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Abstract 

Humans can learn and reason under substantial 
uncertainty in a space of infinitely many compo-
sitional, productive concepts. For example, if a 
scene with two blue spheres qualifies as “daxy,” 
one can reason that the underlying concept may 
require scenes to have “only blue spheres” or 
“only spheres” or “only two objects.” In contrast, 
standard benchmarks for compositional reason-
ing do not explicitly capture a notion of reason-
ing under uncertainty or evaluate compositional 
concept acquisition. We introduce a new bench-
mark, Compositional Reasoning Under Uncer-
tainty (CURI) that instantiates a series of few-
shot, meta-learning tasks in a productive concept 
space to evaluate different aspects of systematic 
generalization under uncertainty, including splits 
that test abstract understandings of disentangling, 
productive generalization, learning boolean oper-
ations, variable binding, etc. Importantly, we also 
contribute a model-independent “compositional-
ity gap” to evaluate the difficulty of generalizing 
out-of-distribution along each of these axes, al-
lowing objective comparison of the difficulty of 
each compositional split. Evaluations across a 
range of modeling choices and splits reveal sub-
stantial room for improvement on the proposed 
benchmark. 

1. Introduction 
Human concept learning is more flexible than today’s AI sys-
tems. Human conceptual knowledge is productive: people 
can understand and generate novel concepts via composi-
tions of existing concepts (“an apartment dog”) (Murphy, 
2002), unlike standard machine classifiers that are limited 
to a fixed set of classes (“dog”, “cat”, etc.). Further, humans 
can induce goal-based, “ad hoc” categories such as “things 
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to take from one’s apartment in a fire” (children, dogs, keep-
sakes, etc.) (Barsalou, 1983). Thus, unlike AI systems, 
humans reason seamlessly in large, essentially “unbounded” 
concept spaces. 

While popular compositional reasoning benchmarks such as 
CLEVR (Johnson et al., 2017) for visual question answer-
ing and Ravens Progressive Matrices (PGM) (Barrett et al., 
2018) appear to have large, unbounded concept spaces, the 
tasks they instantiate miss a key feature of human concept 
learning, namely our ability to deal with uncertainty. For 
example, consider the set of images labelled “A” (green bor-
der) in Figure 1b. Given this set, the underlying concept is 
ambiguous, and could either be “All objects are blue and the 
x-coordinate of all objects is greater than the y-coordinate” 
or “All objects are blue and there exists an object whose 
x-coordinate is greater than the y-coordinate”. As humans, 
we are able to conceive of these alternatives and make pre-
dictions that place more weight on the former, more specific 
concept (Figure 1b, bottom) (Tenenbaum & Griffiths, 2001; 
Xu & Tenenbaum, 2007; Goodman et al., 2008; Piantadosi 
et al., 2016). In contrast, neither CLEVR nor PGM requires 
reasoning about alternative, equally-consistent concepts and 
their relative generality when making predictions. 

We address this gap in the literature by proposing the Com-
positional Reasoning Under Uncertainty (CURI) benchmark 
to study how modern machine learning systems can learn 
concepts spanning a large, productively defined space (Fig-
ure 1a) while dealing with the entailed uncertainty. In pur-
suit of this goal, we instantiate a meta-learning task where a 
model must reason in a compositional space about alterna-
tive concepts, and make predictions taking such uncertainty 
into account. A signature of productivity in human thought 
is our ability to handle novel combinations of known, atomic 
components. Thus, in CURI we instantiate a variety of dif-
ferent train-test splits that involve novel combinations of 
intrinsic properties (e.g. color, shape) with boolean op-
erators, counting, disentangling (Higgins et al., 2018) of 
extrinsic (e.g. object location) and intrinsic (e.g. object ma-
terial) object properties, and a novel test of variable binding 
in the context of compositional learning. 

Compositional Reasoning Under Uncertainty (CURI) 
Task. Concretely, the CURI task tests few-shot learning 
of relational concepts in a large compositional conceptual 
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CURI: Productive Concept Learning 

All objects are blue and have the same size

All objects in the scene have the same color 

There exists a blue object in the scene
and the rest of the objects are squares
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Variables
 x  Object in scene
 S  All objects 
 S{-x}  S/{x}
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Quantifiers

 for-all
 exists

Functions
 color?  location?
 shape?  size?
 material? all

Operators
 and  Greater(>)
 or   Lesser(<)
 not    =

Context Free
Grammar

for-all x \in S (color?(x) = “blue”) and (all (size?(S) = size?(x))) 

for-all x \in S (all (color?(x) = color?(S)))

exists x \in S (color?(x) = “blue”) and all (shape?(S{-x}) = “square”) 

:

(a) Concept Space. Three example concepts (rows) with schematic positive examples. Actual scenes are rendered in multiple ways 
including the CLEVR renderer (Johnson et al., 2017) (see Figure 1b). Right: The grammar of variables, quantifiers, functions and 
operators to induce compositional concepts. 

Generic Concept:
All objects are blue and there exists an object
whose x location is greater than the y location 

Specific Concept:
All objects are blue and for all objects

the x location is greater than the y location 

Support Set A Support Set B

A:n

B:p

GROUND
TRUTH

p

n

MODEL
Predictions
given: -> A:n

B:p

A:n

B:p

A:n

B:p

Query Set Images

(b) Illustration of reasoning under uncertainty. Given a support set Dsupp corresponding to a more specific concept (purple, left), 
such that Dsupp is also consistent with a more generic concept (gold), a fully-successful CURI model would make predictions on held out 
images (bottom) that place more weight on the specific concept (producing a negative label n). In contrast, given the support set for the 
more generic concept (gold, right), the model would make the opposite predictions (positive p). Actual predictions shown are from a 
relation network trained with symbolic, schema-based scene representations. 

