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ABSTRACT

People can learn rich, general-purpose conceptual representations from only raw
perceptual inputs. Current machine learning approaches fall well short of these
human standards, although different modeling traditions often have complementary
strengths. Symbolic models can capture the compositional and causal knowledge
that enables flexible generalization, but they struggle to learn from raw inputs, rely-
ing on strong abstractions and simplifying assumptions. Neural network models
can learn directly from raw data, but they struggle to capture compositional and
causal structure and typically must retrain to tackle new tasks. We bring together
these two traditions to learn generative models of concepts that capture rich compo-
sitional and causal structure, while learning from raw data. We develop a generative
neuro-symbolic (GNS) model of handwritten character concepts that uses the con-
trol flow of a probabilistic program, coupled with symbolic stroke primitives and a
symbolic image renderer, to represent the causal and compositional processes by
which characters are formed. The distributions of parts (strokes), and correlations
between parts, are modeled with neural network subroutines, allowing the model
to learn directly from raw data and express nonparametric statistical relationships.
We apply our model to the Omniglot challenge of human-level concept learning,
using a background set of alphabets to learn an expressive prior distribution over
character drawings. In a subsequent evaluation, our GNS model uses probabilistic
inference to learn rich conceptual representations from a single training image that
generalize to 4 unique tasks, succeeding where previous work has fallen short.

1 INTRODUCTION

Human conceptual knowledge supports many capabilities spanning perception, production and
reasoning [37]. A signature of this knowledge is its productivity and generality: the internal models
and representations that people develop can be applied flexibly to new tasks with little or no training
experience [30]. Another distinctive characteristic of human conceptual knowledge is the way that it
interacts with raw signals: people learn new concepts directly from raw, high-dimensional sensory
data, and they identify instances of known concepts embedded in similarly complex stimuli. A central
challenge is developing machines with these human-like conceptual capabilities.

Engineering efforts have embraced two distinct paradigms: symbolic models for capturing structured
knowledge, and neural network models for capturing nonparametric statistical relationships. Symbolic
models are well-suited for representing the causal and compositional processes behind perceptual
observations, providing explanations akin to people’s intuitive theories [38]. Quintessential examples
include accounts of concept learning as program induction [13, 46, 29, 15, 4, 28]. Symbolic programs
provide a language for expressing causal and compositional structure, while probabilistic modeling
offers a means of learning programs and expressing additional conceptual knowledge through priors.
The Bayesian Program Learning (BPL) framework [29], for example, provides a dictionary of
simple sub-part primitives for generating handwritten character concepts, and symbolic relations
that specify how to combine sub-parts into parts (strokes) and parts into whole character concepts.
These abstractions support inductive reasoning and flexible generalization to a range of different
tasks, utilizing a single conceptual representation [29].
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Figure 1: Character drawings produced by the BPL model (left), GNS model (middle), and humans (right).

Symbolic models offer many useful features, but they come with important limitations. Foremost,
symbolic probabilistic models make simplifying and rigid parametric assumptions, and when the
assumptions are wrong—as is common in complex, high-dimensional data—they create bias [11].
The BPL character model, for example, assumes that parts are largely independent a priori, an
assumption that is not reflective of real human-drawn characters. As a consequence, characters
generated from the raw BPL prior lack the complexity of real characters (Fig 1, left), even though the
posterior samples can appear much more structured. Another limitation of symbolic probabilistic
models is that the construction of structured hypothesis spaces requires significant domain knowledge
[2]. Humans, meanwhile, build rich internal models directly from raw data, forming hypotheses
about the conceptual features and the generative syntax of a domain. As one potential resolution,
previous work has demonstrated that the selection of structured hypotheses can itself be attributed
to learning in a Bayesian framework [47, 13, 14, 41, 24, 40]. Although more flexible than a priori
structural decisions, models of this kind still make many assumptions, and they have not yet tackled
the types of raw, high-dimensional stimuli that are distinctive of the neural network approach.

The second paradigm, neural network modeling, prioritizes powerful nonparametric statistical learn-
ing over structured representations. This modeling tradition emphasizes emergence, the idea that
conceptual knowledge arises from interactions of distributed sub-symbolic processes [36, 32]. Neural
networks are adept at learning from raw data and capturing complex patterns. However, they can
struggle to learn the compositional and causal structure in how concepts are formed [30]; even when
this structure is salient in the data, they may have no obvious means of incorporating it. These
limitations have been linked to shortcomings in systematic generalization [35, 27] and creative
abilities [31]. An illustrative example is the Omniglot challenge: in 4 years of active research, neural
network models do not yet explain how people quickly grasp new concepts and use them in a variety
of ways, even with relatively simple handwritten characters [31]. Surveying over 10 neural models
applied to Omniglot, Lake et al. [31] found that only two attempted both classification and generation
tasks, and they were each outperformed by the fully-symbolic, probabilistic BPL. Moreover, neural
generative models tended to produce characters with anomalous characteristics, highlighting their
shortcomings in modeling causal and compositional structure (see Fig. A13 and [31, Fig. 2a]).

In this paper, we introduce a new approach that leverages the strengths of both the symbolic and
neural network paradigms by representing concepts as probabilistic programs with neural network
subroutines. We describe an instance of this approach developed for the Omniglot challenge [29]
of task-general representation learning and discuss how we see our Omniglot model fitting into a
broader class of Generative Neuro-Symbolic (GNS) models that seek to capture the data-generation
process. As with traditional probabilistic programs, the control flow of a GNS program is an explicit
representation of the causal generative process that produces new concepts and new exemplars.
Moreover, explicit re-use of parts through repeated calls to procedures such as GeneratePart
(Fig. 2) ensures a representation that is compositional, providing an appropriate inductive bias for
compositional generalization. Unlike fully-symbolic probabilistic programs, however, the distribution
of parts and correlations between parts in GNS are modeled with neural networks. This architectural
choice allows the model to learn directly from raw data, capturing nonparametric statistics while
requiring only minimal prior knowledge.
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Table 1: Attempted Omniglot tasks by model. Attempt does not imply successful completion.

