
Supplementary Material: The Emergence of

Organizing Structure in Conceptual Representation

Brenden M. Lake,1,2 Neil D. Lawrence,3 Joshua B. Tenenbaum,4,5

1Center for Data Science, New York University

2Department of Psychology, New York University

3Department of Computer Science, University of Sheffield

4Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology

5Center for Brains Minds and Machines

1 Generating data from structure

A data set is a matrix D = {f (1), ..., f (m)} (D ∈ Rnx×m), where the rows correspond to objects and

the columns are features f (i). A data set is generated by a structure, parameterized by a symmetric

matrix S ∈ Rnt×nt . Each row/column in S corresponds to a node in the graph. The set of object

nodes is called X and cluster nodes is called Z, where nx and nz are their cardinalities, combining

for a total of nt = nx + nz nodes in the graph.

A key property of the structural sparsity model is that S is sparse, meaning that most of its

entries are equal to zero (sij = 0). For the remainder, their values are positive (sij = sji > 0). The

sparsity pattern defines the adjacency matrix of the undirected graph, where a non-zero value for

sij means that nodes i and j share an edge. Given that each object node x ∈ X connects to only

one cluster node, then sxz > 0 for exactly one z ∈ Z. There are no self-edges, so the diagonal of S

is also zero.

Following Zhu, Lafferty, and Ghahramani (2003) and the setup for the structural forms model

(Kemp & Tenenbaum, 2008), we introduce the graph Laplacian ∆. Its off-diagonal elements are

1

given by −S and its diagonal elements are

∆ii =
∑
j

sij .

A generative model for features can then be written as

P (f (k)|S) ∝ exp
(
− 1

4

∑
i,j

sij(f
(k)
i − f (k)j)2

)
= exp

(
− 1

2
f (k)>∆f (k)

)
.

This equation highlights why the model favors features that are smooth across the graph. Features

are probable when connected objects i and j (sij > 0) have a similar value. The stronger the

connection sij (meaning the larger its value), the more important it is for the feature values to

match. As pointed out in Zhu et al. (2003), this distribution is not proper, since adding a constant

value to the feature vector does not change its probability. Therefore following Zhu et al. (2003),

we define the matrix J = ∆ + 1
σ2 I and use

P (f (k)|S, σ2) ∝ exp
(
− 1

2
f (k)>Jf (k)

)
, (1)

which results in a proper density. This distribution is an nt dimensional Gaussian with zero mean

P (f (k)|S, σ2) = N
(
f (k)|0, J−1

)
=

1

(2π)nt/2|J |−1/2
exp

(
− 1

2
f (k)>Jf (k)

)
.

This generative model for features can also be derived from a maximum entropy formulation, as

shown in Lawrence (2011, 2012). This distribution over features is nearly the same as in the

structural forms model, except the forms model adds the diagonal term 1
σ2 only to the observed

nodes.

This distribution is also known as a Gaussian Markov Random Field (Koller & Friedman, 2009).

The undirected graph S (and equivalently the precision matrix J) instantiates a set of conditional

2

independence relationships between the variables in the graph

sij = 0 if and only if
(
f
(k)
i ⊥ f (k)j |f

(k)
\{i,j}

)
.

If nodes i and j do not share an edge, their feature values are conditionally independent when the

rest of the feature vector is observed (or equivalently, their partial correlation is 0 when controlling

for all other nodes). Intuitively, a shared edge is a path of direct dependence.

Given that each object connects to exactly one cluster node (and no other nodes), there are no

paths of direct dependence between objects. Instead, covariation between objects is represented

through the connections between their cluster nodes. Moreover, two objects assigned to the same

cluster node are conditionally independent, if the feature values of their shared cluster node could

be observed.

2 Prior distribution on structure

The prior on structures S has a very simple form

P (S, σ2) ∝ exp
(
− β(#S)

)
,

where #S is the number of edges in a structure. Equivalently, #S = 1
2 ||S||0, where ||S||0 known as

the `0-norm, counts the number of non-zero entires in a matrix. The prior has support on the set of

all possible graphs in which the following conditions are met: each object has only one connection

(which is to a cluster node), there are no empty cluster nodes, each matrix entry is non-negative

(sij ≥ 0), and σ2 > 0.

