some models to
echo offensive language, as the models do not have representations
of what their speech actually refers to, nor how listeners may
respond to it (Bender et al., 2021). Standard models do not have
inductive biases that encourage the formation and use of goals and
desires, which will be necessary for future models of conversation to
be successful as accounts of psychological semantics.
There are ongoing efforts focused on addressing some of these

shortcomings. Models can be conditioned on “persona” embeddings
to encourage consistency in personality and goals, although again in a
highly implicit sense (Li et al., 2016; Zhang et al., 2018). Addition-
ally, these systems are rarely grounded in the ways discussed in the
first desideratum, but new efforts have focused on more grounded
forms of dialog through curriculum-driven language learning
(Mikolov et al., 2016), text-based adventure games (Urbanek et al.,
2019), and discussions of natural images (Shuster et al., 2020). Indeed
these directions may expand machine capabilities, but as it stands,
humans are unique in choosing words on the basis of genuine ideas,
desires, and plans. This ability is thanks to the deep links between their
internal states and the meaning of words. If one wishes to develop an
NLP system based purely on textual input, it will be difficult to learn
internal representations that can direct word use.

Word Representations Should Support Responding
to Instructions Appropriately

The third desideratum concerns turning words into actions. None
of the models discussed so far can respond to instructions, beyond
simply generating more text. We do not fault them for this; our
discussions have focused on models with sophisticated word re-
presentations rather than models that take actions in the world.
Nevertheless, just as understanding words as people do requires
more than hooking up a language model to a camera or a computer
vision system, simply attaching a robotic (or virtual) body to an NLP
system and teaching it some instructions will not suffice. Suppose
we made such a language–action hybrid system and asked it to
follow a new instruction, “Pick up the knife.” The word embedding
for knife (or the sentence representation as a whole) would need to
convey a lot of information about the kind of object a knife is, in
order for motor commands to properly operate on it. Although the
embedding’s nearest neighbors indicate related objects, parts, and
functions (dagger, blade, sword, and slicing according to BERT),
the representation for knife must contain enough structured infor-
mation so that the listener picks up the knife rather than the spoon.
Although a model need not know everything about knives, it will
need to know their basic functions, parts, and uses in order to
understand even the simplest conversations involved them. How-
ever, after telling GPT-2 to “Pick up the knife,” it offered us this
questionable continuation of the text: “If the blade is still on, place it
in your pocket.” If a model has encountered the word knife only in
some sentence contexts, like “put down the knife,” “dropped the
knife,” or “use the knife,” it must be able to understand and use the
word correctly in new sentential contexts, like “point the knife” or
“broke the knife.” This may be more difficult than it appears (see
discussion below of Ruis et al., 2020).

Obviously, one should not expect text-based models to under-
stand and perform actions. Text-based models need to be combined
with other classes of models, as recent work focused on multimodal
models for instruction following does (Hill et al., 2017; Hill,
Lampinen, et al., 2020; Hill, Mokra, et al., 2020; Ruis et al.,
2020). These systems typically follow the architectural blueprint
discussed earlier (Figure 2), using a visual encoder to process visual
input (a 3D room or 2D grid with objects in it) and a language
encoder to process instructions (“Walk to the red circle” or “Put the
picture frame on the bed”). As output, the network produces actions
aimed at successfully completing the target instruction. After exten-
sive training—often millions or billions of steps—these models
typically understand enough about their subset of the language,
action space, and environment to successfully complete basic in-
structions. But do these models understand the words that they act
upon? Are their representations of the words flexible enough that
they can follow instructions with novel combinations that did not
exist in the training set, as in our knife example?

In many cases, instruction-following models can make meaning-
ful generalizations. After learning to find various types of objects,
models can often generalize to novel object and color pairs, suc-
cessfully “finding the fork”when the fork is presented in a new color
(Hill et al., 2017; but see also Ruis et al., 2020). After learning how
to “find” or “lift” across many scenarios consisting of 30 different
objects, models can generalize successfully to “lifting” objects that
they only had experience with “finding” (or vice versa; Hill,
Lampinen, et al., 2020). After learning that a certain class of heavy
objects require more actions to successfully “push” them, current
models generalize that these same objects require more actions when
“pulling,” given experience pulling other classes of heavy objects
(Ruis et al., 2020).

The same class of models, however, struggles with many other
aspects of instruction following. For instance, models struggle to
learn an abstract, composable meaning for the word not, failing to
“Find not the ball” even after learning about not in many training
episodes with other types of objects. After learning not with respect
to dozens of object types, generalization to new objects is below
50% correct in a 2D grid world (20 training object types), and
somewhere between 60% and 80% in a richer 3D environment (Hill,
Lampinen, et al., 2020). The model’s semantic representation of not
is insufficiently abstract and too grounded in the particulars of its
training experience.

Standard models often fail to acquire abstract, composable mean-
ings of other types of words, such as actions. The learned concept for
move is too tied to the training experience, for example, “Move to
the red square” as implemented in a simple grid world (Figure 8B).
In the recent Grounded SCAN benchmark, Ruis et al. showed that
you can train an agent to expertly move to targets positioned due
south, due west, or anywhere except to the southwest of the agent’s
current position (which is held out for testing). At test, the agent fails
catastrophically when moving to a target to its southwest (0%
correct). The agent often moves the appropriate number of steps
west, or the appropriate number of steps south, but cannot seem to
do both together to actually reach the target. Based on its attention
maps, it seems to understand the target location but not how to
“move” there.

The same model fails to learn abstract meanings for relational
words, including small and large, that depend on the context,
that is, the sizes of other objects in the display (Figure 8A;

418 LAKE AND MURPHY

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



Ruis et al., 2020). Similarly, agents struggle to learn abstract mean-
ings for adverbs such as spinning or zigzagging, when tasked with
instructions such as “Move to the red square while spinning.”
Although agents are great at spinning and zigzagging for learned
instructions, they are abysmal when required to do these things in
untrained combinations or novel scenarios.
In sum, instruction-following models have a long way to go

before understanding words as a person does. Current neural-
network models rely too much on pattern recognition, learning to
identify high-value states, or mapping chunks of instruction to
chunks of action, without sufficiently grappling with more abstract
forms of meaning (Lake et al., 2017). Correctly following instruc-
tions requires forming a representation of the speaker’s desired goal
and connecting this to the physical world, which may require more
abstract representations than current models have. We are not
claiming that models will never be able to reach these goals. Recent
work has begun exploring ways of utilizing pretrained language
models for instruction-following tasks, enriching the underlying
word representations and facilitating transfer to novel synonyms and
more natural forms of instruction (Hill, Mokra, et al., 2020). Other
work has explored meta-learning as means of encouraging general-
ization to new situations and novel combinations of instructions
(Lake, 2019). However, the improvements via these approaches
have been modest compared to the flexibility people demonstrate in
interpreting familiar words in new ways when responding to
instructions. There is still much work to do before they can be
considered potential theories of psychological semantics.