Task BPL
[29]

RCN
[12]

VHE
[21]

SG
[43]

SPIRAL
[8]

Matching
Net [49]

MAML
[7]

Graph
Net [9]

Prototypical
Net [45]

ARC
[44]

One-shot classification x x x x x x x x
Parsing x x
Generate exemplars x x x x
Generate concepts (type) x x x
Generate concepts x x x

We develop a GNS model for the Omniglot challenge of learning flexible, task-general representations
of handwritten characters. We report results on 4 Omniglot challenge tasks with a single model: 1)
one-shot classification, 2) parsing/segmentation, 3) generating new exemplars, and 4) generating new
concepts (without constraints); the 5th and final task of generating new concepts (from type) is left
for future work. We also provide log-likelihood evaluations of the generative model. Notably, our
goal is not to chase state-of-the-art performance on one task across many datasets (e.g., classification).
Instead we build a model that learns deep, task-general knowledge within a single domain and
evaluate it on a range of different tasks. This “deep expertise” is arguably just as important as “broad
expertise” in characterizing human-level concept learning [37, 31]; machines that seek human-like
abilities will need both. Our work here is one proposal for how neurally-grounded approaches
can move beyond pattern recognition toward the more flexible model-building abilities needed for
deep expertise [30]. In Appendix E, we discuss how to extend GNS to another conceptual domain,
providing a proposal for a GNS model of 3D object concepts.

2 RELATED WORK

The Omniglot dataset and challenge has been widely adopted in machine learning, with models such
as Matching Nets [49], MAML [7], and ARC [44] applied to just one-shot classification, and others
such as DRAW [19], SPIRAL [8], and VHE [21] applied to one or more generative tasks. In their
“3-year progress report,” Lake et al. [31] reviewed the current progress on Omniglot, finding that
although there was considerable progress in one-shot classification, there had been little emphasis
placed on developing task-general models to match the flexibility of human learners (Table 1).
Moreover, neurally-grounded models that attempt more creative generation tasks were shown to
produce characters that either closely mimicked the training examples or that exhibited anomalous
variations, making for easy identification from humans (see Fig. A13 and [31, Fig. 2a]). Our goal is
distinct in that we aim to learn a single neuro-symbolic generative model that can perform a variety
of unique tasks, and that generates novel yet structured new characters.

Neuro-symbolic modeling has become an active area of research, with applications to learning
input-output programs [42, 17, 3, 39, 48], question answering [50, 34] and image description [26, 4].
GNS modeling distinguishes itself from prior work through its focus on hybrid generative modeling,
combining both structured program execution and neural networks directly in the probabilistic
generative process. Neuro-symbolic VQA models [50, 34] are neither generative nor task-general;
they are trained discriminatively to answer questions. Other neuro-symbolic systems use neural
networks to help perform inference in a fully-symbolic generative model [26, 4], or to parameterize
a prior over fully-symbolic hypotheses [22]. In order to capture the dual structural and statistical
characteristics of human conceptual representations, we find it important to include neural nets
directly in the forward generative model. As applied to Omniglot, our model bears some resemblance
to SPIRAL [8]; however, SPIRAL does not provide a density function, and it has no hierarchical
structure, limiting its applications to image reconstruction and unconditional generation.

Another class of models on the neuro-symbolic spectrum aims to learn “object representations” with
neural networks [5, 18, 25], which add minimal object-like symbols to support systematic reasoning
and generalization. Although these models have demonstrated promising results in applications such
as scene segmentation and unconditional generation, they have not yet demonstrated the type of rich
inductive capabilities that we are after: namely, the ability to learn “deep” conceptual representations
from just one or a few examples that support a variety of discriminative and generative tasks.

Other works (e.g. [16, 20]) have used autoregressive models like ours with similar stroke primitives to
model the causal generative processes of handwriting. We develop a novel architecture for generating
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type level

token level

procedure GENERATETYPE
C  0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C  frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
  {, y1:, x1:}
return  . Return concept type
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procedure GENERATETYPE
C  0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C  frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
  {, y1:, x1:}
return  . Return concept type
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location model  p(y ∣ C)

CNN MLP

stroke model  p(x ∣ y, C)

CNN LSTM

y

C

attention

p(y)

p(Δ1)

p(Δ2 ∣ Δ1)

p(ΔT ∣ Δ1:T−1)
…C

Figure 2: A generative neuro-symbolic (GNS) model of character concepts. The type model GenerateType
(P (ψ)) produces character types one stroke at a time, using an image canvas C as memory. At each step,
the current canvas C is fed to procedure GeneratePart and a stroke sample is produced. The canvas is
first processed by the location model, a CNN-MLP architecture that samples starting location y, and next by
the stroke model, a CNN-LSTM architecture that samples trajectory x while attending to the encoded canvas.
Finally, a symbolic renderer updates the canvas according to x and y, and a termination model decides whether
to terminate the type sample. Unique exemplars are produced from a character type by sampling from the
token model conditioned on ψ, adding motor noise to the drawing parameters and performing a random affine
transformation.

handwriting, which represents explicit compositional structure by modeling parts and relations with
separate modules and applying intermediate symbolic rendering. Most importantly, these prior
models have not made a connection to the image; therefore while they can generate handwriting
as symbolic coordinates, they cannot explain how people use their causal knowledge to learn new
characters from visual presentations, how they infer the strokes of a character seen on paper, or how
they generate a new example of an observed character. By combining a powerful autoregressive
model of handwriting with a symbolic image renderer and algorithms for probabilistic inference, we
seek to replicate a spectrum of unique human concept learning abilities.

3 GENERATIVE MODEL

Our GNS model leverages the type-token hierarchy of BPL [29], which offers a useful scaffolding
for conceptual models (Fig. 2, left).1 The type-level model P (ψ) defines a prior distribution over
character concepts, capturing overarching principles and regularities that tie together characters from
different alphabets and providing a procedure to generate new character concepts unconditionally in
latent stroke format (Fig. 2, right). A token-level model p(θ|ψ) captures the within-class variability
that arises from motor noise and drawing styles, and an image distribution P (I|θ) provides an explicit
model of how causal stroke actions translate to image pixels. All parameters of our model are learned
from the Omniglot background set of drawings (Appendix A). The full joint distribution over type ψ,
token θ(m) and image I(m) factors as

P (ψ, θ(m), I(m)) = P (ψ)P (θ(m)|ψ)P (I(m)|θ(m)). (1)

Although sharing a common hierarchy, the implementation details of each level in our GNS model
differ from BPL in critical ways. The GNS type prior P (ψ) is a highly expressive generative model
that uses an external image canvas, coupled with a symbolic rendering engine and an attentive

1Aspects of our model were recently published in a non-archival conference proceedings [6]. The previous
manuscript presents only a prior distribution that alone performs just one task (generating new concepts); our
new developments include a full hierarchical model, a differentiable image renderer / likelihood, and a procedure
for approximate probabilistic inference from image data. These ingredients together enable GNS to perform 4
unique conceptual tasks.

