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Abstract

Modern deep neural networks require a tremendous amount
of data to train, often needing hundreds or thousands of la-
beled examples to learn an effective representation. For these
networks to work with less data, more structure must be built
into their architectures or learned from previous experience.
The learned weights of convolutional neural networks (CNN’s)
trained on large datasets for object recognition contain a sub-
stantial amount of structure. These representations have par-
allels to simple cells in the primary visual cortex, where re-
ceptive fields are smooth and contain many regularities. In-
corporating smoothness constraints over the kernel weights
of modern CNN architectures is a promising way to improve
their sample complexity. We propose a smooth kernel regu-
larizer that encourages spatial correlations in convolution ker-
nel weights. The correlation parameters of this regularizer are
learned from previous experience, yielding a method with a
hierarchical Bayesian interpretation. We show that our corre-
lated regularizer can help constrain models for visual recogni-
tion, improving over an L2 regularization baseline.

Keywords: convolutional neural networks; regularization;
model priors; visual recognition

Introduction

Convolutional neural networks (CNNs) are powerful feed-
forward architectures inspired by mammalian visual process-
ing capable of learning complex visual representations from
raw image data (LeCun et al., 2015). These networks achieve
human-level performance in some visual recognition tasks;
however, their performance often comes at the cost of hun-
dreds or thousands of labelled examples. In contrast, children
can learn to recognize new concepts from just one or a few ex-
amples (Bloom, 2000; Xu & Tenenbaum, 2007), evidencing
the use of rich structural constraints (Lake et al., 2017). By
enforcing structure on neural networks to account for the reg-
ularities of visual data, it may be possible to substantially re-
duce the number of training examples they need to generalize.
In this paper, we introduce a soft architectural constraint for
CNNss that encourages smooth, correlated structure on their
convolution kernels through transfer learning.! We see this as
an important step towards a general, off-the-shelf CNN regu-
larizer that operates independently of previous experience.

The basis for our constraint is the idea that the weights of a
convolutional kernel should in general be well-structured and
smooth. The weight kernels of CNNs that have been trained
on the large-scale ImageNet object recognition task contain a
substantial amount of structure. These kernels have parallels
to simple cells in primary visual cortex, where smooth re-
ceptive fields implement bandpass oriented filters of various
scale (Jones & Palmer, 1987).

'Experiments from this paper can be reproduced with the code
found at https://github.com/rfeinman/SK-regularization.
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(b) i.i.d. Gaussian (L2-reg)  (c) correlated Gaussian (SK-reg)

Figure 1: Kernel priors for VGG16. The layer-1 convolution kernels
of VGG16, shown in (a), possess considerable correlation structure.
An i.i.d. Gaussian prior that has been fit to the VGG layer-1 kernels,
samples from which are shown in (b), captures little of the structure
in these kernels. A correlated multivariate Gaussian prior, samples
from which are shown in (c), captures the correlation structure of
these kernels well.

The consistencies of visual receptive fields are explained
by the regularities of image data. Locations within the kernel
window have parallels to locations in image space, and im-
ages are generally smooth (Li, 2009). Consequently, smooth,
structured receptive fields are necessary to capture important
visual features like edges. In landmark work, Hubel & Wiesel
(1962) discovered edge-detecting features in the primary vi-
sual cortex of cat. Since then, the community has successfully
modeled receptive fields in early areas of mammalian visual
cortex using Gabor kernels (Jones & Palmer, 1987). These
kernels are smooth and contain many spatial correlations. In
later stages of visual processing, locations of kernel space
continue to parallel image space; however, inputs to these
kernels are visual features, such as edges. Like earlier lay-
ers, these layers also benefit from smooth, structured kernels
that capture correlations across the input space. Geisler et
al. (2001) showed that human contour perception—an impor-
tant component of object recognition—is well-explained by a
model of edge co-occurrences, suggesting that correlated re-
ceptive fields are useful in higher layers of processing as well.

Despite the clear advantages of structured receptive fields,
constraints placed on the convolution kernels of CNNs are
typically chosen to be as general as possible, with neglect
of this structure. L2 regularization—the standard soft con-
straint applied to kernel weights, which is interpreted as a
zero-mean, independent identically distributed (i.i.d.) Gaus-
sian prior—treats each weight as an independent random vari-
able, with no correlations between weights expected a priori.
Fig. 1 shows the layer-1 convolutional kernels of VGG16, a
ConvNet trained on the large-scale ImageNet object recog-
nition task (Simonyan & Zisserman, 2015). Fig. 1b shows
some samples from an i.i.d. Gaussian prior, the equivalent
of L2 regularization. Clearly, this prior captures little of the
correlation structure possessed by the kernels.