Logical Functions and Functions on BOOL Sets
P and Q Returns TRUE if P and Q are both true
P or Q Returns TRUE if either P or Q is true
not P Returns TRUE iff P is False
all SET[P] Returns TRUE if all elements of P are TRUE
any SET[P] Returns TRUE if all elements of P are TRUE
count SET[P] Returns INT, number of elements of P

which are TRUE

Quantifiers
for-all x in S Returns TRUE if condition holds for all x
exists x in S Returns TRUE if condition holds for any x

Comparison Operations*
M = N Returns TRUE if M and N are equal
A = B Returns TRUE if A and B are equal
M > N Returns TRUE if M is greater than N
M < N Returns TRUE if M is lesser than M

*All these operations also apply when one of the
arguments is a SET.

Example SET[M] = N Returns {M = N: M in SET[M]}

Functions on Objects or Sets of Objects*

size?(x) Returns M, size of object x 
material?(x) Returns A, material of object x|
shape?(x) Returns A, shape of object x
locationX? (x) Returns INT M, x-coordinate of center of object x
locationY? (x) Returns INT M, y-coordinate of center of object x
color? (x) Returns A, color of object x

*All these operations also apply when the argument is a SET.
Example color?(S) Returns {color?(x): x in S}

Variables
x Denotes an object in a scene
S Denotes the SET of all objects in scene

S{-x} Denotes the SET of all objects except x

Types
P, Q BOOL
A, B STR
M, N INT or FLOAT
SET[●] A set of objects of any Type

These compute property? (x). Illustration of properties in image domain:  

Constants (Illustrated for Images)
Counts 1, 2, 3

Materials Rubber, Metal

Shapes Cube, Sphere, Cylinder

Sizes 0.35, 0.70

X or Y location 1, 2, 3, 4, 5, 6, 7, 8 
(numbering starts from top-left of image)

(c) Language of thought. All valid (type-consistent) compositions of functions are potential complex concepts in our dataset. Note that 
the functions are illustrated for the case of images and schemas. Location, size, shape etc. correspond to different properties for sounds. 

Figure 1. Elements of the Compositional Reasoning Under Uncertainty (CURI) task. 
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space, with design inspiration from studies in cognitive mod-
eling using a language of thought (LOT) approach (Fodor, 
1975; Piantadosi, 2011; Kemp et al., 2005). CURI includes 
scene-based concepts such as “All objects have the same 
color” and “There exists a blue object while the rest are tri-
angles” (Figure 1a) but unlike CLEVR (Johnson et al., 2017) 
there are too few examples to deduce answers with certainty. 
Our benchmark is defined through a series of meta-learning 
episodes (see example in Figure 1b): given positive and neg-
ative examples of a new concept Dsupp (known as the “sup-
port set”), the goal of an episode is to classify new examples 
Dquery (the “query set”). While typical benchmarks for meta-
learning and few-shot classification (Vinyals et al., 2016; 
Lake et al., 2019) evaluate new atomic concepts at test time, 
we consider compositionally novel concepts and explicitly 
study reasoning under uncertainty—an ideal learner must 
marginalize over many hypotheses when making predictions 
(Gelman et al., 2004; Xu & Tenenbaum, 2007; Piantadosi 
et al., 2016). Consequently, we focus on the structure in 
the concept space and compare different ways to reason in 
it, rather than on the mechanics of meta-learning (compar-
ing and benchmarking different meta-learning algorithms 
in terms of the number of shots, lengths of episodes etc.) 
which in our opinion are better addressed by benchmarks 
such as the meta-dataset (Triantafillou et al., 2020). 

We also vary the modality in which scenes are presented— 
rendering them as images, symbolic schemas, and sounds— 
enabling future research on modality-specific representa-
tional choices for compositional reasoning under uncertainty. 
Finally, we vary the concepts learned by the model during 
meta-training and meta-testing to test different aspects of 
systematic generalization. 

Compositionality Gap. While systematic splits are increas-
ingly common in the literature (Barrett et al., 2018; Hill 
et al., 2019; Agrawal et al., 2018; Vedantam et al., 2018; 
Higgins et al., 2018; Bakhtin et al., 2019; Lake & Baroni, 
2018; Ruis et al., 2020), previous work has often lacked 
an objective way to assess how difficult each split is, or to 
provide a baseline for how well a model needs to perform 
for it to be “compositional” in nature. We address this issue 
by introducing the notion of a model-independent “composi-
tionality gap”—defined as the difference in test performance 
between an ideal Bayesian learner with access to the full 
hypothesis space, and a Bayesian learner with access to 
only a (potentially large) list of the hypotheses examined 
during meta-training. A large gap for a given split indicates 
that any learner must extrapolate compositionally from the 
training hypotheses to solve the task; additionally, models 
can be compared to ideal learners that either do or do not 
engage in such extrapolation which provides a baseline for 
compositionality. We anticipate this tool to be useful for 
analyzing other benchmarks with compositional splits. 

Table 1. Comparison of CURI to other compositional and meta-
learning benchmarks: CLEVR (Johnson et al., 2017), PGM (Bar-
rett et al., 2018), Meta-Dataset (Triantafillou et al., 2020), 
SCAN (Lake & Baroni, 2018). 