4



Published as a conference paper at ICLR 2021

recurrent neural network, to condition future parts on the previous parts and model sophisticated
causal and correlational structure. This structure is essential to generating new character concepts in
realistic, human-like ways (Sec. 5). Moreover, whereas the BPL model is provided symbolic relations
for strokes such as “attach start” and “attach along,” GNS learns implicit relational structure from the
data, identifying salient patterns in the co-occurrences of parts and locations. Importantly, the GNS
generative model is designed to be differentiable at all levels, yielding log-likelihood gradients that
enable powerful new inference algorithms (Sec. 4) and estimates of marginal image likelihood (Sec.
5).

Type prior. The type prior P (ψ) is captured by a neuro-symbolic generative model of character
drawings. The model represents a character as a sequence of strokes (parts), with each stroke i
decomposed into a starting location yi ∈ R2 and a variable-length trajectory xi ∈ Rdi×2. Rather
than use raw pen trajectories as our stroke format, we use a minimal spline representation of strokes,
obtained from raw trajectories by fitting cubic b-splines with a residual threshold. The starting location
yi therefore conveys the first spline control point, and trajectory xi = {∆i1, ...,∆idi} conveys the
offsets between subsequent points of a (di+1)-length spline. These offsets are transformed into a
sequence of relative points xi = {xi1, ..., xidi+1}, with xi1 = 0, specifying locations relative to yi.

The model samples a type one stroke at a time, using an image canvas C as memory to convey the
sample state. At each step, a starting location for the next stroke is first sampled from the location
model, followed by a trajectory from the stroke model. The stroke is then rendered to the canvas
C, and a termination model decides whether to terminate or continue the sample. Each of the
three model components is expressed by a neural network, using a LSTM as the stroke model to
generate trajectories as in [16]. The details of these neural modules are provided in Appendix A. The
type model P (ψ) specifies an auto-regressive density function that can evaluate exact likelihoods
of character drawings, and its hyperparameters (the three neural networks) are learned from the
Omniglot background set of 30 alphabets using a maximum likelihood objective. A full character
type ψ includes the random variables ψ = {κ, y1:κ, x1:κ}, where κ ∈ Z+ is the number of strokes.
The density function P (ψ) is also fully differentiable w.r.t. the continuous random variables in ψ.

Token model. A character token θ(m) = {y(m)
1:κ , x

(m)
1:κ , A

(m)} represents a unique instance of
a character concept, where y(m)

1:κ are the token-level locations, x(m)
1:κ the token-level parts, and

A(m) ∈ R4 the parameters of an affine warp transformation. The token distribution factorizes as

P (θ(m)|ψ) = P (A(m))

κ∏
i=1

P (y
(m)
i | yi)P (x

(m)
i | xi). (2)

Here, P (y
(m)
i | yi) represents a simple noise distribution for the location of each stroke, and

P (x
(m)
i | xi) for the stroke trajectory. The first two dimensions of affine warp A(m) control a global

re-scaling of the token drawing, and the second two a global translation of its center of mass. The
distributions and pseudocode of our token model are given in Appendix A.

Image model. The image model P (I(m) | θ(m)) is based on [29] and is composed of two pieces.
First, a differentiable symbolic engine f receives the token θ(m) and produces an image pixel
probability map pimg = f(θ(m), σ, ε) by evaluating each spline and rendering the stroke trajectories.
Here, σ ∈ R+ is a parameter controlling the rendering blur around stroke coordinates, and ε ∈ (0, 1)
controlling pixel noise, each sampled uniformly at random. The result then parameterizes an image
distribution P (I(m) | θ(m)) = Bernoulli(pimg), which is differentiable w.r.t. θ(m), σ, and ε.

4 PROBABILISTIC INFERENCE

Given an image I of a novel concept, our GNS model aims to infer the latent causal, compositional
process for generating new exemplars. We follow the high-level strategy of BPL for constructing a
discrete approximation Q(ψ, θ | I) to the desired posterior distribution [29],

P (ψ, θ | I) ≈ Q(ψ, θ | I) =

K∑
k=1

πkδ(θ − θk)δ(ψ − ψk). (3)

A heuristic search algorithm is used to find K good parses, {ψ, θ}1:K , that explain the underlying
image with high probability. These parses are weighted by their relative posterior probability,
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log P(I(T ) ∣ I(c)) = − 401.3

Correct 
match
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log P(I(T ) ∣ I(c)) = − 664.8

Incorrect 
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(a) Classification fits

the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters
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Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.
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Training item with model’s five best parses

Test items

 

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).
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(b) Parsing

Figure 3: Classification fits and parsing. (a) Posterior parses from two training images were refit to the same test
image. The first row of each grid shows the training image and its top-3 predicted parses (best emboldened).
The second row shows the test image and its re-fitted training parses. Reconstructed test images are shown in the
final row. The correct training image reports a high forward score, indicating that I(T ) is well-explained by the
motor programs for this I(c). (b) 27 character images from 3 classes are shown alongside their ground truth
human parses, predicted parses from the GNS model, and predicted parses from the BPL model.

πk ∝ π̃k = P (ψk, θk, I) such that
∑
k πk = 1. To find the K good parses, search uses fast bottom-

up methods to propose many variants of the discrete variables, filtering the most promising options,
before optimizing the continuous variables with gradient descent (we use K = 5). See Appendix B
for further details about inference, and Appendix C for generating new exemplars of a concept.