A simple and logical extension of the i.i.d. Gaussian prior
is a correlated multivariate Gaussian prior, which is capable
of capturing some of the covariance structure in the convolu-
tion kernels. Fig. lc shows some samples from a correlated
Gaussian prior that has been fit to the VGG16 kernels. This
prior provides a much better model of the kernel distribution.
In this paper, we perform a series of controlled CNN learn-
ing experiments using a smooth kernel regularizer—which we
denote “SK-reg”—based on a correlated Gaussian prior. The
correlation parameters of this prior are obtained by fitting a
Gaussian to the learned kernels from previous experience. We
compare SK-reg to standard L2 regularization in two object
recognition use cases: one with simple silhouette images, and
another with Tiny ImageNet natural images. In the condition
of limited training data, SK-reg yields improved generaliza-
tion performance.

Background

Our goal in this paper is to introduce new a priori structure
into CNN receptive fields to account for the regularities of
image data and help reduce the sample complexity of these
models. Previous methods from this literature often require a
fixed model architecture that cannot be adjusted from task to
task. In contrast, our method enforces structure via a statis-
tical prior over receptive field weights, allowing for flexible
architecture adaption to the task at hand. Nevertheless, in this
section we review the most common approaches to structured
vision models.

A popular method to enforce structure on visual recogni-
tion models is to apply a fixed, pre-specified representation.
In computational vision, models of image recognition con-
sist of a hierarchy of transformations motivated by principles
from neuroscience and signal processing (e.g., Serre et al.,
2007; Bruna & Mallat, 2013). These models are effective at
extracting important statistical features from natural images,
and they have been shown to provide a useful image represen-
tation for SVMs, logistic regression and other “shallow” clas-
sifiers when applied to recognition tasks with limited training
data. Unlike CNNs, the kernel parameters of these models
are not learned by gradient descent. As result, these features
may not be well-adapted to the specific task at hand.

In machine learning, it is commonplace to use the features
from CNNs trained on large object recognition datasets as a
generic image representation for novel vision tasks (Donahue
et al., 2014; Razavian et al., 2014). Due to the large vari-
ety of training examples that these CNNs receive, the learned
features of these networks provide an effective representation
for a range of new recognition tasks. Some meta-learning
algorithms use a similar form of feature transfer, where a fea-
ture representation is first learned via a series of classification
episodes, each with a different support set of classes (e.g.,
Vinyals et al., 2016). As with pre-specified feature models,
the representations of these feature transfer models are fixed
for the new task; thus, performance on the new task may be
sub-optimal.

Beyond fixed feature representations, other approaches use
a pre-trained CNN as an initialization point for a new net-
work, following with a fine-tuning phase where network
weights are further optimized for a new task via gradient
descent (e.g., Girshick et al., 2014; Girshick, 2015). By
adapting the CNN representation to the new task, this ap-
proach often enables better performance than fixed feature
methods; however, when the scale of the required adapta-
tion is large and the training data is limited, fine-tuning can
be difficult. Finn et al. (2017) proposed a modification of
the pre-train/fine-tune paradigm called model-agnostic meta-
learning (MAML) that enables flexible adaptation in the fine-
tuning phase when the training data is limited. During pre-
training (or meta-learning), MAML optimizes for a repre-
sentation that can be easily adapted to a new learning task
in a later phase. Although effective for many use cases, this
approach is unlikely to generalize well when the type of adap-
tation required differs significantly from the adaptations seen
in the meta-learning episodes. A shared concern for all pre-
train/fine-tune methods is that they require a fixed model ar-
chitecture between the pre-train and fine-tune phases.

The objective of our method is distinct from those of fixed
feature representations and pre-train/fine-tune algorithms. In
this paper, we study the structure in the learned parameters of
vision models, with the aim of extracting general structural
principles that can be incorporated into new models across a
broad range of learning tasks. SK-reg serves as a parameter
prior over the convolution kernels of CNNs and has a theo-
retical foundation in Bayesian parameter estimation. This ap-
proach facilitates a CNN architecture and representation that
is adapted to the specific task at hand, yet that possesses ad-
equate structure to account for the regularities of image data.
The SK-reg prior is learned from previous experience, yield-
ing an interpretation of our algorithm as a method for hierar-
chical Bayesian inference.