Word Representations Should Support Producing and
Understanding Novel Conceptual Combinations

Language has been characterized as making infinite use of finite
means, allowing familiar elements to combine productively to make
new meanings. Our article focuses on word meaning rather than
language more generally, so we cannot discuss all the ways in which
language is compositional (see Gershman & Tenenbaum, 2015, for
failures of NLP models on simple relational phrases). Nevertheless,
the compositional nature of language constrains models of word

representation; any model of word meaning that does not permit
compositionality would be a nonstarter from the perspective of
psychological semantics. To focus on semantic rather than syntactic
composition, this section considers conceptual combinations: two-
word noun phrases that include adjective–noun (e.g., “dirty bowl”)
and noun–noun phrases (e.g., “apartment dog”). Speakers produce
novel compositions during the conversation, and listeners can under-
stand these compositions (Wisniewski, 1997). Although a processing
account is required to combine noun representations, a model of
psychological semantics should provide the appropriate information
to allow such a process to take place. As we noted above, such
combinations can require significant background knowledge to
produce an appropriate interpretation (Murphy, 1988).

Do modern NLP systems provide a basis for understanding
combinations? Within the distributional semantics tradition, there
have been attempts to create vectors for phrases like “apartment
dog” out of the vectors of the two words. These attempts have had
some successes in accounting for various human judgments (Fyshe
et al., 2015; Günther & Marelli, 2016; Marelli et al., 2017; Vecchi
et al., 2016); for example, one may assess a model by computing the
similarity of its interpretations of two phrases and seeing if they
correlate with human judgments of similarity (e.g., Mitchell &
Lapata, 2010). However, as we pointed out in our discussion of
early scaling approaches to word meaning, a model can account for
the similarity of word meaning without actually providing the
information necessary to use the word. In this case, there is no
easy way to find out how the model is interpreting “apartment dog,”
even if we know that its interpretation is similar to that of “tame
lion,” say. Furthermore, Yu and Ettinger (2020) have discovered
that models can do well in the similarity task even if they don’t
actually combine the representations of the two nouns because
similarity judgments are predicted by the similarity of the individual
nouns. When that cue was removed, models’ success dropped
precipitously. It would be useful, then, to discover what features
models attribute to a combination, especially features that are not
true of the individual nouns, emergent features. That would reveal a
truly combinatorial process.

Figure 8
Instruction Following in the gSCAN Benchmark

Training Test Training Test(A) (B)

big circle
yellow big circle

small circle
yellow small circle

red square red square

Note. (A) Generalizing from calling an object “big” to calling it “small.” (B) Generalizing to walking to targets in the southwest,
after learning to find targets in all other directions. Modified with permission from Ruis et al. (2020). See the online article for the
color version of this figure.
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Aswe suggested above, it is possible that through their processing
of billions of sentences, models have in some sense learned the
knowledge necessary to process combinations, at least in terms of
verbal relations. That is, perhaps the model has learned what goes in
bowls, when they are washed, what makes things sticky, and so
forth, through thousands of sentences that refer to such things. Thus,
perhaps they can understand conceptual combinations like “dirty
bowls are sticky” (see below) fairly well. To address this question,
we first review some of the work on the conceptual combination in
cognitive science and NLP. Second, we compare people andmodern
Transformers on a set of complex concepts for which emergent
features have been identified in past research.
Any theory of concepts must ultimately account for conceptual

combination, and a variety of ideas have been put forward in the
cognitive science literature about how to do that (Murphy, 2002,
Chapter 12; Wisniewski, 1997). One can construct a fairly simple
theory of adjective–noun composition using feature weighting and
adjustment (Smith et al., 1988). For the combination purple jacket,
the head jacket is a prototype in feature space and the adjective
purple changes a particular feature of that prototype, using a
self-contained process that depends only on this pair of word
representations. However, this account cannot explain noun–noun
compounds, which are extremely common in English, and many
modifiers don’t seem to adjust the same features when combined
with different heads, for example, ocean view, ocean book, ocean
wave, and so forth (Murphy, 1988). Furthermore, although a purple
jacket is purple, an ocean book is not “ocean.” These complexities
suggest instead that conceptual combination requires active inter-
pretation in ways that rely on background knowledge, using knowl-
edge to decide which features to modify and how they should be
adjusted. For instance, empty stores typically lose money, but
neither stores nor empty things typically do so. We infer this through
knowledge that stores make money by selling products, customers
purchase products, empty stores have no customers, and so forth,
again revealing the close connection between conceptual knowledge
and language understanding. Although knowledge-based accounts
are difficult to formalize, they are necessary to account for the
sophistication of human conceptual representations and the mental
chemistry by which they combine.
Research in NLP has also examined howword embeddings might

be combined to form complex concepts (see Mitchell & Lapata,
2010, for a review). When introducing word representations above,
we discussed averaging word embeddings (or summing) as a means
of composition in NLP, for example, “Vietnam” + “Capital” results
in a vector similar to that of “Hanoi” (Mikolov et al., 2013). We
quickly dismissed averaging as a means of constructing sentence
representations, due to the loss of syntactic and relational structure,
but these issues are less damaging for two-word compounds.
Nevertheless, many of the cases discussed above pose challenges
to additive models, namely modifiers that affect different head
nouns in different ways (see Murphy & Andrew, 1993). For
example, an ocean view is a view where one can see the ocean,
whereas an ocean wave is a wave of the ocean. It’s difficult to see
how adding the same exact ocean vector to each head noun could
produce such a wide range of semantic transformations.
More capable models use matrix-vector multiplication with ad-

jectives as matrices and nouns as vectors (Baroni & Zamparelli,
2010). Linear transformations can account for more subtle transfor-
mations, including adjectives that emphasize one property for some

types of nouns and another property for other types of nouns (Baroni
et al., 2014). Still, emergent properties that require active interpreta-
tion and background knowledge remain a clear challenge for simple
models of composition (e.g., “empty stores lose money”). Instead,
large-scale Transformers allow for essentially arbitrary transforma-
tions, at least in principle, and thus we compare this model class with
human judgments concerning conceptual combination.

In a series of human behavioral studies, Murphy (1988) studied
the role of background knowledge in conceptual combination by
collecting ratings of whether certain features are more typical of
compounds or of their constituent parts. He reasoned that if the
conceptual combination is a closed operation—and the features of
compounds can be computed locally from the features of its
constituents emergent features—compounds should not have prop-
erties that are not found in their constituents, emergent features. He
constructed 18 adjective–noun phrases paired with properties that he
hypothesized would violate this constraint, in that forming the
conceptual combination requires background knowledge. Human
participants were asked to rate how typical a feature (e.g., “loses
money”) is of a category; some participants made these ratings with
respect to the combinations (e.g., empty stores), others with respect
to the adjective (empty), and others with respect to the noun (stores).
Murphy found that for 15 of the 18 items, the candidate property was
rated as more typical of the adjective–noun combination than either
the adjective or bare noun. We show these 15 items in Table 4. For
instance, sliced apples are typically “cooked in a pie,” but neither
apples nor sliced things are as typically associated with that
property. Dirty bowls are typically “sticky,” but neither bowls
nor dirty things are typically sticky. Thus, these examples could
not be accounted for by a model that draws only on the two word
representations to arrive at a phrasal interpretation.