Inference for one-shot classification. In one-shot classification, models are given a single training
image I(c) from each of c = 1, ..., C classes, and asked to classify test images according to their
corresponding training classes. For each test image I(T ), we compute an approximation of the
Bayesian score log P (I(T ) | I(c)) for every example I(c), using our posterior parses {ψ, θ(c)}1:K

and corresponding weights π1:K from I(c) (Eq. 3). The approximation is formulated as

log P (I(T ) | I(c)) ≈ log
∫
P (I(T )|θ(T ))P (θ(T ) | ψ)Q(ψ, θ(c), | I(c))∂ψ∂θ(c)∂θ(T )

≈ log
K∑
k=1

πk max
θ(T )

P (I(T ) | θ(T ))P (θ(T ) | ψk), (4)

where the maximum over θ(T ) is determined by refitting token-level parameters θ(c) to image I(T )

with gradient descent. Following Lake et al. [29], we use a two-way version of the Bayesian score
that also considers parses of I(T ) refit to I(c). The classification rule is therefore

c∗ = arg max
c

log P (I(T ) | I(c))2 = arg max
c

log
[P (I(c) | I(T ))

P (I(c))
P (I(T ) | I(c))

]
, (5)

where P (I(c)) ≈∑k π̃k is approximated from the unnormalized weights of I(c) parses.

5 EXPERIMENTS

GNS was evaluated on four concept learning tasks from the Omniglot challenge [31]: one-shot
classification, parsing, generating new exemplars, and generating new concepts. All evaluations use
novel characters from completely held-out alphabets in the Omniglot evaluation set. As mentioned
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earlier, our goal is to provide a single model that captures deep knowledge of a domain and performs
strongly in a wide range of tasks, rather than besting all models on every task. Our experiments
include a mixture of quantitative and qualitative evaluations, depending on the nature of the task.

One-shot classification. GNS was compared with alternative models on the one-shot classification
task from Lake et al. [29]. The task involves a series of 20-way within-alphabet classification episodes,
with each episode proceeding as follows. First, the machine is given one training example from each
of 20 novel characters. Next, the machine must classify 20 novel test images, each corresponding
to one of the training classes. With 20 episodes total, the task yields 400 trials. Importantly, all
character classes in an episode come from the same alphabet as originally proposed [29], requiring
finer discriminations than commonly used between-alphabet tests [31].

Table 2: Test error on within-
alphabet one-shot classification.

Model Error

GNS 5.7%
BPL [29] 3.3%
RCN [12] 7.3%
VHE [21] 18.7%
Proto. Net [45] 13.7%
ARC [44] 1.5%∗

*used 4x training classes

As illustrated in Fig. 3a, GNS classifies a test image by choosing the
training class with the highest Bayesian score (Eq. 5). A summary
of the results is shown in Table 2. GNS was compared with other
machine learning models that have been evaluated on the within-
alphabets classification task [31]. GNS achieved an overall test error
rate of 5.7% across all 20 episodes (N=400). This result is very close
to the original BPL model, which achieved 3.3% error with signif-
icantly more hand-design. The symbolic relations in BPL’s token
model provide rigid constraints that are key to its strong classification
performance [29]. GNS achieves strong classification performance
while emphasizing the nonparametric statistical knowledge needed
for creative generation in subsequent tasks. Beyond BPL, our GNS
model outperformed all other models that received the same background training. The ARC model
[44] achieved an impressive 1.5% error, although it was trained with four-fold class augmentation
and many other augmentations, and it can only perform this one task. In Appendix Fig. A10, we
show a larger set of classification fits from GNS, including examples of misclassified trials.

Parsing. In the Omniglot parsing task, machines must segment a novel character into an ordered set
of strokes. These predicted parses can be compared with human ground-truth parses for the same
images. The approximate posterior of GNS yields a series of promising parses for a new character
image, and to complete the parsing task, we identify the maximum a posteriori parse k∗ = maxk πk,
reporting the corresponding stroke configuration. Fig. 3b shows a visualization of the GNS predicted
parses for 27 different raw images drawn from 3 unique character classes, plotted alongside ground-
truth human parses (how the images were actually drawn) along with predicted parses from the BPL
model. Compared to BPL, GNS parses possess a few unique desirable qualities. The first character
class has an obvious segmentation to the human eye—evidenced by the consistency of human parses
in all examples—and the GNS model replicates this consistency across all 9 predicted parses. In
contrast, BPL predicts seemingly-unlikely parses for 2 of the examples shown. The second character
is more complex, and it was drawn in different styles by different human subjects. The GNS model,
which is trained on data from subjects with different styles, captures the uncertainty in this character
by predicting a variety of unique parses. BPL, on the other hand, produces a single, ubiquitous
segmentation across all 9 examples. In Appendix Fig. A11, we provide a larger set of parses from the
GNS model for a diverse range of Omniglot characters.

Generating new exemplars. Given just one training image of a novel character concept, GNS
produces new exemplars of the concept by sampling from the approximate conditional P (I(2), θ(2) |
I(1)) of Eq. 8. In Fig. 4a we show new exemplars produced by GNS for a handful of target images,
plotted next to human productions (more examples in Appendix Fig. A12). In the majority of
cases, samples from the model demonstrate that it has successfully captured the causal structure
and invariance of the target class. In contrast, deep generative models applied to the same task miss
meaningful compositional and causal structure, producing new examples that are easily discriminated
from human productions [43, 21] (see Appendix Fig. A13). In some cases, such as the third column
of Fig. 4a, samples from GNS exhibit sloppy stroke junctions and connections. Compared to BPL,
which uses engineered symbolic relations to enforce rigid constraints at stroke junctions, GNS misses
some of these structural elements. Nevertheless, new examples from GNS appear strong enough to
pass for human in many cases, which we would like to test in future work with visual Turing tests.

Concept learning experiments can be reproduced using our pre-trained generative model and source code:
https://github.com/rfeinman/GNS-Modeling.
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for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate
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Fig. 5. Generating new exemplars. Humans and machines were given an image of a novel character
(top) and asked to produce new exemplars.The nine-character grids in each pair that were generated by
a machine are (by row) 1, 2; 2, 1; 1, 1.
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for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate
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Fig. 5. Generating new exemplars. Humans and machines were given an image of a novel character
(top) and asked to produce new exemplars.The nine-character grids in each pair that were generated by
a machine are (by row) 1, 2; 2, 1; 1, 1.
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for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate
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 for each subpart. Last, parts are roughly positioned

to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate
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BPL

(a) Generating new exemplars

GNS

BPL

(b) Generating new concepts

Figure 4: Generation tasks. (a) GNS produced 9 new exemplars for each of 5 target images, plotted here next
to human and BPL productions. (b) A grid of 36 new character concepts sampled unconditionally from GNS,
shown next to BPL samples.