Compositional Uncertainty Few-Shot 

CLEVR 3 7 7 
PGM 3 7 7 
Meta-Dataset 7 7 3 
SCAN 3 7 7 
CURI (Ours) 3 3 3 

Models. We evaluate models around various dimensions 
which concern the difficulty of learning productive concepts 
under uncertainty, including: 1) the modality in which the 
input is rendered (image, schemas, sounds), 2) method used 
for reasoning across objects in a scene (transformer, relation-
network, global average pooling, concatenation), 3) whether 
or not training provides ground-truth symbolic descriptions 
of concepts, and 4) how negative examples are sampled. 
Overall, our evaluations suggest that there is substantial 
room for improvement in compositional reasoning under 
uncertainty, w.r.t the compositionality gap, representing a 
novel challenge for compositional learning. 

Summary of contributions: 

1. We introduce the Compositional Reasoning Under Un-
certainty (CURI) benchmark for evaluating composi-
tional, relational learning under uncertainty from ob-
servational data; 

2. We introduce a ‘compositionality gap’ metric for mea-
suring the difficulty of systematic generalization from 
train to test; 

3. We provide various baseline models for benchmarking 
progess on the proposed task. 

2. Related Work 
Compositional Reasoning and Meta-Learning Bench-
marks. Table 1 compares CURI to other compositional 
reasoning and meta-learning benchmarks. In contrast to 
CLEVR and PGM, CURI requires reasoning about uncer-
tainty (see Section 1 for more details). Different from bench-
marks for few-shot meta-learning, the concepts we use are 
compositional, and explicitly evaluate reasoning under un-
certainty. Also, while there exist sequence to sequence 
compositionality benchmarks like SCAN (Lake & Baroni, 
2018) and meta-learning based approaches for the task such 
as Lake (2019) these do not tackle few-shot meta-learning 
or explicitly reason about uncertainty in the concept space. 

In other related work, Keysers et al. (2020) proposed a 
benchmark and a method to create “difficult” systematic 
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splits based on the principle that they should share atoms 
but have maximally different compositions. This is comple-
mentary to our splits, which provide interpretable notions 
of what each split tests such as disentangling, complexity, 
and variable binding. Finally, Andreas et al. (2018) studied 
few-shot learning with concepts defined by language-like 
structured descriptions. Their models were trained to in-
duce novel classifiers via the space of linguistic expressions, 
while we don’t necessarily commit to such a choice (al-
though we compare with language-augmented models as 
well). 

Language of Thought (LOT). Our choice of composi-
tional concepts was most closely inspired by Piantadosi et al. 
(2016) along with other studies of human concept learning 
in the Language of Thought (LOT) framework (Fodor, 1975; 
Goodman et al., 2008; Kemp & Jern, 2009; Piantadosi et al., 
2012; Goodman et al., 2015; Overlan et al., 2017; Lake & 
Piantadosi, 2019). In typical LOT studies of human learning, 
the conceptual space H is defined through a probabilistic 
context-free grammar G, which specifies a set of concep-
tual primitives and their rules of combination. Our work 
is similar, in that we use an LOT-inspired grammar G to 
generate an unbounded set of concepts H, but our goals are 
different – we want to evaluate if machine learning models 
can “acquire” a language of thought when trained without 
access to the underlying LOT, while traditional studies in 
cognitive science utilize it as a tool for modeling human 
learning. 

3. Compositional Reasoning Under 
Uncertainty (CURI) Dataset 

Concept space. The compositional concepts in CURI were 
inspired by the empirical and cognitive modeling work of Pi-
antadosi et al. (2016). The space of concepts (LOT) is de-
fined by a context free grammar (G). Figure 1c shows the 
LOT and specifies how primitives and functions compose 
to produce a large unbounded concept space (see Appendix 
2.1 for a full description of the underlying LOT/grammar.). 
The LOT has three variables: x, representing an object in 
a scene, S = {x}N representing the set of all objects in i=1 
the scene, and S−x = S/{x}, representing the set of all 
objects in the scene except x. Each concept describes a rule 
composed of object and scene properties, logical operators, 
and/or comparison operators, and can be evaluated on a 
given scene S to determine whether the scene satisfies the 
rule. 

Object and scene properties are defined by functions which 
can be applied to objects or scenes: for example, size?(x) 
yields the size of an object x, while size?(S) returns a 
set with the sizes of all the objects ({size?(x) : x ∈ S}). 
Comparison and logical operators can be used to compare 
and relate various properties of objects in scenes. In contrast 

to Piantadosi et al. (2016), we include a count operator, 
which determines how many times a condition is satisfied 
by a set, which allows us to check how well deep learn-
ing models are able to count (Chattopadhyay et al., 2017; 
Agrawal et al., 2018). Finally, quantifiers such as exists 
and for-all enrich the LOT by allowing concepts to spec-
ify how many objects should satisfy a given condition. 

Consider the following example concept (Figure 1a bot-
tom): “There exists a blue object in the scene and the rest 
of the objects are squares.” To access the color of a given 
object, we use color?(x) and to access the shape of a 
given object, we use shape?(x). To determine whether 
an object matches a specific property, we can combine 
this with equality: shape?(x) = ‘‘square’’. Fi-
nally, we can use exists to specify that at least one 
object must be blue, S−x to specify all the objects ex-
cept for that blue object, and all to specify that all the 
objects in S−x must be squares. Putting it all together: 
exists x ∈ S (color?(x) = ‘‘blue’’) and 
all (shape?(S−x) = ‘‘square’’). 