This prior is improper because the values in S have no upper bound. Given that this paper

aims to just find a single good structure, this issue can be ignored and the prior becomes a penalty

−β(#S) in the model’s log-score (Main article; Eq. 3). If it was desirable (and tractable) to

compute a posterior distribution P (S|D), then this improper prior could be extended to form a

proper prior. Following the structural forms model, S could be decomposed into its sparsity pattern

Spat (which values are non-zeros) and the edge values Sval. The forms model places a prior on each

entry in Sval, and uses Laplace’s method (MacKay, 2003) to approximate the integral over the

3

parameter values

P (D|Spat) =

∫
P (D|Spat, Sval, σ

2)P (Sval|Spat)P (σ2)dSvaldσ
2.

This strategy is entirely consistent with the structural sparsity model. In fact, approximating

the integral would create an additional force for sparsity, known as the Bayesian Occam’s razor

(MacKay, 2003). But our current approach was chosen for simplicity, since we found it unnecessary

to have two simultaneous forces driving for sparsity. There are some more formal reasons to

support this point. As the number of features grows, the Laplace approximation for the integral

above asymptotes to a model score known as the Bayesian Information Criterion (BIC) (Koller

& Friedman, 2009; Schwarz, 1978). The BIC score maximizes the likelihood while penalizing the

number of parameters, just like the penalization arising from our prior on S, although it differs

in a scaling factor. Thus the more complex model, which combines these two sources of sparsity,

asymptotes to the simpler model with just a larger value of the sparsity parameter β, soaking up

both forces that promote sparsity.

3 Model implementation

Computing a posterior distribution over structures P (S|D) is very difficult, and thus we aim to find

a single good structure S that maximizes the posterior score (Main article; Eq. 3). Our approach

to this optimization problem consists of two main routines. The outer-routine searches for the best

clustering pattern (partition) of objects into cluster nodes, called cluster search. The inner-routine

searches for the best graph S without changing the clustering pattern, called connection search.

3.1 Cluster search

The strategy for cluster search is related to standard methods for structure learning in graphical

models (Koller & Friedman, 2009), which evaluate small changes to a graph and often greedily select

the best change. Given a hypothesis structure and its cluster pattern, cluster search considers a

set of local proposals to split or merge cluster nodes. The best scoring move, whether it is a split

or a merge, is chosen greedily at each step. In order to assess the quality of each move, the edges

must be re-optimized with the connection search routine which is computationally expensive. But

4

multiple possible moves can be evaluated in parallel. To help mitigate the problem of local optima,

search does not terminate immediately when the best local move decreases the score. Instead, the

algorithm terminates after the score decreases several times (we used 5). Search also keeps a tabu

list of previously visited cluster partitions that it does not revisit. The best evaluated structure S

is returned as the solution.

Initialization. Choosing a good initialization can save a lot of computation, and in some

cases, lead to better results. Given that cluster search operates over cluster partitions, we use

standard clustering methods to propose a set of reasonable candidates for initialization. We use

k-means clustering to choose a set of k clusters. Multiple values of k are tried, where the values

of k are evenly spaced on a logarithmic scale from 1 to the number of objects nx. Each candidate

is evaluated and scored with connection search. After determining the best value for k in this

initial coarse sampling, the algorithm attempts to narrow in on a better value. Picking the closest,

previously-tried values of k above and below the current k, k is further optimized in this range by

Fibonacci search. Assuming the score is a unimodal function of k within these bounds, Fibonacci

search will find the optimum in this range.

Splitting clusters. To split a cluster node, the objects currently assigned to that node must be

divided between the two new clusters. Following the general splitting strategy used in the structural

forms algorithm (Kemp & Tenenbaum, 2008), the sparsity algorithm chooses two seed objects at

random, assigns one to each cluster, and stochastically distributes the remaining objects by picking

whichever seed object is closer in feature space. There is also a low probability of choosing the

opposite seed object. Rather than evaluating just one split per node, the algorithm tries several

(3) randomly chosen seed objects. Each split must then be optimized with connection search and

scored by the objective function (Main article; Eq. 3). For each step during search, the algorithm

is limited in the total number of splits it will consider across all of the cluster nodes (30 for most

data sets, but 8 for large data sets like the Senate and 200 Objects).

Merging clusters. To merge two cluster nodes, they must combine their attached objects

to form a single cluster node. Rather than trying every combination of merges, each cluster node

stochastically, but intelligently, picks another to combine with. To help select the merges, the

algorithm first calculates the expected value of the latent features for all cluster nodes, and the

probability of merging two nodes decreases with the distances in this feature space. The algorithm

5

also limits the number of merges it evaluates (30 for most data sets, but 8 for the Senate and 200

objects).