NLP systems cannot be directly queried about how typical a
property is of an object, yet as probabilistic language models, they
implicitly associate objects and properties. These associations can
be probed in various ways; we chose the conditional probability
P(property|object)—as estimated by autoregressive models such as
GPT-2—to be a straightforward means of extracting these associa-
tions. (BERT cannot be easily evaluated since it predicts only the
probability of individual missing tokens.) To measure the associa-
tion between a noun phrase and “lose money,” GPT-2 was queried
using an association score, P(lose money.|object), such that object
can be filled by “Empty stores,” “Crowded stores,” “Stores,”
“Regular stores,” or “Empty things.”11 Although the raw probabili-
ties are uninterpretable, their relative rankings are informative: How
much more likely is the probe “Empty stores lose money” compared
to “Regular stores lose money”? The scores for different objects can
be meaningfully compared because this method controls for differ-
ences in the noun phrases due to a variety of factors: frequencies,
lengths, and prior probabilities. This control is possible because the
left hand side of the conditional is the same in each case, and the
different noun phrases appear only on the right hand side.

Using thismethodology, we evaluatedGPT-2’s ability to predict the
15 items from Murphy (1988) that yielded emergent features. Recall
that in the behavioral study, people evaluated the relation between the
property and the complex concept “Empty stores,” compared to the
property and the bare noun (“Stores”) and the bare adjective

11 Periods were always included at the end of the sentences in the
evaluations.
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(operationalized as “Empty things”). GPT-2 was evaluated on these
three relations too. For additional rigor, we also evaluated themodel on
an alternative phrasing of the bare noun (“Regular stores”) and an
inconsistent adjective–noun pair (“Crowded stores”). A predictionwas
considered successful (and in alignment with the human judgments) if
the property wasmost typical of the consistent adjective–noun pair, for
example, if “Empty stores lose money” had the highest score.
As summarized in Table 4, GPT-2 makes successful predictions

for only 7 of 15 items. Notable errors include judging “are rusty” as
more typical of “new saws” than “ancient saws” and judging “are
sticky” as more typical of “clean bowls” than “dirty bowls.” GPT-2
also judges “losing money” as more typical of “regular stores” than
“empty stores.” Despite obvious errors, it did get some cases right
which seemingly require background knowledge, knowing that “are
cooked in a pie” is more typical of “sliced apples” than “whole
apples.” However, word repetition may have helped it get two other
cases right: “Russian novels are written in Russian” and “Green
bicycles are painted green.”
To see if the model would do better with increased context, we re-

ran each case with an additional sentence before the main sentence
of interest. (The sentence did not directly refer to the tested feature.)
For instance, GPT-2 scored the following multi-sentence utterance,
“Stores are still where most products are purchased. Empty stores
lose money.” As before, the only phrase to appear on the left hand
side of the conditional is “lose money” while everything else
appears on the right hand side. The additional context did not
seem to help, as the model largely got the same set of cases right
(7 of 15; last column, Table 4).
This performance is consistent with Yu and Ettinger’s (2020)

conclusion that many interpretations do not go far beyond the
individual lexical items, even for sophisticated Transformers that,
in principle, allow for very flexible types of conceptual combination.
Of course, the results of Yu and Ettinger and the items fromMurphy
(1988) should not be taken as the final word on understanding
complex concepts in sophisticated language models. We suggest

that other tests of combinations sample the content of the represen-
tation rather than similarity between combinations. Our test may
also have been easy in some respects. Due to the massive scale of
training, predictive text models like GPT-2 will be familiar with
many of these complex concepts already (empty stores, sliced
apples, etc.)—even if it doesn’t understand them fully. In contrast,
people can generate and understand genuinely new compositions,
say a cactus pig or snow soda (Wisniewski, 1997). We see the
challenge of understanding complex concepts, and the role of
background knowledge in interpreting these compositions, as key
to understanding words as people do.

Word Representations Should Support Changing One’s
Beliefs About the World Based on Linguistic Input

A theme so far has been how knowledge influences one’s
understanding of words and sentences. However, the influence
also runs in the other direction: Language is a source of knowledge
and, with perception, one of the main inputs into our beliefs about
the world. If you hear in elementary school, “Sharks are fish, but
dolphins are mammals,” this may change your understanding of all
the concepts mentioned, permanently. And then you may act on this
knowledge, both in terms of verbal output and actions. The same is
true for more specific and mundane sentences, such as “I left the car
on the street.” Thus it is important that linguistic representations be
interfaceable with one’s knowledge of the world.

Whether one thinks this is possible or impossible for current NLP
models depends on one’s attitudes toward the text-based training of
large-scale language models like BERT and GPT. Given that the
representations formed by such systems are based on texts and
relations among word parts, it is arguable that its representations
do not constitute knowledge of the world, and therefore, its repre-
sentations of sentences cannot add to a knowledge store: All
they can do is tell us about complex relations among words. We
believe that there is much to be said for this perspective (and see

Table 4
Comparing Humans and GPT-2 on Properties of Complex Concepts

Most typical part

Combination Property Human judgments GPT-2 (no context) GPT-2 (context)

Sliced apples are cooked in a pie. Sliced apples Sliced apples Sliced apples
Casual shirts are pulled over your head. Casual shirts Formal shirts Casual things
Small couches seat only 2 people. Small couches Small couches Small couches
Uncaged canaries live in South America. Uncaged canaries Canaries Canaries
Round tables are used at conferences. Round tables Round tables Round tables
Standing ostriches are calm. Standing ostriches Standing things Ostriches
Unshelled peas are long. Unshelled peas Unshelled things Regular peas
Yellow jackets are worn by fishermen. Yellow jackets Regular jackets Yellow jackets
Green bicycles are painted green. Green bicycles Green bicycles Green bicycles
Overturned chairs are on a table. Overturned chairs Overturned chairs Overturned chairs
Short pants expose knees. Short pants Short pants Short pants
Ancient saws are rusty. Ancient saws New saws Saws
Russian novels are written in Russian. Russian novels Russian novels Russian things
Empty stores lose money Empty stores Regular stores Regular stores
Dirty bowls are sticky. Dirty bowls Dirty things Dirty things