Structured Generalization Splits. A signature of produc-
tivity is the ability to handle novel combinations of known 
components (Fodor, 1975; Fodor & Pylyshyn, 1988). Thus, 
in CURI, we consider splits that require generalizing to 
novel combinations of known elements from our LOT (Fig-
ure 1c), including combinations of constants, variables, and 
functions. We achieve this by creating disjoint splits of con-
cepts Htrain and Htest for training and evaluating models. 
By varying the held out elements and their combinations, 
we obtain splits that evaluate different axes of generalization. 
In practice, we use our grammar G to sample and filter a 
large set of concepts (see appendix for more details), which 
yields a set of 14,929 concepts H for training and evaluation 
(see Appendix 2.2 for more details). We next describe how 
each split divides H into Htrain and Htest, to test produc-
tive, out of distribution generalization (Appendix 3 contains 
more details): 

• Instance IID: Evaluates generalization to novel 
episodes from the same concept set. This is the stan-
dard setup in machine learning (Murphy, 2013), in 
which Htrain = Htest. This is the only split where 
train and test concepts overlap. 

• Concept IID: Evaluates generalization to novel con-
cepts based on an arbitrary random split of the concepts 
into Htrain and Htest.1 

• Counting: Evaluates the ability to learn a new concept 
h with novel property-count combinations, e.g, the 
training concepts never filter for exactly ‘3 squares’. 

1While some strings h might be different in surface form, they 
may yeild the same results when applied to images. In this split 
we account for such synonomy, and ensure that no two concepts 
which are synonyms are in different splits. See Appendix 2.6 for 
more details. 
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• Extrinsic properties: Evaluates the ability to learn a 
new concept h, with novel combinations of extrinsic 
(e.g. location) and intrinsic (e.g. color) object proper-
ties. 

• Intrinsic properties: Evaluates the ability to learn a 
new concept h with novel combinations of intrinsic 
properties, e.g., the training concepts never reference 
both ‘red’ and ‘rubber’. 

• Boolean operations: Evaluates the ability to learn con-
cepts which require application of a familiar boolean 
operation to a property to which the operation has never 
been applied previously. 

• Complexity split: Evaluates generalization from sim-
ple concepts (those which have less than or equal to 10 
symbols) to more complex concepts (longer than 10 
symbols). This is indicative of the productivity (Fodor, 
1975) exhibited by models, in generalizing from sim-
pler concepts to more complex concepts. 

• Variable binding: Evaluates learning of entirely novel 
intrinsic properties, e.g. the training concepts involve 
only “red”, “blue”, and “green” but test concepts in-
volve “yellow” (although ‘yellow’ objects can still ap-
pear in training scenes). This is indicative of inferential 
coherence (Fodor, 1975) in models, in generalizing 
rules of inference to novel atoms. 

A model that infers the underlying LOT during meta-
training would be expected to perform well on any such 
systematic split. By comparing the performance of current 
models to such ideal learners, this benchmark will allow us 
to evaluate progress on the systematic out-of-distribution 
generalization capabilities of our current models. 

From Concepts to Meta-learning Episodes. A single 
episode comprises a support set (Dsupp) and a query set 
(Dquery), each of which is generated from a given concept, 
h. Formally, a support or query set D has input data u and 
corresponding label y, i.e. D = {{yi}Ni=1, {ui}iN 

=1}. Each 
support and query set generally contains 5 positive and 20 
negative examples — negative examples are oversampled 
since the space of negatives is generally much larger than 
that for positives. The set of positive examples are sampled 
uniformly from a categorical distribution over all positives. 
However, we consider two types of negatives: 1) easy neg-
atives, in which the negatives are also sampled at random, 
and 2) hard negatives, in which negatives are generated from 
a closely related concept which also evaluates true on the 
positive examples in Dsupp, such that these negatives are 
maximally confusing. Regardless of the method, any inputs 
we sample to be negatives that incidentally satisfy the tar-
get concept h are relabelled as positives. Altogether, for 
each split, our train, validation, and test sets contain 500000, 
5000, and 20000 episodes respectively. See Appendix 4 
for a more formal description of the procedure for creating 

episodes. 

Compositionality Gap. A key goal of our work is to define 
the difficulty in learning that arises from the compositional 
structure of the concept space. Most of the splits above are 
structured in a way such that Htest ∩Htrain = ∅, which forces 
a learner to use the compositional structure of the concept 
space to generalize to Htest. We conceptualize the difficulty 
of this task through the notion of its compositionality gap. 

Intuitively, the compositionality gap captures the difference 
between the generalization performance of two “ideal” or 
oracle models, which are both are perfect in labelling an 
input u with the correct label y for a concept h. How-
ever, the key difference is that one is an ideal compositional 
learner (strong oracle) demonstrating perfect ability to ex-
trapolate to test concepts Htest, while the other is an ideal 
non-compositional learner which is unable to perform any 
extrapolation (weak oracle) beyond Htrain. 

More formally, let Ω ∈ {strong, weak} denote an oracle 
over a concept space HΩ. The posterior predictive dis-
tribution of an oracle for query scene u and query label 
y ∈ {p, n} is then given as: 

X 
pΩ(y|u, Dsupp) = pΩ(y|h, u)pΩ(h|Dsupp) (1) 

h∈HΩ 

where given a prior pΩ(h),2 the posterior pΩ(h|Dsupp) satis-
fies (applying Bayes rule): 

pΩ(h|Dsupp) ∝ pΩ(h) p({yi}Ni=1|h; {ui}Ni=1) (2) 

We assume that both the strong and weak oracles are able to 
label inputs u based on a given hypothesis h perfectly, that 
is pstrong(y|h, u) = pweak(y|h, u). Thus, the only difference 
between the oracles is in their priors over the hypothesis 
space. The strong oracle has access to the union of train and 
test concepts—that is Hstrong = Htrain ∪ Htest. In contrast, 
the weak oracle only has access to Hweak = Htrain, which 
means it is unable to consider any hypothesis outside what 
has been seen in training and assigns it zero probability 
mass. Given a support set Dsupp this difference in priors 
leads then to different posterior predictive distributions and 
allows us to quantify how compositionally novel a learning 
task is relative to these ideal learners. 