Generating new concepts (unconstrained). In addition to generating new exemplars of a particular
concept, GNS can generate new character concepts altogether, unconditioned on training images.
Whereas the BPL model uses a complicated procedure for unconditional generation that involves a
preliminary inference step and a supplemental nonparametric model, GNS generates new concepts by
sampling directly from the type prior P (ψ). Moreover, the resulting GNS productions capture more
of the structure found in real characters than either the raw BPL prior (Fig 1, 4b) or the supplemental
nonparametric BPL prior [29]. In Fig. 4b we show a grid of 36 new character concepts sampled from
our generative model at reduced temperature setting T = 0.5 (Appendix A.2). The model produces
characters in multiple distinct styles, with some having more angular, line-based structure and others
relying on complex curves. In Appendix Fig. A14, we show a larger set of characters sampled from
GNS, plotted in a topologically-organized grid alongside a corresponding grid of “nearest neighbor”
training examples. In many cases, samples from the model have a distinct style and are visually
dissimilar from their nearest Omniglot neighbor.

Table 3: Test log-likelihood bounds.

Model Im. Size LL LL/dim

VHE 28x28 -61.2 -0.0496
SG 52x52 -134.1 -0.0781
GNS 105x105 -383.2 -0.0348

Marginal image likelihoods. As a final evaluation, we
computed likelihoods of held-out character images by
marginalizing over the latent type and token variables
of GNS to estimate P (I) =

∫
P (ψ, θ, I)∂ψ∂θ. We hy-

pothesized that our causal generative model of character
concepts would yield better test likelihoods compared to
deep generative models trained directly on image pixels.
As detailed in Appendix D, under the minimal assump-
tion that our K posterior parses represent sharply peaked modes of the joint density, we can obtain an
approximate lower bound on the marginal P (I) by using Laplace’s method to estimate the integral
around each mode and summing the resulting integrals. In Table 3, we report average log-likelihood
(LL) bounds obtained from GNS for a random subset of 1000 evaluation images, compared against
test LL bounds from both the SG [43] and the VHE [21] models. Our GNS model performs stronger
than each alternative, reporting the best overall log-likelihood per dimension.

6 DISCUSSION

We introduced a new generative neuro-symbolic (GNS) model for learning flexible, task-general
representations of character concepts. We demonstrated GNS on the Omniglot challenge, showing
that it performs a variety of inductive tasks in ways difficult to distinguish from human behavior.

8



Published as a conference paper at ICLR 2021

Some evaluations were still qualitative, and future work will further quantify these results using
Visual Turing Tests [29].

Whereas many machine learning algorithms emphasize breadth of data domains, isolating just a single
task across datasets, we have focused our efforts in this paper on a single domain, emphasizing depth
of the representation learned. Human concept learning is distinguished for having both a breadth
and depth of applications [37, 31], and ultimately, we would like to capture both of these unique
qualities. We see our character model as belonging to a broader class of generative neuro-symbolic
(GNS) models for capturing the data generation process. We have designed our model based on
general principles of visual concepts—namely, that concepts are composed of reusable parts and
locations—and we describe how it generalizes to 3D object concepts in Appendix E. As in the human
mind, machine learning practitioners have far more prior knowledge about some domains vs. others.
Handwritten characters is a domain with strong priors [1, 33, 23], implemented directly in the human
mind and body. For concepts like these with more explicit causal knowledge, it is beneficial to include
priors about how causal generative factors translate into observations, as endowed to our character
model through its symbolic rendering engine. For other types of concepts where these processes are
less clear, it may be appropriate to use more generic neural networks that generate concepts and parts
directly as raw stimuli, using less symbolic machinery and prior knowledge. We anticipate that GNS
can flexibly model concepts in both types of domains, although further experiments are needed to
demonstrate this.

Our current token model for character concepts is much too simple, and we acknowledge a few
important shortcomings. First, as shown in Appendix Fig. A10, there are a number of scenarios
in which the parses from a training character cannot adequately refit to a new example of the same
character without a token model that allows for changes to discrete variables. By incorporating
this allowance in future work, we hope to capture more knowledge in this domain and further
improve performance. Furthermore, although our vision for GNS is to represent both concepts and
background knowledge with neuro-symbolic components, the current token-level model uses only
simple parametric distributions. In future work, we hope to incorporate token-level models that use
neural network sub-routines, as in the type-level model presented here.
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A GENERATIVE MODEL

ψ θ I

M

Type Token Image

Figure A5: The GNS hierarchical generative model.

The full hierarchical generative model of GNS is depicted in Fig. A5. The joint density for type ψ,
token θ(m), and image I(m) factors as

P (ψ, θ(m), I(m)) = P (ψ)P (θ(m)|ψ)P (I(m)|θ(m)). (6)

The type ψ parameterizes a motor program for generating character tokens θ(m), unique exemplars
of the concept. Both ψ and θ(m) are expressed as causal drawing parameters. An image I(m) is
obtained from token θ(m) by rendering the drawing parameters and sampling binary pixel values.

A.1 TRAINING ON CAUSAL DRAWING DATA

original stroke minimal spline

Figure A6: Spline representation. Raw strokes (left) are converted into minimal splines (right) using least-squares
optimization. Crosses (left) indicate pen locations and red dots (right) indicate spline control points.

To learn the parameters of P (ψ) and P (θ(m) | ψ), we fit our models to the human drawing data from
the Omniglot background set. In this drawing data, a character is represented as a variable-length
sequence of strokes, and each stroke is a variable-length sequence of pen locations {z1, ..., zT }, with
zt ∈ R2 (Fig. A6, left). Before training our model on background drawings, we convert each stroke
into a minimal spline representation using least-squares optimization (Fig. A6, right), borrowing
the B-spline tools from [29]. The number of spline control points depends on the stroke complexity
and is determined by a residual threshold. Furthermore, we removed small strokes using a threshold
on the trajectory length. These processing steps help suppress noise and emphasize signal in the
drawings. Our generative models are trained to produce character drawings, where each drawing is
represented as an ordered set of splines (strokes). The number of strokes, and the number of spline
coordinates per stroke, are allowed to vary in the model.