Note. Bold indicates a match between human and model judgments. Most typical part shows which noun phrase (e.g., empty stores, crowded stores, regular
stores, stores, or empty things) participants (Murphy, 1988) or GPT-2 judged to be most typical for the indicated property.
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Bender & Koller, 2020). However, it is possible to take a more
generous view of the models and ask whether they could serve as
part of a knowledge base, that when linked to perceptual or motor
modules, would give them substantive content.
Therefore, we consider here to what degree NLP models might

represent a knowledge base that can take input from language and
give reliable information. Predictive models such as BERT, GPT-2,
CBOW, and so forth are not incentivized to learn about the world per
se, only to learn about how other words in the context predict a target
word. However, one could conceive of this information as approxi-
mating knowledge of the world. If many sentences describe the
actual world, then text predictions could be used to learn those
descriptions, which constitute its beliefs about the world (in text).
This in turn leads us to ask whether such beliefs are reasonable and
also whether they can be readily added to and changed through
linguistic input.
Changes in a model’s lexical representations should be reflected,

in some way, through changes in its knowledge about the world. For
instance, a language model is tasked with predicting a missing word
in a novel sentence, “Sharks are fish but dolphins are <MASK>”. A
model that knows little about dolphins might predict fish with high
probability, and then receive feedback that the correct answer was
actually mammals. Through backpropagation, the model makes
small adjustments to increase the probability of outputtingmammals
when this sentence is encountered again. These adjustments will
change the input layer’s word embeddings (for fish, sharks, dol-
phins, etc.), the output layer’s word representations (mammals, fish,
etc.), and many other internal parameters. After sufficient presenta-
tions of the sentence, the network will learn to produce the right
answer, hopefully in a way that generalizes to related sentences. But
is such learning sufficient to develop correct beliefs about dolphins,
mammals, and their properties?
It’s not entirely clear how to evaluate the beliefs of a language

model. Although other methods are possible, we tested models as
closely as possible to the way they were trained, by providing
sentence fragments with missing words to be completed. Our
informal tests focused on taxonomic category relations such as
category membership that have been central to research in semantic
memory in people (e.g., Rips et al., 1973). Some predictions will
certainly be correct; when probed with “Sharks are fish but dolphins
are <MASK>”,12 a trained BERT predicts that mammals (proba-
bility .027) is more likely than birds (0.013) and fish (0.010).
However, BERT’s predictions are sensitive to small changes in
wording—a property of current NLP systems that has been observed
elsewhere (Jia & Liang, 2017; Marcus & Davis, 2019). When
probed with “Sharks are fish and dolphins are <MASK>” (swap-
ping but with and), BERT now predicts that birds (0.14) is more
likely than mammals (0.031) or fish (0.025). Similarly when probed
with “Sharks are fishwhile dolphins are<MASK>”, BERT predicts
birds again. If probed more directly as “Dolphins are <MASK>”,
BERT now properly predicts mammals (0.0024) over fish (0.0014)
and birds (0.00031). But when asked the same question about the
singular noun, “A dolphin is a <MASK>”, it now predicts fish.
Other work shows that BERT is especially poor at understanding the
negated versions of such probes, for example, “A shark is NOT a
<MASK>” (Ettinger, 2020). Examining the word embeddings
doesn’t clear up story. For BERT, dolphin is more similar to
mammal (the cosine is 0.40) than it is to fish (0.32) and bird

(0.33). However, dolphin is more similar to fishes (0.45) than it
is similar to either mammal or fish (or mammals or birds). It seems
that BERT has some ideas about what dolphins are, but it is too tied
to specific wording to be credited with general knowledge.

In a more systematic comparison, we evaluated the knowledge
of 31 animals in BERT and GPT-2 using the same framing
as before, “A squirrel is a <MASK>” and “Squirrels are
<MASK>”.13 We considered four possible superordinate catego-
ries as answers: bird/birds, insect/insects, mammal/mammals, and
fish/fish, using the singular or plural form of the category depend-
ing on the question. BERT predicts the right answer (i.e., highest
probability for the correct superordinate of the four) for only 54.8%
of the questions in singular form, and for 77.4% of the questions in
plural form. (Note that chance performance would be 25% correct.)
Strangely, the two forms of the same question yielded inconsistent
answers more often (51.6%) than consistent answers. It predicts
squirrels and horses are mammals, but a squirrel or a horse is a
bird. Whales are mammals, but a whale is a fish. Butterflies are
birds, and so is a butterfly. GPT-2 fared better with 83.9% accuracy
on singular forms and 77.4% for plural forms. Still, there was a
striking inconsistency between the two ways of asking the same
question, with 35.5% mismatches in the answers.

Finally, we evaluated the knowledge of animal parts using a
similar methodology, “A wolf has <MASK>” or “Wolves have
<MASK>”. We considered “legs,” “fins,” and “wings” as possi-
ble answers, evaluating the subset of the above animal categories
for which these answers are mutually exclusive (19 categories
total). Surprisingly, for the singular nouns, BERT chose “wings”
as the best answer in every case (0% correct; no birds or flying
insects were analyzed since they have both legs and wings). For
the plural forms, accuracy was somewhat higher (42.1%). GPT-2
fared a bit better: Accuracy was 47.3% for the singular nouns and
36.8% for the plural nouns.

Taken together, it’s unclear if current language models hold any
genuine and consistent beliefs about basic taxonomic and part–
whole relations. This uncertainty persists despite training on billions
of words that include, presumably, the entire Wikipedia entries for
dolphins, mammals, fish, and so forth. This muddiness is the
hallmark of a primarily pattern-recognition-driven learning process.
During training, BERT hones its abilities at predicting missing
words and the order of sentences, acquiring some inkling of how
the word dolphins is related to the words mammals, fish, and
flippers, but nothing seemingly explicit or belief-like. As a result,
it is ineffective at changing its beliefs or building a coherent world
model based on systems of beliefs (Lake et al., 2017).

The challenges of representing and changing beliefs extend far
beyond just taxonomic categories, and text generation provides
another window into what, if anything, language models believe.
Autoregressive models such as GPT-2 can generate impressive
passages of text, although these models frequently contradict them-
selves. In a highlighted demonstration of GPT-2’s text generation
capabilities (Radford et al., 2019), the model was tasked with

12 As in previous tests, periods were used at the end of the sentences, and
BERT’s special tokens were added at the beginning and end of the sentences.

13 The list of animals in Kemp and Tenenbaum (2008) was used after
removing the two “reptiles,” since this word isn’t a single token in BERT.We
didn’t alternate “a” versus “an” in the questions, which could help reveal the
answer.
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reading a fanciful prompt concerning talking unicorns and produc-
ing a reasonable continuation:

Prompt: In a shocking finding, scientist discovered a herd of unicorns
living in a remote, previously unexplored valley, in the Andes Moun-
tains. Even more surprising to the researchers was the fact that the
unicorns spoke perfect English.