Given a metric of interest M (e.g., mean average precision 
or accuracy), the compositionality gap of a learning task is 
then simply defined as the difference in performance of the 
posterior predictive from the strong and weak oracles when 
evaluating on concepts from Htest, i.e., Mstrong − Mweak. 

2See Appendix 2.3 for detailed definition of the prior, which 
penalizes hypotheses that longer description lengths (Feldman, 
2000) 
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4. Metrics and Baselines 
During meta-test, given Dsupp models are evaluated on their 
ability to learn novel concepts. We use two metrics for 
quantifying this: 1) Accuracy: evaluates the accuracy of 
model predictions across the query set Dquery, as is stan-
dard practice in meta-learning (Lake et al., 2019; Snell et al., 
2017). Since there are more negative than positive labels, 
we report class balanced accuracy for better interpretability, 
averaging accuracies for the positive and negative query ex-
amples; and 2) mean Average Precision (mAP): evaluates 
models on a much larger number of test scenes T for each 
episode (comprising 44,787 scenes, 3 for each concept in 
H). This resolves an issue that with a small query set, a 
strong model could achieve perfect accuracy without grasp-
ing the concept. Since episodes typically have many more 
negative than positive examples, Average Precision sweeps 
over different thresholds of a model’s score and reports the 
average of the precision values at different recall rates, e.g., 
(Everingham et al., 2010). mAP is then the mean across all 
of the meta-test episodes. 

4.1. Training Loss 

Let u ∈ RM be the input to the model, which can take 
the form of an image, sound or schema. We work in a 
binary classification setting where labels y live in the space 
Y ∈ {p, n}, (where p stands for positive, and n for negative). 
Then, given a support set Dsupp = {ui, yi}T and a queryi=1 
set Dquery = {ui, yi}Ti=1, sampled in accordance with a 
productive concept h, our training objective for a single 
training instance can be written as: 

Lquery + αLconcept (3) 

P 
Here Lquery = log p(Y = y|u, Dsupp) is a stan-u,y∈Dquery

dard maximum likelihood meta-learning loss (Ravi & 
Larochelle, 2017; Snell et al., 2017; Finn et al., 2017), and 
Lconcept = log p(H = h|Dsupp) is an additional (optional) 
term that provides the underlying ground-truth hypothesis 
in string form as a means of strong supervision. 

4.2. Baseline Models and Losses 

Query Loss (Lquery): Our baseline models (shown in Fig-
ure 2) parameterize the probability in the Lquery term above 
using prototypical networks (Snell et al., 2017). The proto-
typical network consists of an embedding function f = fθ 

and uses it to compute prototypes cp and cn for positive and 
negative examples by averaging f(u) for positive and nega-
tive examples in the support set respectively. In equations, 

0given a query datapoint u , we maximize: 

0log pθ(Y = y|u ; Dsupp) = � � 
exp(−||fθ(u0) − cy||2 

log 
exp(−||fθ(u0) − cp||2) + exp(−||fθ(u0) − cn||2) 

(4) 

In this formalism, the models we study in this paper span 
different choices for f . Roughly, in each modality, we start 
with an encoder that converts the raw input into a set of vec-
tors, and then a pooling operation that converts that set of 
vectors into a single vector. In the case of images and sound 
(input as spectrograms), the encoder is a ResNet-18; and 
the set of vectors is a subsampling of spatial locations; and 
for schemas we vectorize components with a lookup table 
and combine them into a set via feed-forward networks. In 
the case of images and sounds, the output of the encoder 
is enriched with position vectors. For the pooling oper-
ation, we study global averaging, concatenation, relation 
networks (Santoro et al., 2017) and transformers (Vaswani 
et al., 2017) equipped with different pooling operations 
(max, mean, sum, min) for reasoning inspired by Wang et al. 
(2020) (Figure 2 middle panel, also see Appendix 6). 

Concept Loss (Lconcept): For the probability in Lconcept, we 
h h h hrepresent the concept h as a sequence s = {s0 , s1 , · · · , }T 

by prefix serialization, and Dsupp with [cp, cn] (where [·] 
represents concatenation) and then use an LSTM (Hochre-
iter & Schmidhuber, 1997) to parameterize p(sh|Dsupp) = 

h h h hp(s0 |[cp, cn])Πt
T 
=1p(st |s0 , · · · st−1; [cp, cn]), where at 

each step of the LSTM we concatenate [cp, cn] to the input. 

5. Experimental Results 
We first discuss the compositionality gap induced by the 
different generalization splits and then delve into the impact 
of modeling choices on performance on the generalization 
splits. All models are trained for 1 million steps, and are 
run with with 3 independent training runs to report standard 
deviations. We sweep over 3 modalities (image, schema, 
sound), 4 pooling schemes (avg-pool, concat, relation-net, 
transformer), 2 choices of negatives (hard negatives, random 
negatives) and choice of language (α = 0.0, 1.0). Unless 
mentioned otherwise in the main paper we focus on results 
with hard negatives and α = 0.0. When instantiated for a 
given modality, we note that the encoders f(u) (Figure 2) 
all have a similar number of parameters (see appendix for 
more details). 