Independently of our work, Atanov et al. (2019) developed
the deep weight prior, an algorithm to learn and apply a CNN
kernel prior in a Bayesian framework. Unlike our prior, which
is parameterized by a simple multivariate Gaussian, the deep
weight prior uses a sophisticated density estimator parame-
terized by a neural network to model the learned kernels of
previously-trained CNNs. The application of this prior to
new learning tasks requires variational inference with a well-
calibrated variational distribution. Our goal with SK-reg dif-
fers in that we aim to provide an interpretable, generalizable
prior for CNN weight kernels that can be applied to existing
CNN training algorithms with little modification.

Bayesian interpretation of regularization

From the perspective of Bayesian parameter estimation, the
L2 regularization objective can be interpreted as performing
maximum a-posteriori inference over CNN parameters with
a zero-mean, i.i.d. Gaussian prior. Here, we review this con-
nection, and we discuss the extension to SK-reg.



Figure 2: SK-reg work ow. A) First, a CNN is trained repeatedly (20x) on an object recognition task. B) Next, the learned parameters of each
CNN are studied and statistics are extracted. For each convolution layer, kernels from the multiple CNNs are consolidated, yielding a kernel
dataset for the layer. A multivariate Gaussian is t to each kernel dataset. C) SK-reg is applied to a fresh CNN trained on a new learning task
with limited training data (possibly with a different architecture or numbers of kernels), using the resulting Gaussians from each layer.

L2 regularization. Assume we have a dataset = the prior over kernel weightg of Eq. 3 becomes
fxg;xng andyY = fyg;iiyng consisting ofN imagesx
andN class labely;. Letq de ne the parameters of the CNN p(g) = Eexp }qTS 9
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that we wish to estimate. The L2 regularization objective is

stated as follows: for some covariance matrf and the new objective is written

o — - | P ~
a= argqmaxlog p(YigX) I aq (1) q=argmaxlogp(Yjg;X) | q'S g 4)
q

Here, the rst term of our objective is our prediction accuracy
(classi cation log-likelihood), and the second term is our L2
regularization penalty.

From a Bayesian perspective, this objective can be thoug
of as nding themaximum a-posterio((MAP) estimate of the
network parameter posterigfqj Y;X) 1 p(Y jg;X) p(q),
leading to the optimization problem

Hierarchical Bayes. WhenS is learned from previous ex-
perience, SK-reg can be interpreted as approximate inference
in a hierarchical Bayesian model. The SK regularizer for a

larities of the visual world, it is plausible that effective general

§ = argmaxlog p(Y j g;X)+ log p(q): ) priors exist for each layer of visual processing. In this paper,
q ' transfer learning is used to t the prior covarianc&grom

T e th _ h L2 \arizati 4)revious dataset§'™ 1andY*™ 1 which informs the so-
0 make the connection with L2 regularization, we assumg i,y for a new problenx™ andYM, yielding the hierarchi-
a zero-mean, i.i.d Gaussian prior over the paramefarsa

cal Bayesian interpretation depicted in Fig. 3. Task-specic
weight kernel, written as Y P P g P

— 1 1 T .
p(g) = Z€Xp 5500 3

With this prior, Eq. 2 becomes
~ . 1
q= argmaxlog p(Yj &;X) 50'q;
q

which is the L2 objective of Eq. 1, with= -1,

252" . . . L . .
o . . . Figure 3: A hierarchical Bayesian interpretation of SK-reg. A point
SK regularization. The key idea behind SK-reg is to ex- estimate of prior paramete&is rst computed with MAP estima-

tend the L2 Gaussian prior to include a non-diagonal covarition. Next, this prior is applied to estimate CNN parametgrin a
ance matrix; i.e., to add correlation. In the case of SK-regnew task.



CNN parameterg'™ are drawn from a comma8, andS has
a hyperprior speci ed by. Ideal inference would compute
p(YMjyIM 1.x1M) marginalizing oveq*™ andS.

We propose a very simple empirical Bayes procedure for
learning the kernel regularizer in Eq. 4 from data. First,
M 1 CNNsare tindependently to the datasats™ ! and Figure 4: Exemplars of the phase 1 silhouette object classes.
YIM 1 ysing standard methods, in this case optimizing Eq.