A.2 TYPE PRIOR

The type prior P (ψ) represents a character as a sequence of strokes, with each stroke decomposed
into a starting location yi ∈ R2, conveying the first spline control point, and a stroke trajectory
xi = {∆1, ...,∆N}, conveying deltas between spline control points. It generates character types one
stroke at a time, using a symbolic rendering procedure called frender as an intermediate processing
step after forming each stroke. An image canvas C is used as a memory state to convey information
about previous strokes. At each step i, the next stroke’s starting location and trajectory are sampled
with procedure GeneratePart. In this procedure, the current image canvas C is first read by the
location model (Fig. 2), a convolutional neural network (CNN) that processes the image and returns a

12



Published as a conference paper at ICLR 2021

probability distribution for starting location yi:
yi ∼ p(yi | C).

The starting location yi is then passed along with the image canvas C to the stroke model, a Long
Short-Term Memory (LSTM) architecture with a CNN-based image attention mechanism.The stroke
model samples the next stroke trajectory xi sequentially one offset at a time, selectively attending
to different parts of the image canvas at each sample step and combining this information with the
context of yi:

xi ∼ p(xi | yi, C).

After GeneratePart returns, the stroke parameters yi, xi are rendered to produce an updated can-
vas C = frender(yi, xi, C). The new canvas is then fed to the termination model, a CNN architecture
that samples a binary termination indicator vi:

vi ∼ p(vi | C).

Both our location model and stroke model follow a technique from [16], who proposed to use neural
networks with mixture outputs to model handwriting data. Parameters {π1:K , µ1:K , σ1:K , ρ1:K}
output by our network specify a Gaussian mixture model (GMM) with K components (Fig. 2; colored
ellipsoids), where πk ∈ (0, 1) is the mixture weight of the kth component, µk ∈ R2 its means,
σk ∈ R2

+ its standard deviations, and ρk ∈ (−1, 1) its correlation. In our location model, a single
GMM describes the distribution p(yi | C). In our stroke model, the LSTM outputs one GMM at each
timestep, describing p(∆t|∆1:t−1, yi, C). The termination model CNN has no mixture outputs; it
predicts a single Bernoulli probability to sample binary variable vi. When sampling from the model
at test time, we use a temperature parameter proposed by Ha & Eck [20] (see [20, Eq. 8]) to control
the entropy of the mixture density outputs.

A.3 TOKEN MODEL

procedure GENERATETOKEN(ψ)
{κ, y1:κ, x1:κ} ← ψ . Unpack type-level variables
for i = 1 ... κ do

y
(m)
i ∼ P (y(m)

i | yi) . Sample token-level location
x
(m)
i ∼ P (x(m)

i | xi) . Sample token-level part
A(m) ∼ P (A(m)) . Sample affine warp transformation
θ ← {y(m)

1:κ , x
(m)
1:κ , A

(m)}
return θ . Return concept token

1

Figure A7: Token model sampling procedure.

Character types ψ are used to parameterize the procedure GenerateToken(ψ), a probabilistic
program representation of token model P (θ(m) | ψ). The psuedo-code of this sampling procedure is
provided in Fig. A7. The location model P (y

(m)
i | yi) and part model P (x

(m)
i | xi) are each zero-

mean Gaussians, with standard deviations fit to the background drawings following the procedure of
Lake et al. [29] (see SM 2.3.3). The location model adds noise to the start of each stroke, and the part
model adds isotropic noise to the 2d cooridnates of each spline control point in a stroke. In the affine
warp A(m) ∈ R4, the first two dimensions control global re-scaling of spline coordinates, and the
second two control a global translation of the center of mass. The distribution is

P (A(m)) = N ([1, 1, 0, 0],ΣA), (7)
with the parameter ΣA similarly fit from background drawings (see SM 2.3.4 in [29]).

B APPROXIMATE POSTERIOR

To obtain parses {ψ, θ}1:K for our approximate posterior (Eq. 3) given an image I , we follow the
high-level strategy of Lake et al. [29], using fast bottom-up search followed by discrete selection and
continuous optimization. The algorithm proceeds by the following steps.
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Step 1: Propose a range of candidate parses with fast bottom-up methods. The bottom-up algorithm
extracts an undirected skeleton graph from the character image and uses random walks on the graph
to propose a range of candidate parses. There are typically about 10-100 proposal parses, depending
on character complexity (Fig. A8).

input

Figure A8: The initial “base” parses proposed for an image with skeleton extraction and random walks.

Step 2: Select stroke order and stroke directions for each parse using exhaustive search with the type
prior P (ψ). Random search is used for complex parses with large configuration spaces.

Step 3: Score each of the proposal parses using type prior P (ψ) and select the top-K parses. We use
K = 5 following previous work [29].

Step 4: Separate each parse into type and token {ψ, θ} and optimize the continuous type- and
token-level parameters with gradient descent to maximize the full joint density P (ψ, θ, I) of Eq. 1.

Step 5: Compute weights π1:K for each parse by computing π̃k = P (ψk, θk, I) and normalizing
πk = π̃k/

∑K
k=1 π̃k.

C INFERENCE FOR GENERATING NEW EXEMPLARS

When generating new exemplars, we are given a single image I(1) of a novel class and asked to
generate new instances I(2) (overloading the parenthesis notation from classification). To perform
this task with GNS, we first sample from our approximate posterior Q(ψ, θ | I(1)) to obtain parse
{ψ, θ} (see Eq. 3), and then re-sample token parameters θ from our token model P (θ(2) | ψ). Due to
high-dimensional images, mass in the approximate posterior often concentrates on the single best
parse. To model the diversity seen in different human parses, we apply a temperature parameter to
the log of unnormalized parse weights log(π̃′k) = log(π̃k)/T before normalization, selecting T = 8
for our experiments. With updated weights π′1:K our sampling distribution is written as

P (I(2), θ(2) | I(1)) ≈
K∑
k=1

π′kP (I(2) | θ(2))P (θ(2) | ψk). (8)