5.1. Dataset Design and Compositionality 

How compositional are the structured splits? Our main 
results are shown in Figure 3. Using our model-independent 
measure of the compositionality gap (Section 3), different 
splits present varying challenges for generalizing from train 
to test. The most difficult splits, with the largest composi-
tionality gaps, are the Binding (color) and Binding (shape), 
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<latexit sha1_base64="+6Q74TrZh4XWQ4cq4PqnTw+/leA=">AAACA3icbVBNS8NAEN34WetX1ZtegkXwVBIR9Fj04sFDBfsBTSmb7aRdutnE3YlYQsCLf8WLB0W8+ie8+W/ctD1o64OBx3szzMzzY8E1Os63tbC4tLyyWlgrrm9sbm2XdnYbOkoUgzqLRKRaPtUguIQ6chTQihXQ0BfQ9IeXud+8B6V5JG9xFEMnpH3JA84oGqlb2vdCigNGRXqddVMP4QHTuwTUKMu6pbJTccaw54k7JWUyRa1b+vJ6EUtCkMgE1brtOjF2UqqQMwFZ0Us0xJQNaR/ahkoagu6k4x8y+8goPTuIlCmJ9lj9PZHSUOtR6JvO/GI96+Xif147weC8k3IZJwiSTRYFibAxsvNA7B5XwFCMDKFMcXOrzQZUUYYmtqIJwZ19eZ40TiquU3FvTsvVi2kcBXJADskxcckZqZIrUiN1wsgjeSav5M16sl6sd+tj0rpgTWf2yB9Ynz+qFpjP</latexit><latexit sha1_base64="+6Q74TrZh4XWQ4cq4PqnTw+/leA=">AAACA3icbVBNS8NAEN34WetX1ZtegkXwVBIR9Fj04sFDBfsBTSmb7aRdutnE3YlYQsCLf8WLB0W8+ie8+W/ctD1o64OBx3szzMzzY8E1Os63tbC4tLyyWlgrrm9sbm2XdnYbOkoUgzqLRKRaPtUguIQ6chTQihXQ0BfQ9IeXud+8B6V5JG9xFEMnpH3JA84oGqlb2vdCigNGRXqddVMP4QHTuwTUKMu6pbJTccaw54k7JWUyRa1b+vJ6EUtCkMgE1brtOjF2UqqQMwFZ0Us0xJQNaR/ahkoagu6k4x8y+8goPTuIlCmJ9lj9PZHSUOtR6JvO/GI96+Xif147weC8k3IZJwiSTRYFibAxsvNA7B5XwFCMDKFMcXOrzQZUUYYmtqIJwZ19eZ40TiquU3FvTsvVi2kcBXJADskxcckZqZIrUiN1wsgjeSav5M16sl6sd+tj0rpgTWf2yB9Ynz+qFpjP</latexit><latexit sha1_base64="+6Q74TrZh4XWQ4cq4PqnTw+/leA=">AAACA3icbVBNS8NAEN34WetX1ZtegkXwVBIR9Fj04sFDBfsBTSmb7aRdutnE3YlYQsCLf8WLB0W8+ie8+W/ctD1o64OBx3szzMzzY8E1Os63tbC4tLyyWlgrrm9sbm2XdnYbOkoUgzqLRKRaPtUguIQ6chTQihXQ0BfQ9IeXud+8B6V5JG9xFEMnpH3JA84oGqlb2vdCigNGRXqddVMP4QHTuwTUKMu6pbJTccaw54k7JWUyRa1b+vJ6EUtCkMgE1brtOjF2UqqQMwFZ0Us0xJQNaR/ahkoagu6k4x8y+8goPTuIlCmJ9lj9PZHSUOtR6JvO/GI96+Xif147weC8k3IZJwiSTRYFibAxsvNA7B5XwFCMDKFMcXOrzQZUUYYmtqIJwZ19eZ40TiquU3FvTsvVi2kcBXJADskxcckZqZIrUiN1wsgjeSav5M16sl6sd+tj0rpgTWf2yB9Ynz+qFpjP</latexit><latexit sha1_base64="+6Q74TrZh4XWQ4cq4PqnTw+/leA=">AAACA3icbVBNS8NAEN34WetX1ZtegkXwVBIR9Fj04sFDBfsBTSmb7aRdutnE3YlYQsCLf8WLB0W8+ie8+W/ctD1o64OBx3szzMzzY8E1Os63tbC4tLyyWlgrrm9sbm2XdnYbOkoUgzqLRKRaPtUguIQ6chTQihXQ0BfQ9IeXud+8B6V5JG9xFEMnpH3JA84oGqlb2vdCigNGRXqddVMP4QHTuwTUKMu6pbJTccaw54k7JWUyRa1b+vJ6EUtCkMgE1brtOjF2UqqQMwFZ0Us0xJQNaR/ahkoagu6k4x8y+8goPTuIlCmJ9lj9PZHSUOtR6JvO/GI96+Xif147weC8k3IZJwiSTRYFibAxsvNA7B5XwFCMDKFMcXOrzQZUUYYmtqIJwZ19eZ40TiquU3FvTsvVi2kcBXJADskxcckZqZIrUiN1wsgjeSav5M16sl6sd+tj0rpgTWf2yB9Ynz+qFpjP</latexit>

+
<latexit sha1_base64="aWOcHJrcbrsxJSLO3n80z068CGE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GdzO//YRK81g+mEmCfkSHkoecUWOlxkW/XHGr7hxklXg5qUCOer/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxPe+BmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S1mXVc6te46pSu83jKMIJnMI5eHANNbiHOjSBAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcYWMrw==</latexit><latexit sha1_base64="aWOcHJrcbrsxJSLO3n80z068CGE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GdzO//YRK81g+mEmCfkSHkoecUWOlxkW/XHGr7hxklXg5qUCOer/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxPe+BmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S1mXVc6te46pSu83jKMIJnMI5eHANNbiHOjSBAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcYWMrw==</latexit><latexit sha1_base64="aWOcHJrcbrsxJSLO3n80z068CGE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GdzO//YRK81g+mEmCfkSHkoecUWOlxkW/XHGr7hxklXg5qUCOer/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxPe+BmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S1mXVc6te46pSu83jKMIJnMI5eHANNbiHOjSBAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcYWMrw==</latexit><latexit sha1_base64="aWOcHJrcbrsxJSLO3n80z068CGE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GdzO//YRK81g+mEmCfkSHkoecUWOlxkW/XHGr7hxklXg5qUCOer/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxPe+BmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S1mXVc6te46pSu83jKMIJnMI5eHANNbiHOjSBAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcYWMrw==</latexit>