1 to get point estim::xtee}l:M ' Second, a point estima® :_nag/uetr(200x200x3) Window _ Stride _Features |
is computed by maximizing(Sjq-" *;b), which is a sim- Conv2D 5x5 2 5 0.05
ple regularized covariance estimator. Last, for a new sk I\C/Igr>1<\|720[<))l|n92D 2;53 f 10 0.05
with training datax™ andY™, a CNN with parameterg" is MaxPooling2D  3x3 2 '
trained with the SK-reg objective (Eq. 4), wig= S. Conv2D 5x5 1 8 0.05
. . . . MaxPooling2D 3x3 1
This procedure can be compared with the hierarchical ¢ iyconnected 128 001

Bayesian interpretation of MAML (Grant et al., 2018). Un-  Softmax
like MAML, our method allows exibility to use different ar- ble 1: CNN archi . h nclude wind

; ; ; o el architecture. Layer hyperparameters include window
chitectures for different datasets/episodes, and the opt|m|ze-srtgey stride, feature count, and regularization weight Oropout

M . .
for @ is run to convergence rather than just a few steps. s applied after the last pooling layer and the fully-connected layer
with rates 0.2 and 0.5, respectively.

Experiments

We evaluate our approach within a set of controlled visuakgorithm, we use a new set of classes that differ from the

learning environments. SK-reg parametgrgor each con-  phase 1 classes in substantial ways, and we provide just a few
volution layerq; are determined by tting a Gaussian to the training examples from each class. Performance of SK-reg is
kernels acquired from an earlier learning phase. We dividgompared against standard L2 regularization.

our learning tasks into two unique phases, applying the same

CNN architecture in each case. We note that our approachilhouettes

does not require a xed CNN architecture across these tworg g preliminary use case, we train our network using the

phases; the number of feature maps in each layer may be e3sinary shape image dataset developed at Brown Univérsity
ily adjusted. A depiction of the two learning phases is givenpenceforth denoted “Silhouettes.” Silhouette images are bi-
inFig. 2. nary masks that depict the structural form of various object
Phase 1. The goal of phase 1 is to extract general principlesclasses. Simple shape-based stimuli such as these provide
about the structure of learned convolution kernels by training controlled learning environment for studying the inductive
an array of CNNs and collecting statistics about the resultingpiases of CNNs (Feinman & Lake, 2018). We select a set of
kernels. In this phase, we train a CNN architecture to classify?0 well-structured silhouette classes for phase 1, and a set of
objects using a suf ciently large training set with numerous 10 unique, well-structured classes for phase 2 that differ from
examples per object class. Training is repeated multiple timeghase 1 in their consistency and form. The images are padded
with unique random seeds, and the learned convolution ketto @ xed size of 200 200.

nels are stored for each run. During this phase, standard L2 During phase 1, we train our network to perform 20-way
regularization is applied to enforce a minimal constraint onobject classi cation. Exemplars of the phase 1 classes are
each layer's weights (optimization problem of Eq. 1). After shown in Fig. 4. The number of examples varies for each
training, the convolution kernels from each run are consoli<€lass, ranging from 12 to 49 with a mean of 24. Class weight-
dated, holding each layer separate. A multivariate Gaussiaifg is used to remedy class imbalances. To add complexity to
is t to the centered kernel dataset of each layer, yielding ahe silhouette images, colors are assigned randomly to each
distributionN(0; S;) for each convolution layeir To ensure  silhouette before training. During training, random transla-
the stability of the covariance estimators, we apply shrinkag&ions, rotations and horizontal ips are applied at each train-
to each covariance estimate, mixing the empirical covariancég epoch to improve generalization performance.

with an identity matrix of equal dimensionality. This can be We use a CNN architecture with 3 convolution layers, each
interpreted as a hyperpri@(S;b) (Fig. 3) that favors small followed by a max pooling layer (see Table 1). Hyperparam-
correlations. The optimal mixing parameter is determined vigeters including convolution window size, pool size, and |-
cross-validation. ter counts were selected via randomized grid-search, using a

Phase 2. In phase 2, we test the aptitude of SK-reg on a nerahdatlon set with examples from each class to score candi-

. . X . ) date values. A recti ed linear unit (ReLU) nonlinearity is ap-
visual recognition task, applying the covariance matriges . .
: : N plied to the output of each convolution layer, as well as to the
obtained from phase 1 to regularize each convolution layer

in a freshly-trained CNN (optimization problem of Eq. 4). In- 276 pinary shape dataset is available in the “Databases” section
order to adequately test the generalization capability of ouathttp://vision.lems.brown.edu



(a) First-layer kernels

(b) Gaussian samples

Figure 5: Learned rst-layer kernels vs. Gaussian samples. (a) de-
picts some of the learned rst-layer kernels acquired from phase 1
silhouette training. For comparison, (b) shows a few samples from a
multivariate Gaussian that was tto the rst-layer kernel dataset.

fully-connected layer. The network is trained 20 times using
the Adam optimizer, each time with a unique random initial-
ization. It achieves an average validation accuracy of 97.7%igure 6: Silhouettes phase 2 datasets. 3 examples per class are

across the 20 trials, indicating substantial generalization. ~ Provided in both the train and validation sets. A holdout test set with
' 6 examples per class is used to evaluate nal model performance.