D MARGINAL IMAGE LIKELIHOODS

Let z = ψ ∪ θ be a stand-in for the joint set of type- and token-level random variables in our GNS
generative model. The latent z includes both continuous and discrete variables: the number of strokes
κ and the number of control points per stroke d1:κ are discrete, and all remaining variables are
continuous. Decomposing z into its discrete variables zD ∈ ΩD and continuous variables zC ∈ ΩC ,
the marginal density for an image I is written as

P (I) =
∑

zD∈ΩD

∫
P (I, zD, zC)∂zC . (9)
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For any subset Ω̃D ⊂ ΩD of the discrete domain, the following inequality holds:

P (I) ≥
∑

zD∈Ω̃D

∫
P (I, zD, zC)∂zC . (10)

Our approximate posterior (Eq. 3) gives us K parses that represent promising modes {zD, zC}1:K

of the joint density P (I, zD, zC) for an image I , and by setting Ω̃D = {zD}1:K to be the set of
K unique discrete configurations from our parses, we can compute the lower bound of Eq. 10 by
computing the integral

∫
P (I, zD, zC)∂zC at each of these zD.

At each zDk ∈ {zD}1:K , the log-density function f(zC) = log P (I, zDk, zC) has a gradient-free
maximum at zCk, the continuous configuration of the corresponding posterior parse. These maxima
were identified by our gradient-based continuous optimizer during parse selection (Appendix B). If
we assume that these maxima are sharply peaked, then we can use Laplace’s method to estimate the
integral

∫
P (I, zDk, zC)∂zC at each zDk. Laplace’s method uses Taylor expansion to approximate

the integral of ef(x) for a twice-differentiable function f around a maximum x0 as∫
ef(x)∂x ≈ ef(x0) (2π)

d
2

| −Hf (x0)| 12
, (11)

where x ∈ Rd andHf (x0) is the Hessian matrix of f evaluated at x0. Our log-density function f(zC)
is fully differentiable w.r.t. continuous parameters zC , therefore we can compute H(zC) = ∂2f/∂z2

C
with ease. Our approximate lower bound on P (I) is therefore written as the sum of Laplace
approximations at our K parses:

P (I) ≥
K∑
k=1

∫
P (I, zDk, zC)∂zC ≈

K∑
k=1

P (I, zDk, zCk)
(2π)

d
2

| −H(zCk)| 12
(12)

E APPLYING GNS TO 3D OBJECT CONCEPTS

The GNS modeling framework is designed to capture inductive biases for concept learning that
generalize across different types of visual concepts. We are actively working on applying GNS as
a task-general generative model of 3D object concepts, such as chairs and vehicles, again with a
neuro-symbolic generative process for parts and relations. Here, we briefly review the path forward
for training GNS models of object concepts.

procedure GENERATETYPE
C  0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C  frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
  {, y1:, x1:}
return  . Return concept type

1

procedure GENERATETOKEN
C  0 . Initialize blank 3d canvas
while true do

xi  GENERATEPART(C) . Sample part from neural net
C  fupdate(xi, C) . Update 3d canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
✓  {, x1:}
return  . Return concept token

1

procedure GENERATETYPE
C  0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C  frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
  {, y1:, x1:}
return  . Return concept type

1
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Figure A9: A GNS model for the concept of a chair.

Everyday 3D object concepts have more within-class variability than handwritten characters; for
example, different chair tokens vary in the number of arm rests, legs, etc. much as different handwrit-
ten character types vary in their parts, although both domains are characterized by similar structural
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and statistical considerations. To address these differences within GNS, we shift up one level in the
generative hierarchy and design a token-level model for generating new exemplars of an individual
concept (chairs, cars, etc.) that mirrors our type-level model for characters. The architecture and
sampling procedure of GNS for 3D object tokens is given in Fig. A9. As with characters, our object
model produces samples one part at a time, using a 3D canvas C in place of the previous 2D canvas.
The procedure GeneratePart consists of two neural network components: 1) a discriminitively-
trained category model p(k | C) that predicts the category label k of the next part given the current
canvas (leg, arm, back, etc.), and 2) a generative instance model p(x | k,C) that is trained with a
variational autoencoder objective to sample an instance of the next part x given the current canvas
and predicted part category label. Objects and object parts are represented as 3D voxel grids, and all
neural modules, including the category model and the encoder/decoder of the instance model, are
parameterized by 3D convolutional neural networks. A function fupdate is used to update the current
canvas with the most recent part by summing the voxel grids. A GNS model for a particular concept
is trained on examples of the 3D voxel grids with semantic part labels.

F EXPERIMENTS: SUPPLEMENTAL FIGURES

F.1 ONE-SHOT CLASSIFICATION

In Fig. A10 we show a collection of GNS fits from 7 different classification trials, including 2 trials
that were misclassified (a misrepresentative proportion).

F.2 PARSING

In Fig. A11 we show a collection of predicted parses from GNS for 100 different target images.

F.3 GENERATING NEW EXEMPLARS

Fig. A12 shows new exemplars produced by GNS for 12 different target images, and Fig. A13 shows
new exemplars produced by two alternative neural models from prior work on Omniglot.

F.4 GENERATING NEW CONCEPTS (UNCONSTRAINED)

In Fig. A14 we show a grid of 100 new character concepts produced by GNS, plotted alongside a
corresponding grid of “nearest neighbor” training examples.
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Figure A10: Classification fits. Each row corresponds to one classification trial (one test image). The first
column shows parses from the correct training image re-fit to the test example, and the second column parses
from an incorrect training image. The two-way score for each train-test pair is shown above the grid, and the
model’s selected match is emboldened. The 4th and 6th row here are misclassified trials.
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(a) Target images (b) GNS parses

Figure A11: Parsing. GNS predicted parses for 100 character images selected at random from the Omniglot
evaluation set. (a) A 10x10 grid of target images. (b) A corresponding grid of GNS predicted parses per target
image.
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Figure A12: Generating new exemplars with GNS. Twelve target images are highlighted in red boxes. For each
target image, the GNS model sampled 9 new exemplars, shown in a 3x3 grid under the target.

One-shot Generalization in Deep Generative Models

Figure 8. Unconditional samples for 52 × 52 omniglot (task 1).
For a video of the generation process, see https://www.youtube.com/

watch?v=HQEI2xfTgm4

Figure 9. Generating new examplars of a given character for the
weak generalization test (task 2a). The first row shows the test
images and the next 10 are one-shot samples from the model.