Lconcept
<latexit sha1_base64="qIeQWXNrZRvABx3mx2rZ9sK4E28=">AAACBXicbVA9SwNBEN2LXzF+RS21OAyCVbgTQcugjYVFBPMBuRD2NnPJkr29Y3dODMc1Nv4VGwtFbP0Pdv4b95IUmvhg4PHeDDPz/FhwjY7zbRWWlldW14rrpY3Nre2d8u5eU0eJYtBgkYhU26caBJfQQI4C2rECGvoCWv7oKvdb96A0j+QdjmPohnQgecAZRSP1yodeSHHIqEhvsl7qITxgyiLJIMYs65UrTtWZwF4k7oxUyAz1XvnL60csCUEiE1TrjuvE2E2pQs4EZCUv0RBTNqID6BgqaQi6m06+yOxjo/TtIFKmJNoT9fdESkOtx6FvOvOb9byXi/95nQSDi27KZZwgSDZdFCTCxsjOI7H7XAFDMTaEMsXNrTYbUkUZmuBKJgR3/uVF0jytuk7VvT2r1C5ncRTJATkiJ8Ql56RGrkmdNAgjj+SZvJI368l6sd6tj2lrwZrN7JM/sD5/AB39mZk=</latexit><latexit sha1_base64="qIeQWXNrZRvABx3mx2rZ9sK4E28=">AAACBXicbVA9SwNBEN2LXzF+RS21OAyCVbgTQcugjYVFBPMBuRD2NnPJkr29Y3dODMc1Nv4VGwtFbP0Pdv4b95IUmvhg4PHeDDPz/FhwjY7zbRWWlldW14rrpY3Nre2d8u5eU0eJYtBgkYhU26caBJfQQI4C2rECGvoCWv7oKvdb96A0j+QdjmPohnQgecAZRSP1yodeSHHIqEhvsl7qITxgyiLJIMYs65UrTtWZwF4k7oxUyAz1XvnL60csCUEiE1TrjuvE2E2pQs4EZCUv0RBTNqID6BgqaQi6m06+yOxjo/TtIFKmJNoT9fdESkOtx6FvOvOb9byXi/95nQSDi27KZZwgSDZdFCTCxsjOI7H7XAFDMTaEMsXNrTYbUkUZmuBKJgR3/uVF0jytuk7VvT2r1C5ncRTJATkiJ8Ql56RGrkmdNAgjj+SZvJI368l6sd6tj2lrwZrN7JM/sD5/AB39mZk=</latexit><latexit sha1_base64="qIeQWXNrZRvABx3mx2rZ9sK4E28=">AAACBXicbVA9SwNBEN2LXzF+RS21OAyCVbgTQcugjYVFBPMBuRD2NnPJkr29Y3dODMc1Nv4VGwtFbP0Pdv4b95IUmvhg4PHeDDPz/FhwjY7zbRWWlldW14rrpY3Nre2d8u5eU0eJYtBgkYhU26caBJfQQI4C2rECGvoCWv7oKvdb96A0j+QdjmPohnQgecAZRSP1yodeSHHIqEhvsl7qITxgyiLJIMYs65UrTtWZwF4k7oxUyAz1XvnL60csCUEiE1TrjuvE2E2pQs4EZCUv0RBTNqID6BgqaQi6m06+yOxjo/TtIFKmJNoT9fdESkOtx6FvOvOb9byXi/95nQSDi27KZZwgSDZdFCTCxsjOI7H7XAFDMTaEMsXNrTYbUkUZmuBKJgR3/uVF0jytuk7VvT2r1C5ncRTJATkiJ8Ql56RGrkmdNAgjj+SZvJI368l6sd6tj2lrwZrN7JM/sD5/AB39mZk=</latexit><latexit sha1_base64="qIeQWXNrZRvABx3mx2rZ9sK4E28=">AAACBXicbVA9SwNBEN2LXzF+RS21OAyCVbgTQcugjYVFBPMBuRD2NnPJkr29Y3dODMc1Nv4VGwtFbP0Pdv4b95IUmvhg4PHeDDPz/FhwjY7zbRWWlldW14rrpY3Nre2d8u5eU0eJYtBgkYhU26caBJfQQI4C2rECGvoCWv7oKvdb96A0j+QdjmPohnQgecAZRSP1yodeSHHIqEhvsl7qITxgyiLJIMYs65UrTtWZwF4k7oxUyAz1XvnL60csCUEiE1TrjuvE2E2pQs4EZCUv0RBTNqID6BgqaQi6m06+yOxjo/TtIFKmJNoT9fdESkOtx6FvOvOb9byXi/95nQSDi27KZZwgSDZdFCTCxsjOI7H7XAFDMTaEMsXNrTYbUkUZmuBKJgR3/uVF0jytuk7VvT2r1C5ncRTJATkiJ8Ql56RGrkmdNAgjj+SZvJI368l6sd6tj2lrwZrN7JM/sD5/AB39mZk=</latexit>