Following the completion of phase 1 training, a kernel
dataset is obtained for each convolution layer by consolidat

ing the learned kernels for that layer from the 20 trials. Co- Method | Cross-entropy Accuracy
variance matrice&§; for each layel are obtained by tting L2 0214 2.000 (+/-0.033)  0.530 (+/-0.013)
SK 0.129 0.597 (+/-0.172) 0.821 (+/- 0.056)

a multivariate Gaussian to the layer's kernel dataset. For a
rst-layer convolution with window sizeK K, this Gaus-  taple 2: Silhouettes phase 2 results. For each regularization method,
sian has dimensionalityk®, equal to the window area times the optimal regularization weight was selected via grid-search.
RGB depth. We model the input channels as separate varResults show the average cross-entropy and classi cation accuracy

- . achieved on the holdout test set over 10 phase 2 training runs.
ables in layer 1 because these channels have a consistent in-

terpretation as the RGB color channels of the input image.
For remaining convolution layers, where the interpretation Ofstopping) A holdout set with 6 examples per class is used

input channels may vary from case to case, we treat €ach iffy 4qsess the nal performance of the model. A depiction of

put channel as an independent sample from a Gaussian Wifje {rain, validation and test sets used for phase 2 is given

. . . 2
dimensionalityK<. The kernel datasets for each layer are ceny, Fig. 6. The validation and test images have been shifted,

tered to ensure zero mean, typically requiring only a Smalkranslated and ipped to make for a more challenging gen-
perturbation vector. eralization test. Similar to phase 1, random shifts, rotations
To ensure that our multivariate Gaussians model the kerngind horizontal ips are applied to the training images at each
data well, we computed the cross-validated log-likelihoodsyaining epoch. As a baseline, we also train our CNN using
of this estimator on each layer's kernel dataset and comparegtandard L2 regularization.
them to those qf an i.i.d. Gau;sian estimator tto the same e regularization weigHt is an important hyperparame-
data. The multivariate Gaussian achieved an average SCOfg; of hoth SK and L2 regularization. Before performing the
of 358.5, 413.3 and 828.1 for convolution layers 1, 2 and 3ppa5e 2 training assessment, we use a validated grid search to
respectively. In comparison, the i.i.d. Gaussian achieved agg|ect the optimdl for each regularization method, applying

average score of 144.4, 289.6 and 621.9 for the same layergy,r rain/validate sets The same weight is applied to each
These results con rm that our multivariate Gaussian provides,gnyolution layer, as done in phase 1.

an improved model of the kernel data. Some examples of i . .
the rst-layer convolution kernels are shown in Fig. 5 along- R€sults. With our optimall values selected, we trained our
side samples from our multivariate Gaussian that was t toCNN on the 10-way phase 2 classi cation task of Fig. 6,

the rst-layer kernel dataset. The samples appear structurallfomparing SK regularization to a baseline L2 regularization
consistent with our phase 1 kernels. model. Average results for the two models collected over 10

training runs are presented in Table 2. Average test accuracy
is improved by roughly 55% with the addition of SK reg, a
bstantial performance boost from 53.0% correct to 82.1%

In phase 2, we train our CNN on a new 10-way classi-
cation task, providing the network with just 3 examples
per class for gradient descent training and 3 examples p e . . )
class for validation. Colors are again added at random t&orr(_ect. _Clearly, a priori _structu_re is bene cial to generaliza-
each silhouette in the dataset. The network is initialized ran ©" I this use case. An inspection of the learned kernells con-
domly, and we apply SK-reg to the convolution kernels of rms that SK-reg encourages the structure we expect; these

each layer during training using the covariance matrices ob= 3To yield interpretabld values that can be compared between

tained in phase 1. Our validation set is used to track and sa\e sk ‘and L2 cases, we normalize each covariance matrix to unit
the best model over the course of the training epochs (earlgleterminant by applying a scaling factpisuch that detS) = det().



kernels look visually similar to samples from the Gaussian
(e.g. Fig. 5).