GPT-2’s continuation: The scientist named the population, after their
distinctive horn, Ovid’s Unicorn. These four-horned, silver-white uni-
corns were previously unknown to science. Now, after almost two
centuries, the mystery of what sparked this odd phenomenon is finally
solved : : :

GPT-2 impressively generates several more paragraphs of seem-
ingly natural text (Radford et al., 2019, pg. 13). The model under-
stood enough about this bizarre scenario—unlikely to be in its
training corpus—to write fluently about it. Nevertheless, a closer
look is revealing about the structure of GPT-2’s beliefs, in this
particular case, as related to unicorns. In the generated passage,
GPT-2 contradicts itself almost immediately, writing about “these
four-horned, silver-white unicorns.” The model, evidently, doesn’t
understand that unicorns must have one horn. Also, in two adjacent
sentences, it suggests that unicorns have one horn (“their distinctive
horn”) while simultaneously having multiple horns (“four-horned”).
Even if you could help correct GPT-2, as you would a person, by
specifying that “unicorns must have just one horn,” it’s doubtful that
GPT-2 would get the message, since any one sentence would have a
trivial effect on its representations. Indeed, it seems hard to believe
that similar sentences were not already in its learning corpus, given
that it knows something about unicorns. It’s also not clear how one
would open up the model and add/correct this fact, given that GPT-2
uses 1.5 billion learnable parameters to make predictions.
Language models can answer some difficult factoid-style ques-

tions, although they are hardly a reliable source. Using a corpus
called Natural Questions (Kwiatkowski et al., 2019), GPT-2 was
evaluated on factoids such as “Where is the bowling hall of fame
located?” or “How many episodes in season 2 breaking bad?” GPT-2
answers 4.1% of these somewhat obscure questions correctly
(Radford et al., 2019); performance is higher in the larger-scale
GPT-3 (15%–30%; Brown et al., 2020) and can also be substantially
improved when combined with techniques from information
retrieval (Alberti et al., 2019), for example, providing BERT
with all of Wikipedia and allowing it to answer by highlighting
passages. Other studies (Petroni et al., 2019) have found that BERT
makes reasonable predictions for more commonplace questions
from the ConceptNet knowledge base, including “Ravens can
<MASK>” (prediction: fly) and “You are likely to find a overflow
in a <MASK>” (prediction: drain), although these predictions are
brittle in all the ways outlined above. This suggests that current
methods of extracting information from text corpora have not yet
formed knowledge bases that would be sufficient for conceptual
combination and language understanding more generally, although
techniques continue to improve.
Computational theories of semantic memory, from the very

beginning, have recognized the need to specify the relations between
words (or concepts) in order to provide coherent, accurate repre-
sentations. That is, models must know that a dolphin ISA mammal
and CAN swim, or else it will not be able to correctly draw
inferences. Unlabeled links from dolphin to mammal and swims

are not sufficient (e.g., Brachman, 1979; Collins & Quillian, 1969).
Word representations need to represent which words are properties,
parts, synonyms, objects acted on, or things that simply tend to co-
occur with the word’s referent. Earlier neural-network models
attempted to capture this type of semantic knowledge and in
particular, the developmental process of acquiring semantic knowl-
edge (Rogers & McClelland, 2004). The limitation of the approach
was not theoretical, but practical: The modelers hand-coded the
features and category names and their relations. Thus, the model was
told that a canary is colored yellow, not just that canary and yellow
go together. The argument for this is that human children get these
relations through both perception (yellow is a color, which the
canary-learner already knows) and language (parental input). Thus,
specifying these relations is not a deus ex machina merely designed
to make the model work but an attempt to provide the information
that perception would for a person. The NLP models we discuss do
not attempt to learn explicit relations; they rely purely on text
predictability to provide all the information.

Two things need to be done in order to scale up the Rogers and
McClelland (2004) approach. First, perception must ground rela-
tions between properties and objects that are only implicit in
language, using techniques in computer vision (Desideratum 1).
Second, to avoid hand-coding, a neural network should be devel-
oped that can extract relations between words (ISA, CAN, etc.) from
the text even if it does not explicitly include labeled relations. As
discussed in the “Computational Approaches to Word Meaning”
section, structured distributional models aim to do exactly this by
looking for specific word patterns (Baroni et al., 2014, 2010). The
system could also use a knowledge base to encourage explicitness
and consistency in its belief system, relating to current efforts that
combine neural networks with knowledge bases (Bosselut et al.,
2020). To be fully successful, however, such a hybrid model would
need to be able to use words to change its beliefs (such as “unicorns
have only one horn”), as opposed to merely accessing fixed beliefs,
further highlighting the complexity of psychological semantics and
the abilities it supports.

Summary of Desiderata

Our critique is not that NLP researchers have failed to provide us
with robots that converse about the world and follow our orders.
From the perspective of psychological semantics, our critique is that
the current word representations are too strongly linked to complex
text-based patterns, and too weakly linked to world knowledge.
Multimodal models can enrich these word representations by
grounding them in vision and action, yet these word representations
are currently too limited by the particulars of their previous experi-
ences. More abstract semantic representations that connect language
to the knowledge of the world are needed to capture the way that
language leads to action and knowledge in people.

Successes in NLP

Our discussion raises the question of why deep learning for NLP
works so well on many important problems. A full accounting of the
remarkable successes of deep learning is beyond the scope of this
article; they have also been discussed and analyzed at length in many
places (e.g., LeCun et al., 2015; Schmidhuber, 2015). The reemer-
gence of neural networks in the last decade was catalyzed by

WORD MEANING IN MINDS AND MACHINES 423

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



successes on quintessential pattern-recognition problems, particu-
larly object recognition (Krizhevsky et al., 2012) and speech rec-
ognition (Graves et al., 2013; Hannun et al., 2014), by learning
features from raw data that were previously hand-designed.
It’s natural to think that this approach would make advances in
NLP as well, especially when combined with innovations in archi-
tecture (Hochreiter & Schmidhuber, 1997; Vaswani et al., 2017),
large data sets, and enormous computing resources. These successes
are amplified by taking pretrained word embeddings, or whole
language models, and fine-tuning them to perform particular tasks,
as is the typical current approach for tackling NLP benchmarks
(Devlin et al., 2019; Wang et al., 2019). Modern NLP systems,
following this model, know a surprising amount about syntax,
semantics, and even enough to answer some basic questions about
the world (Rogers et al., 2020). As discussed in the “Semantic
Similarity” section, word embeddings know enough about the
relationships between words to predict human similarity judgments
and related tasks. The result of this is that the models can do well
when they are given words as inputs and words as output, learning
the right sorts of associations and patterns through massive amounts
of training. The surprising bits of knowledge that models learn
presumably come from this process.
For example, consider the world capitals that Mikolov et al.