3. Representative samples from a novel alphabet.
This task corresponds to figure 7 in Lake et al. (2015), and
conditions the model on anywhere between 1 to 10 samples
of a novel alphabet and asks the model to generate new
characters consistent with this novel alphabet. We show
here the hardest form of this test, using only 1 context im-
age. This test is highly subjective, but the model genera-
tions in figure 11 show that it is able to pick up common
features and use them in the generations.

We have emphasized the usefulness of deep generative
models as scalable, general-purpose tools for probabilistic
reasoning that have the important property of one-shot gen-
eralization. But, these models do have limitations. We have
already pointed to the need for reasonable amounts of data.
Another important consideration is that, while our models
can perform one-shot generalization, they do not perform
one-shot learning. One-shot learning requires that a model
is updated after the presentation of each new input, e.g.,
like the non-parametric models used by Lake et al. (2015)
or Salakhutdinov et al. (2013). Parametric models such as
ours require a gradient update of the parameters, which we
do not do. Instead, our model performs a type of one-shot
inference that during test time can perform inferential tasks
on new data points, such as missing data completion, new
exemplar generation, or analogical sampling, but does not
learn from these points. This distinction between one-shot
learning and inference is important and affects how such
models can be used. We aim to extend our approach to the
online and one-shot learning setting in future.

30-20 40-10 45-5

Figure 10. Generating new examplars of a given character for the
strong generalization test (task 2b,c), with models trained with
different amounts of data. Left: Samples from model trained on
30-20 train-test split; Middle: 40-10 split; Right: 45-5 split (right)

Figure 11. Generating new exemplars from a novel alphabet (task
3). The first row shows the test images, and the next 10 rows are
one-shot samples generated by the model.

6. Conclusion
We have developed a new class of general-purpose mod-
els that have the ability to perform one-shot generalization,
emulating an important characteristic of human cognition.
Sequential generative models are natural extensions of vari-
ational auto-encoders and provide state-of-the-art models
for deep density estimation and image generation. The
models specify a sequential process over groups of latent
variables that allows it to compute the probability of data
points over a number of steps, using the principles of feed-
back and attention. The use of spatial attention mechanisms
substantially improves the ability of the model to general-
ize. The spatial transformer is a highly flexible attention
mechanism for both reading and writing, and is now our
default mechanism for attention in generative models. We
highlighted the one-shot generalization ability of the model
over a range of tasks that showed that the model is able to
generate compelling and diverse samples, having seen new
examples just once. However there are limitations of this
approach, e.g., still needing a reasonable amount of data to
avoid overfitting, which we hope to address in future work.

(a) SG

Figure 4: 5-shot samples generated by each model (more in Supplement). With a PixelCNN architecture, both Neural
Statistician and Resample objectives lead to underutilisation of the latent space, producing unfaithful samples.

For the hierarchical PixelCNN architecture, however,
significant differences arise between training objectives.
In this case, a Neural Statistician learns a strong global
distribution over images but makes only minimal use of
latent variables c. This means that, despite the use of a
higher capacity model, classification accuracy is much
poorer (66%) than that achieved using a deconvolutional
architecture. For the same reason, conditional samples
display an improved sharpness but are no longer identi-
fiable to the cue images on which they were conditioned
(Figure 4). Our careful training suggests that this is not
an optimisation difficulty but is core to the objective, as
discussed in Chen et al. (2016).

By contrast, a VHE is able to gain a large benefit from
the hierarchical PixelCNN architecture, with a 3-fold re-
duction in classification error (5-shot accuracy 98.8%)
and conditional samples which are simultaneously sharp
and identifiable (Figure 4). This improvement is in part
achieved by increased utilisation of the latent space, due
to rescaling of the KL divergence term in the objective.
However, our results show that this common technique
is insufficient when used alone, leading to overfitting to
cue images with an equally severe impairment of classi-
fication performance (accuracy 62.8%). Rather, we find
that KL-rescaling and data resampling must be used to-
gether in order for the benefit of the powerful PixelCNN
architecture to be realised.

Table 2 lists the classification accuracy achieved by
VHEs with both |D| = 1 and |D| = 5, as compared
to existing deep learning approaches. We find that both
networks are not only state-of-the-art amongst deep gen-
erative models, but also competitive against the best dis-
criminative models trained directly for few-shot classi-
fication. Unlike these discriminative models, a VHE
is also able to generate new images of a character in
one shot, producing samples which are both realistic and
faithful to the class of the cue image (Figure 5).

As our goal is to model shared structure across images,
we evaluate generative performance using joint log like-

Figure 5: One-shot same-class samples generated by our
model. Cue images were sampled from previously un-
seen classes.

lihood of the entire Omniglot test set (rather than sepa-
rately across images). From this perspective, a single el-
ement VAE will perform poorly as it treats all datapoints
as independent, optimising a sum over log likelihoods for
each element. By sharing latents across elements of the
same class, a VHE can improve upon this considerably.

For likelihood evaluation, our most appropriate compar-
ison is with Generative Matching Networks (Bartunov &
Vetrov, 2016) as they also model dependencies within a
class. Thus, we trained models under the same train/test
split as them, with no data augmentation. We evaluate the
joint log likelihood of full character classes from the test
set, normalised by the number of elements, using impor-
tance weighting with k=500 samples from q(c; X). As
can be seen in Tables 3 and 4, our hierarchical PixelCNN
architecture is able to achieve state-of-the-art log likeli-
hood results only when trained using the VHE objective.
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(b) VHE

Figure A13: New exemplars produced by the Sequential Generative (SG) model [43] and the Variational
Homoencoder (VHE) [21]. (a) The SG model shows far too much variability, drawing what is clearly the wrong
character in many cases (e.g. right-most column). (b) The VHE character samples are often incomplete, missing
important strokes of the target class.
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GNS samples Omniglot neighbors

Figure A14: Generating new concepts (unconstrained). 100 new concepts sampled unconditionally from GNS
are shown in a topologically-organized grid alongside a corresponding grid of “nearest neighbor” training
examples. To identify nearest neighbors, we used cosine distance in the last hidden layer of a CNN classifier as a
metric of perceptual similarity. The CNN was trained to classify characters from the Omniglot background set, a
964-way classification task.
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