Tiny ImageNet

Our silhouette experiment demonstrates the effectiveness of
SK-reg when the parameters of the regularizer are determined
from the structure of CNNSs trained on a similar image do-
main. However, it remains unclear whether these regulariza-
tion parameters can generalize to novel image domains. Due
to the nature of the silhouette images, the silhouette recogni-
tion task encourages representations with properties that are
desirable for object recognition tasks in general. Categorizing
silhouettes requires forming a rich representation of shape,
and shape perception is critical to object recognition. There-
fore, this family of representation may be useful in a variety
of object recognition tasks.

To test whether our kernel priors obtained from silhouette
training generalize to a novel domain, we applied SK-reg to
a simplified version of the Tiny ImageNet visual recognition
challenge, using covariance parameters fitted to silhouette-
trained CNNs. Tiny ImageNet images were up-sampled with
bilinear interpolation from their original size of 64 64 to
mirror the Silhouette size 200 200. We selected 10 well-
structured ImageNet classes that contain properties consistent
with the silhouette images.* We performed 10-way image
classification with these classes, using the same CNN archi-
tecture from Table 1 and applying the SK-reg soft constraint.
The network is provided 10 images per class for training and
10 per class for validation. Because of the increased com-
plexity of the Tiny ImageNet data, a larger number of exam-
ples per class is merited to achieve good generalization per-
formance. A holdout test set with 20 images per class is used
to evaluate performance. Fig. 7 shows a breakdown of the
train, validate and test sets.

A few modifications were made to account for the new im-
age data. First, we modified the phase 1 silhouette training
used to acquire our covariance parameters, this time apply-
ing random colors to both the foreground and background of
each silhouette. Previously, each silhouette overlaid a strictly
white background. Consequently, the edge detectors of the
learned CNNs would be unlikely to generalize to novel color
gradients. Second, we added additional regularization to our
covariance estimators to avoid over-fitting and help improve
the generalization capability of the resulting kernel priors.
Due to the nature of the phase 2 task in this experiment, and
the extent to which the images differ from phase 1, additional
regularization was necessary to ensure that our kernel priors
could generalize. Specifically, we applied L1-regularized in-
verse covariance estimation (Friedman et al., 2008) to esti-
mate each Sj, which can be interpreted as a hyperprior p(S;b)
(Fig. 3) that favors a sparse inverse covariance (Lake &
Tenenbaum, 2010).

Similar to the silhouettes experiment, the validation set is

4Desirable classes have a uniform, centralized object with con-
sistent shape properties and a distinct background.
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Figure 7: Tiny ImageNet datasets. 10 classes were selected to form
a 10-way classification task. The train and validate sets each contain
10 examples per class. The holdout test set contains 20 examples
per class.

Method 1 Cross-entropy Accuracy
L2 0.450 1.073 (+/-0.102)  0.700 (+/- 0.030)
SK 0.450 0.956 (+/-0.180) 0.776 (+/- 0.035)

Table 3: Tiny ImageNet SK-reg and L2 results. Table shows the
average cross-entropy and classification accuracy achieved on the
holdout test set over 10 training runs.

used to select weighting hyperparameter I and to track the
best model over the course of learning. As a baseline, we
again compared SK-reg to a I-optimized L2 regularizer.

Results. SK-reg improved the average holdout perfor-
mance received from 10 training runs as compared to an L2
baseline, both in accuracy and cross-entropy. Results for each
regularization method, as well as their optimal I values, are
reported in Table 3. An improvement of 8% in test accuracy
suggests that some of the structure captured by our kernel
prior is useful even in a very distinct image domain. The
complexity of natural images like ImageNet is vast in com-
parison to simple binary shape masks; nonetheless, our prior
from phase 1 silhouette training is able to influence ImageNet
learning in a manner that is beneficial to generalization.

Discussion

Using a set of controlled visual learning experiments, our
work in this paper demonstrates the potential of structured
receptive field priors in CNN learning tasks. Due to the prop-
erties of image data, smooth, structured receptive fields have
many desirable properties for visual recognition models. In
our experiments, we have shown that a simple multivariate
Gaussian model can effectively capture some of the structure
in the learned receptive fields of CNNs trained on simple ob-
ject recognition tasks. Samples from the fitted Gaussians are
visually consistent with learned receptive fields, and when ap-
plied as a model prior for new learning tasks, these Gaussians
can help a CNN generalize in conditions of limited training
data. We demonstrated our new regularization method in two
simple use cases. Our silhouettes experiment shows that,