(2013) tested models on. The models don’t have a list of countries
and their capitals; they don’t know what a country or a capital is,
which would be required to use the word correctly in conversation or
writing. However, it seems likely that the words Paris, capital, and
France co-occur fairly often and more often than Lyon, capital, and
France or Paris, capital, and Argentina do. Verbs and their past
tenses or inflections also co-occur, as the same action is talked about
in infinitives, and in different temporal contexts. For example, it
would not be surprising if a text about surfing contained sentences
like, “Stephanie wanted to surf : : : ,” “She had surfed before : : : ,”
and “Surfing is dangerous when : : : ” The things that one says about
surfing one might say in talking about past, present, and future
contexts, so that the representations of different forms of the verb
could become similar. The same is true for nouns and their plurals.
These models don’t know what a plural is, but they can learn that
knife and knives occur in the same kinds of passages, and so they are
assigned similar representations. To a limited extent, language
models can even track long-distance syntactic dependencies, know-
ing it’s proper to say “the knives in the drawer cut” rather than “the
knives in the drawer cuts” (Linzen et al., 2016). However, based on
text distributions alone, the models don’t necessarily learn that knife
refers to one thing and knives to multiple things. The models don’t
know that there are things. Without a representation of what a knife
actually is, it cannot form a semantic representation of the sort that
people have.
There is a lot of text in the world, more than some of us realized

before we began to read about corpora of 630 billion words. Finding
relations among textual entities can therefore be extremely useful.
Furthermore, when people read the outputs of such models, they can
fill in the semantic gaps themselves to understand what the model
has found. We argued at the beginning that words ultimately gain
their meaningfulness by connecting to the world. Humans can
provide that connection, when the model produces textual output
and the human connects the text to the actual world. If a particular
word has the following LSA neighbors, sculptured, sculptor, sculp-
ture, Acropolis, colonnade, Athena, Parthenon, and gymnasiums,

readers can readily figure out that this word must have something to
do with artwork common in ancient Greece, found in temples, and
so forth. But this is the human interpretation of the word, not
something the model has told us. When the human and the model
work together, they may be able to interpret unknown words in a
way that goes beyond the model’s own performance. We suspect
that this is part of the reason why researchers have taken these
models (especially the early count-based ones) seriously as theories
of word meaning. When the researchers (or anyone) read the list of
nearest neighbors, they are identifying the links to the target word by
using their own knowledge to fill in gaps and infer the underlying
meaning (Bender et al., 2021). They may know, for example, that
the Parthenon is a temple dedicated to Athena found on the
Acropolis in Athens with statues and altars dedicated to her.
Thus, they can interpret how all these words are connected to the
target word statue. Models, lacking that knowledge and inference
ability, cannot do so. Of course, we often operate on the basis of
charity in interpreting the utterances of human speakers, giving them
credit for understanding things when they may not. However, we
also know that humans can generally use language interactively in
the world in the way that text-based models cannot. If an NLP
system with perception and motor control can respond to instruc-
tions and give descriptions, it will have earned an assumption of
charity in assuming that its utterances reflect knowledge.

Although NLP models may not understand words the way that
people do, they nonetheless can be very useful for practical and
theoretical uses. A number of models take the output of initial NLP
prediction models as their starting point for the representation of
word meanings. They can then use them to create a specific task-
based system (e.g., information retrieval or restaurant reservations)
or for more theoretical purposes. For example, Lu, Wu, & Holyoak,
(2019) used the word vectors of Word2vec as the starting point for
their model of verbal analogies. They created a Bayesian model that
identified the semantic features most useful for identifying different
relations used in the analogy task. The model was able to identify the
most relevant relation between weaver and cloth, for example, and
then identify that baker and bread have the same relation. So long as
such models stay within the realm of verbal tasks, they may find that
NLP representations work well. The Lu et al. model was better at
solving analogies with some relations (like the profession-product
relation just shown) than others (e.g., antonyms). Whether this is a
consequence of the analogy model or the Word2vec representations
requires further exploration.

We now see the research frontier shifting from problems of
pattern recognition to problems in reasoning, compositionality,
concept learning, multimodal learning, and so forth. Further prog-
ress will come from improvements in the training data, but this is
unlikely to be enough. A new generation of NLP systems, developed
with the five desiderata in mind, would look quite different from
today’s systems, while also building on their successes. Innovations
will be needed to achieve more realistic representations of meaning;
we pointed to advances in neuro-symbolic modeling and grounded
language learning as important developing areas. Additional atten-
tion will be needed on incorporating background knowledge and
encouraging abstraction so that the representations can be accessed
by goals and beliefs. We hope that our five desiderata help to pose
new challenges and stimulate new research on more psychologically
realistic models of semantics.
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One might reverse the question asked in this section (and a
reviewer has done so), to ask what kind of performance would
convince us that a model’s semantic representations have psycho-
logical plausibility. There is clearly no firm criterion for making
such a judgment. A familiar saying is that all models are wrong but
some are useful, and that applies here. No computational model will
provide a full account of psychological semantics in the foreseeable
future. The question is whether the model’s processes are plausibly
similar to those of humans, possibly giving insight into human
psychology. When it makes mistakes, does it make the kinds of
mistakes people do? Are the things the model finds difficult the
things that people do as well? It is often very revealing what models
cannot do, as this suggests that there is some limitation in their input
or processing, leading to psychological hypotheses about what
people must be doing. Our concern in the present article is not
so much model errors as the problem of omitting whole domains of
human language use (e.g., labeling objects and events in the world)
and differences between many models’ input and that of humans’.
The errors are signs of those differences, as, indeed, are cases in
which models do better than humans.

GPT-3 and Scaling Up

We analyzed a number of NLP systems throughout this article
(LSA, CBOW, BERT, GPT-2, a caption generation system, etc.),
with the largest being GPT-2. Recently, its successor, GPT-3, was
published by the same group at OpenAI (Brown et al., 2020). In
terms of architecture and training procedure, little has changed;
GPT-3 is a large-scale autoregressive Transformer with the same
architecture as GPT-2. In terms of scale, GPT-3 is a marvel of
engineering that is strikingly larger than GPT-2. GPT-3 has 175 bil-
lion parameters, compared to GPT-2’s 1.5 billion, and was trained
on large swaths of the internet for a total of about 500 billion tokens
—25 times more data than GPT-2. We argued that training with
more data would not itself lead to a model of psychological
semantics, and thus GPT-3 conveniently offers a case study in
scaling up. The model is new and much about it is still unknown; we
did not analyze GPT-3 directly in our own tests as it was unavailable
at the time of writing. Nevertheless, we offer some observations of
what GPT-3 accomplishes and what it doesn’t.
GPT-3 is a strong few-shot learner. As with GPT-2, the authors do

not fine-tune the model for specific tasks; it is trained solely on
predicting the next word in a sequence. GPT-3 can perform many
different tasks, however, through different text-based prompts that
preface the relevant query. If provided with a few examples of
question answering, grammar correction, or numerical addition, it
often continues the task in response to new queries. In some cases, it
can handle novel tasks that are unlikely to exist in the training
corpus. Its flexibility to reuse its representations for new tasks
without having to re-train (Lake et al., 2017) resembles the flexi-
bility of human semantic representations. (However, in most cases
the model’s performance does not reach the level of previous models
that have been specifically trained on just one task; Brown
et al., 2020).
In other ways, GPT-3 is no closer than GPT-2 to meeting the five

desiderata for a model of psychological semantics. (Admirably, the
GPT-3 article has a thorough Limitations section, which we draw
from here.) First, GPT-3 is trained from text alone; thus, it is limited
in all the ways that all ungrounded representations of words are

(Desiderata 1 and 3). Second, GPT-3 aims to predict the next word
in a sequence, no matter the task or the context; instead, humans
produce words to express internal states such as goals, desires, and
so forth (Desideratum 2). The GPT-3 authors mention this limita-
tion: “useful language systems (e.g., virtual assistants) might be
better thought of as taking goal-directed actions rather than just
making prediction” (Brown et al., 2020, pg. 33). Third, we don’t
know yet how GPT-3 performs on tests of complex concepts
(Desideratum 4), although we wouldn’t be surprised to see GPT-
3 outperform GPT-2. GPT-3 has far more training data, and most of
the complex concepts in Murphy (1988) are likely covered during
training. Harder tests with genuinely novel compositions would
pose greater challenges.