Swapping assignments. In addition to splits and merges, the algorithm also tries to swap

the cluster assignments of objects (Kemp & Tenenbaum, 2008). These moves do not compete

with splitting and merging during each greedy step of the algorithm. Instead, at regular intervals

throughout search (we used every 3 moves), each object tries to change its cluster assignment while

leaving all others fixed. It tries all possibilities, but it does not re-learn the sparsity pattern for each

possible assignment, which is an expensive computation. Instead, it just re-optimizes the existing

edge strengths of each candidate proposal S. If a new parent leads to a better score, then S is

re-optimized with the full connection search.

3.2 Connection search

Connection search is the sub-routine that searches for the best sparse connectivity pattern, given a

assignment of objects to cluster nodes. Defining a function c(S) that extracts the cluster assignment,

connection search must solve

argmax
σ2,{S:c(S)=w}

m∑
i=1

logP (f
(i)
X |S, σ

2)− β(#S), (2)

where the current cluster assignment is denoted as w. Given that features are only observed

for object nodes, and even those features can be missing, we use the Structural Expectation-

Maximization algorithm (Structural EM or SEM) for learning in the presence of missing data

(Friedman, 1997).

Structural Expectation-Maximization. SEM reduces the missing data problem to a se-

quence of simpler structure learning problems with complete data. Rather than maximizing Eq. 2

directly, the structure at iteration r + 1 of SEM maximizes

S[r+1], σ2[r+1] ← argmax
σ2,{S:c(S)=w}

m∑
i=1

E
Qi(f

(i)
Z ,S[r],σ2[r])

[
logP (f

(i)
X , f

(i)
Z |S, σ

2)
]
− β(#S), (3)

where the expectation is over the conditional distribution of the missing or latent features (f
(i)
Z)

6

given the observed features (f
(i)
X) and the current structure at iteration r,

Qi(f
(i)
Z , S[r], σ2[r]) = P (f

(i)
Z |f

(i)
X , S[r], σ2[r]).

Each iteration of the Structural EM algorithm is guaranteed to improve the original objective, or the

marginal probability of the observed features Eq. 2. For the structural sparsity model, each iteration

can be decomposed into an E-step (Step 3 below) which computes expected sufficient statistics. This

is followed by a Structural M-step that re-optimizes the structure to fit the new sufficient statistics

(Step 4). The algorithm is shown below.

1: Initialize S[0] and σ2[0]

2: for r = 0, 1, 2, ... until convergence do

3: H ← 1
m

∑m
i=1EQi(f

(i)
Z ,S[r],σ2[r])

[f (i)f (i)T]

4: {S[r+1], σ2[r+1]} ← argmax
σ2,{S:c(S)=w}

log |J | − tr(HJ)− β
m ||S||0

5: end for

The precision matrix J is implicitly a function of S and σ2. Step 4 is intractable, as is the case

with most structure learning problems, and we describe how we approximately solve it in the next

section. Also, we run traditional EM to convergence at the end of each iteration r of Structural

EM (see Alternating SEM-EM Friedman, 1997). Traditional EM is the same algorithm as SEM

but with β = 0 and a fixed sparsity pattern for S across iterations.

Optimization with `1 heuristic. Exactly solving Step 4 is intractable, since all possible

sparsity patterns need to be considered and the number of different sparsity patterns for k clusters

is 2(k
2−k)/2. Instead we use a convex relaxation of the optimization which replaces the `0 norm

with the `1 norm. This heuristic leads to a sparse solution (Banerjee, El Ghaoui, & D’Aspremont,

2008). The `1 relaxation penalizes a sum of the parameters instead of their cardinality, such that

||S||0 ≈ λ
∑

ij sij for some constant λ. This leads to a convex optimization problem which can be

7

solved exactly (Lake & Tenenbaum, 2010):

argmax
J,S,σ2

log |J | − tr(HJ)− βλ

m

∑
ij

sij

subject to

J = diag
(∑

j

sij

)
− S +

1

σ2
I

sij = 0, {i, j} /∈ E

sij ≥ 0, {i, j} ∈ E

σ2 > 0.