Fourth, GPT-3 has no new mechanisms for connecting word
representations to beliefs, or changing its beliefs based on linguistic
input (Desideratum 5). In fact, the larger-scale corpus—combined
with weaker curation and filtering compared to GPT-2—could
weaken the firmness of any proto-beliefs the model does has, as
there is likely more contradictory text in the training data now for a
given fact. The authors report that GPT-3 frequently contradicts
itself during text generation, a problem also presents in GPT-2, as
we discussed in the “Desiderata” section. This is evident in the two
generated news articles provided in the GPT-3 article (p. 27). In one
article, it’s hard to understand the core proposition the article is
supposed to convey (Did Joaquin Phoenix pledge to wear a tux to
the Oscars, or not?). In the other, which human judges thought was
the most human-like sample, GPT-3 describes a split in the United
Methodist Church. GPT-3 writes that “the new split will be the
second in the church’s history. The first occurred in 1968 : : : ” But
three sentences later, it goes on to describe a third split in the church,
“In 2016, the denomination was split over ordination of transgender
clergy : : : ,” although perhaps it means an “intellectual” rather than
“physical” split (if it knows the difference). Last, there is no
evidence yet that GPT-3 has learned semantic representations
that better capture abstract meaning, in the way needed for
human-level instruction following (Desideratum 3).

All that said, some readers and discussants have suggested to us
that GPT-3’s performance is simply too good not to be “real” in
some way. There are examples posted on social media of extended
conversations with the model, as well as story completions it has
written. This has provoked reactions of the sort, “Yes, what you say
about the lack of grounding and the like is true, but still, it must mean
something that the model is so good.” The model’s performance in
these cases truly is impressive, and we are not attempting to diminish
it. However, let’s consider some of these examples, like story
completion or conversation. These tasks are all cases in which
some text is input to the model, and it responds with text in a
surprisingly fluent and appropriate way. Because of its greater
computational power, which allowed the model to pay attention
to much more context during learning, it is very good at generating
grammatical sentences and even multisentence sequences and con-
versational interactions that are coherent. Of course, not all are, as
the model can sometimes go off on a string of associations that leads
far away from the original topic and does not make obvious sense.
However, the fact that the model makes a coherent story, say, does
not mean that it has formed a semantic representation of the
beginning and constructed a sensible continuation; the model is
able to provide the kinds of sentences that follow that kind of
beginning in its training experience. Brown et al. (2020) report that
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the model does not in fact do particularly well in reading compre-
hension measures (Table 3.7), even relative to other models (which
generally have been specifically tuned for such tasks). (e.g., in the
RACE data set based on a test taken by Chinese students to evaluate
their English comprehension, the best NLP model scores about 90%
and 93% on the two versions, but GPT-3 scores 47% and 58%.) That
suggests to us that the model may not completely “understand” a
passage and yet be able to write a continuation of it that fits in well
with the existing text. This is not as implausible as it might seem, as
there are also humans who can carry on reasonable conversations
about something for some time before it is discovered that they have
almost no understanding of the topic at all.
Relatedly, although GPT-3 exhibits strong performance on a wide

range of tasks, it performs poorly on several adversarially generated
benchmarks that pit surface-level patterns against the underlying
semantic content (Nie et al., 2020; Sakaguchi et al., 2019). These
types of tasks pose particular challenges to pattern-recognition sys-
tems, however powerful and impressive they are. The GPT-3 authors
themselves note that there are limits to scaling up, writing that a
fundamental limit to “scaling up any [language] model, whether
autoregressive or bidirectional—is that it may eventually run into (or
could already be running into) the limits of the pretraining objective”
(pg. 33). We hope the five desiderata provide additional guidance in
how to venture beyond pattern recognition and secure a more
conceptual foundation for word meaning, leading to more powerful
and more psychologically plausible models.

Past Critiques Within Psychology

The shortcomings of purely text-based models have not gone
unnoticed in the psychological literature. In particular, the need for
words to make connections with the world has been pointed out and
debated. However, those discussions have tended to take a different
focus from ours. First, the text-based approaches (primarily HAL
and LSA) have often been contrasted with embodiment theories,
which rely on perceptual symbol systems accounts of representation
andmeaning (Andrews et al., 2014; Louwerse, 2007). In this theory,
symbols are not only linked to perception but in fact are perceptual
or motor simulations, which capture the essence of a concept (see
Barsalou, 1999, for a review). In addition to perceptual symbols,
emotion is also often mentioned as a potential feature of semantic
representations (De Deyne et al., 2018) that might not be captured
by distributional models.
A second difference from our approach is that these discussions

often take a purely empirical tack. They use a model to attempt to
explain some human data and then ask if the fit could be improved
by the addition of perceptual information (etc.)—or the reverse,
seeing if a model improves the fit of human data. For example,
De Deyne et al. (2018) investigated whether affective and featural
information improved the modeling of human similarity judgments
beyond text-based word embeddings. Louwerse (2007) developed a
new measure of sentence coherence to see whether LSA could
explain apparent embodiment effects found by Glenberg and
Robertson (2000). Mandera et al. (2017, p. 66) found that adding
text-based model data improved the prediction of priming results
over human-generated feature lists.
These studies can provide insight into what information is con-

tained in different models and measures, as well as which information
is most relevant to a given task. However, they do not address the

basic problem faced by pattern-based NLPmodels, which is how they
accomplish the main goals of a theory of semantics, summarized in
Table 1. Their evaluation data are generally relatedness measures of
word pairs (or pairs of sentences)—that is, they remain primarily
within the realm of words. As we reviewed above, describing a
situation or scene does not have words as the input, so there must be a
way to generate a sentence from perception and knowledge. And
carrying out an instruction or changing one’s knowledge about the
world cannot be done by activating words whose meanings are only
other related words. By focusing on text-based tasks only, such
empirical tests cannot discover the main shortcomings of text-based
approaches as theories of meaning, how language is used to describe
and ultimately change the world.