The set of allowable edges is denoted as E . Given that J can be defined as an affine mapping

from the variables S and σ2, we can make the first equality constraint implicit in the objective

function and remove J as a variable (Boyd & Vandenberghem, 2004). By setting the missing edges

to be zero and removing them as variables, we have a convex optimization problem with just a

positivity constraint on the parameters. Efficient methods for solving a related sparse Gaussian

problem with `1 have been developed (Banerjee et al., 2008; Schmidt, Van Den Berg, Friedlander, &

Murphy, 2009), although this problem does not have a positivity constraint or the graph Laplacian

interpretation. Algorithms for this related problem typically solve the dual optimization problem,

although we found that solving the primal problem was more efficient for the variant defined here.

To solve it, we used a projected quasi-Newton algorithm and code developed by Schmidt et al.

(2009). For a given solution, many values are zero but others are just small. The final sparsity

pattern is chosen by thresholding to approximately maximize the complete-data objective in Step

4 of the Structural EM algorithm. The algorithm repeats the optimization and thresholding a total

of three times, at λ = {.5, 1, 2}, and the best is picked according to the same objective. For the

largest data sets, λ = 1.

Derivation of Structural EM. More details of the Structural EM derivation are now de-

scribed. We unpack the SEM objective function in Eq. 3 and derive the algorithm in the section

above. Here, the distribution Qi implicitly depends on the current hypothesis S, although we drop

the dependence in the notation.

8

argmax
σ2,{S:c(S)=w}

logP (S, σ2) +
∑m

i=1EQi(f
(i)
Z)

[log p(f
(i)
X , f

(i)
Z ;S, σ2)]

= argmax
σ2,{S:c(S)=w}

logP (S, σ2)− m
2 log |J−1| − 1

2

∑m
i=1EQi(f

(i)
Z)

[f (i)TJf (i)]

= logP (S, σ2) + m
2 log |J | − 1

2

∑m
i=1(

∑n
j=1

∑n
k=1EQi(f

(i)
Z)

[f
(i)
j f

(i)
k]Jjk)

= logP (S, σ2) + m
2 log |J | − 1

2

∑m
i=1 tr(E

Qi(f
(i)
Z)

[f (i)f (i)T]J)

= logP (S, σ2) + m
2 log |J | − m

2 tr(HJ)

∝ log |J | − tr(HJ)− β
m ||S||0

Above, J is the precision matrix (Eq. 1) and H is the expectation of the empirical covariance,

H ← 1

m

m∑
i=1

E
Qi(f

(i)
Z)

[f (i)f (i)>].

The E-step (Step 3 in the SEM algorithm) uses this formula for computing H. Afterwards, we can

approximately solve the optimization problem shown in the last line of the derivation, which forms

the M-step (Step 4 in the SEM algorithm).

References

Banerjee, O., El Ghaoui, L., & D’Aspremont, A. (2008). Model Selection Through Sparse Maxi-

mum Likelihood Estimation for Multivariate Gaussian or Binary Data. Journal of Machine

Learning Research, 9 , 485–516.

Boyd, S., & Vandenberghem, L. (2004). Convex Optimization. Cambridge University Press.

Friedman, N. (1997). Learning Belief Networks in the Presence of Missing Values and Hidden

Variables. Fourteenth International Conference on Machine Learning (ICML).

Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form. Proceedings of the

National Academy of Sciences, 105 (31), 10687–92.

Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models. MIT Press.

Lake, B. M., & Tenenbaum, J. B. (2010). Discovering Structure by Learning Sparse Graphs.

Proceedings of the 32nd Annual Conference of the Cognitive Science Society .

Lawrence, N. D. (2011). Spectral Dimensionality Reduction via Maximum Entropy. Proceedings of

the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS),

51–59.

9

Lawrence, N. D. (2012). A Unifying Probabilistic Perspective for Spectral Dimensionality Reduc-

tion: Insights and New Models. Journal of Machine Learning Research, 13 , 1609–1638.

MacKay, D. J. (2003). Information Theory, Inference, and Learning Algorithms. Cambridge, UK:

Cambridge University Press.

Schmidt, M., Van Den Berg, E., Friedlander, M. P., & Murphy, K. (2009). Optimizing Costly

Functions with Simple Constraints: A Limited-Memory Projected Quasi-Newton Algorithm.

Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AIS-

TATS).

Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6 (2), 461–464.

Zhu, X., Lafferty, J., & Ghahramani, Z. (2003). Semi-supervised learning: From Gaussian fields to

Gaussian processes (Tech. Rep. No. CMU-CS-03-175).

10