That problem is one that applies even beyond the issue of
embodiment. Embodiment makes specific claims about the nature
of symbols, but those claims are not necessary to describe the
problem with text-based theories of meaning. The primary issue is
that words need to be connected to our concepts and then to the
outside world in some way (Harnad, 1990). That is the critical link
that must be included somewhere in every psychological theory of
meaning. Note that we are not arguing that authors have been wrong
in what they say about embodiment—there is a conflict between
embodiment and distributional semantics. We are merely pointing
out that those issues apply more broadly, whether or not one thinks
of concepts as embodied.

Conclusion

There is a long tradition in the cognitive science of theorists
claiming that such-and-such a computational paradigm cannot do
such-and-such a task or reach a particular cognitive achievement.
The record of such predictions is spotty. Often, the particular
model criticized was replaced by future versions that were much
better. By using a novel architecture, changing the learning algo-
rithm, providing massive amounts of data, and so on, the putative
impossible task turned out to be possible. We do not seek to join
these ranks. Our point is not that text-based NLP models can’t
achieve interesting and important things; they surely have already,
as NLP systems are becoming increasingly prominent in our daily
lives (intelligent assistants, dialog systems, machine translation,
etc.). They will continue to advance and accomplish more impor-
tant things. But they alone will not form the basis of a psychologi-
cal theory of word meaning.

This may not concern researchers and practitioners seeking to
optimize performance on particular tasks.We are not suggesting that
NLP should switch its focus to building models of psychological
semantics, at least not in every case. If one has large quantities of
training data, it may be a very good idea to develop a task-specific
model using standard approaches, or fine-tune a language model on
that specific task. For example, if the goal is to develop a question
answering model for a specific domain, and one has many thousands
of question–answer pairs for training, large-scale pattern recognition
may well be sufficient. Our arguments in this article will have little
relevance to such cases.

In other cases, a model of psychological semantics is a higher bar
worth reaching for, with a real payoff in terms of performance. We
will not rehash the limitations of text-based NLP systems as
psychological models. However, it is worth considering whether
embracing a more psychologically motivated semantics would
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improve performance in future language applications. To under-
stand language productively and flexibly, to produce reasonable
responses to novel input, and to hold actual conversations will likely
require something closer to a conceptually based compositional
semantics of the sort that people have (Marcus & Davis, 2019). We
make the following suggestions.
First, semantic representations need to be based on content,

information that makes contact with the world, and not just words
connected to words. No matter how sophisticated the statistics or
measure that links one word to others, word relations do not provide
the basis for being able to talk about actual things and to get
information from language. NLP models will need to move beyond
pattern recognition and more firmly root themselves in concepts.
Second, word meanings have an internal structure. You do not

know what a dog is merely by knowing that it is connected to
leashes, cats, mammals, legs, fur, toy, barking, and so forth. Your
knowledge must be structured so that you know toys are things that
dogs play with, fur is their body covering, the mammal is a category
they fall into, and so on. In identifying dogs, it is helpful to know that
one of their parts is four legs. However, one must also understand in
more detail what a dog’s leg is and what it means to be a part. A
dog’s head next to four table legs does not add up to a dog, nor are
those legs part of the dog. The relations between concepts and their
constituents must be somehow encoded in order for the representa-
tion to work (Brachman, 1979).
This is accomplished by humans in part through a huge “front

end” to their language learning, namely the perceptual–motor-
apparatus and knowledge of the world it provides. When a child
first learns the word lion, it is almost certainly while viewing a
representation of or an actual lion. The child can perceive the parts,
overall shape, color, sound, and possibly behaviors of the lion,
without linguistic input. Indeed, most studies of child word learning
use the method of ostension to teach words: pointing at an object and
labeling it. Children’s sophistication in interpreting such experi-
ences is impressive (e.g., Markman, 1989). The result is that they do
not need verbal information in order to learn a great deal about what
a lion is and how to identify one in the future. No one needs to
describe the lion’s face or say that the face is part of the lion because
that is directly learned via perception. Indeed, it is doubtful that any
verbal description could adequately communicate what we know
about lions’ faces. Achieving such inferences with a hybrid visual-
language model is an exciting possibility, albeit a difficult one to
achieve.
When parents in our culture do provide verbal instruction, it is

often specifically labeled. For example, when teaching a word for a
general concept, parents will often mention more specific examples
and the set-superset relation that connects them, like “Chairs, tables,
and sofas are all kinds of furniture” (Callanan, 1990). Such a
statement indicates hierarchical relations between categories and
suggests that chairs, tables, and sofas are at the same level
(co-hyponyms) under the umbrella category of furniture. They
may also provide information such as “Kitties say ‘meow’,” which
also provide the relation between kitten and meow, a relation that is
different than the ones between kitten and animal or kitten and fur.
Knowing the specific relations between objects and properties—
taught via sentences including the words for those objects and
properties—gives much more information about the world than
simply knowing words’ textual relations. This is not to claim that all
knowledge is acquired through explicit instruction or propositional

relations (though for those who attend school through college or
postgraduate education, it is in fact the source of a tremendous
amount of information) but rather to point out that this is one
important way that world knowledge is transmitted, and theories of
semantic knowledge need to accommodate it. If one’s model has a
misconception about unicorns, even after training on a corpus of
500 billion words, it would be awfully convenient to be able to just
tell it, “All unicorns have exactly one horn,” as we can with people.

Contemporary multimodal models, such as ones that learn to
recognize objects and carry out instructions (see Figure 8), are
taking real steps toward some of these goals. It might well be
that one can say that these models have a semantics. But as potential
theories of psychological semantics, their linguistic abilities are
usually too limited and too tied to specific patterns in their training
experience. Looking toward the future, a robot that learns language
while interacting with objects in the world (as well as receiving
textual input) might well develop a semantics such that words
successfully relate to things in the world, and the robot can describe
the world with its language. Saying whether the robot’s representa-
tions are functionally the same as human speakers’ representations
would require a detailed comparison of its abilities and the repre-
sentations’ internal structure. At present, these visual world models
have simple linguistic representations that don’t seem adequate as
descriptions of human meanings, but it remains to be seen how these
models develop.

Final Conclusion

Building a complete model of human word meaning requires, to
some degree, building a conceptual structure of the world that
people live in. Parts of that conceptual structure are linked to words,
such that words pick out categories, properties, or relations. It
doesn’t seem likely that one can build such a structure out of textual
statistics or word predictions, although sentences would certainly be
one input to a learning system trying to build a coherent structure
of the world. Such a system would have to try to interpret the
sentences, identifying the relations, categories, and properties they
describe. Most text-based systems do not do that or even try to do
that. It is worth exploring how much text-based systems can do
because sampling even internet-scale data is easier than building the
AI to learn the detailed information in word meaning. Humans, with
the advantage of perception, action, and reasoning are able to build
complex knowledge structures, and these in turn form part of the
basis of word meanings. Computational models of meaning will
have to also form such structures if they are to be adequate
psychological theories of meaning and, we propose, if they are to
become sophisticated tools that can produce and understand lan-
guage more broadly.
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