↵
<latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit><latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit><latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit><latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit>

and all = shape? S 
 “cube” any = 
 locationY?(S) 6

Prefix Serialized 
Concept

u
<latexit sha1_base64="T1uA6W5+3xwxDKD7YaxKkPtWlg0=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhls4G1Zpbd+cgq8QrSA0KNAfVr/4wZmnEFTJJjel5boJ+RjUKJvms0k8NTyib0BHvWapoxI2fzRPPyJlVhiSMtX0KyVz9vZHRyJhpFNjJPKFZ9nLxP6+XYnjtZ0IlKXLFFh+FqSQYk/x8MhSaM5RTSyjTwmYlbEw1ZWhLqtgSvOWTV0n7ou65de/+sta4Keoowwmcwjl4cAUNuIMmtICBgmd4hTfHOC/Ou/OxGC05xc4x/IHz+QP4qpEZ</latexit><latexit sha1_base64="T1uA6W5+3xwxDKD7YaxKkPtWlg0=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhls4G1Zpbd+cgq8QrSA0KNAfVr/4wZmnEFTJJjel5boJ+RjUKJvms0k8NTyib0BHvWapoxI2fzRPPyJlVhiSMtX0KyVz9vZHRyJhpFNjJPKFZ9nLxP6+XYnjtZ0IlKXLFFh+FqSQYk/x8MhSaM5RTSyjTwmYlbEw1ZWhLqtgSvOWTV0n7ou65de/+sta4Keoowwmcwjl4cAUNuIMmtICBgmd4hTfHOC/Ou/OxGC05xc4x/IHz+QP4qpEZ</latexit><latexit sha1_base64="T1uA6W5+3xwxDKD7YaxKkPtWlg0=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhls4G1Zpbd+cgq8QrSA0KNAfVr/4wZmnEFTJJjel5boJ+RjUKJvms0k8NTyib0BHvWapoxI2fzRPPyJlVhiSMtX0KyVz9vZHRyJhpFNjJPKFZ9nLxP6+XYnjtZ0IlKXLFFh+FqSQYk/x8MhSaM5RTSyjTwmYlbEw1ZWhLqtgSvOWTV0n7ou65de/+sta4Keoowwmcwjl4cAUNuIMmtICBgmd4hTfHOC/Ou/OxGC05xc4x/IHz+QP4qpEZ</latexit><latexit sha1_base64="T1uA6W5+3xwxDKD7YaxKkPtWlg0=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhls4G1Zpbd+cgq8QrSA0KNAfVr/4wZmnEFTJJjel5boJ+RjUKJvms0k8NTyib0BHvWapoxI2fzRPPyJlVhiSMtX0KyVz9vZHRyJhpFNjJPKFZ9nLxP6+XYnjtZ0IlKXLFFh+FqSQYk/x8MhSaM5RTSyjTwmYlbEw1ZWhLqtgSvOWTV0n7ou65de/+sta4Keoowwmcwjl4cAUNuIMmtICBgmd4hTfHOC/Ou/OxGC05xc4x/IHz+QP4qpEZ</latexit>

f(u)
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Figure 2. Baseline models (left). Different choices for the encoder f(u) parameterization explored in the paper. We consider three 
modalities each of which is processed with a modality specific encoder, followed by four kinds of pooling architecture which take as input 
objects and their corresponding locations to provide an encoding for the datapoint. Training (right). The model is trained by processing 
the support images Dsupp with positive (green) and negative (red) images, using f(x) to compute Lquery which computes generalization 
error on queries and Lconcept which learns to decode the true concept as an auxiliary task. Losses are weighted by α ≥ 0. 

which is reasonable since they require learning concepts 
with entirely new property-values. In contrast, the easiest 
split with the smallest compositionality gaps is the Instance 
IID split since it does not require compositionality. Finally, 
while the mAP metric (Section 4) exposes a larger value of 
the compositionality gap, the ordering of splits in terms of 
compositionality gap is same for both metrics – suggesting 
similar coarse-grained notions of compositionality. 

Results for the best overall architecture, a relation network 
(relation-net), are shown in Figure 3. Network performance 
on the easiest data format (schema; yellow bars) is generally 
better than the weak oracle, but substantially worse than 
the strong oracle. Counting is a particularly challenging 
split where the models underperform even the weak oracle. 
Broadly, this suggests that the models capture some notion 
of compositionality—especially for images and schemas— 
relative to a weak oracle that rigidly considers only training 
hypotheses, but there is substantial room to improve (es-
pecially with respect to the more stringent mAP metric). 
These results demonstrate that CURI provides a challeng-
ing yet tractable setting for evaluating the compositional 
capabilities of models. 

Finally, we found that the performance on the Instance IID 
split is not equal to the weak (and strong) oracle—which are 
both equal in this case—indicating that the best model does 
not make ideal posterior predictions even when composi-
tionality is not an issue. Ideal predictions in this case would 
require the network to behave as if marginalizing over the 
training hypotheses, as the strong oracle does. 

Influence of Negatives. Previous work (Hill et al., 2019) 
has shown that the choice of random vs. hard negatives for 
training and evaluation impacts compositional generaliza-
tion substantially in the case of a particular set of analogical 
reasoning models. However, we argue that such decisions 
on dataset design can be made more objectively if one can 
evaluate the model-independent compositionality gap. In 
our context, we find that the compositionality gap with 
mAP when using random negatives decreases on average 
by 5.5 ± 1.4% compared to when we use hard negatives. 
This indicates that it is not only the choice of Htrain and 
Htest, which are identical for a given compositional split 
(say Counting), but also the choice of the negatives which 
“makes” the task compositionally novel. More generally, 
this indicates that the compositionality gap has utility as 
a more general diagnostic tool for making principled de-
sign decisions in compositional learning settings without 
the confound of specific model decisions. 

How much uncertainty is entailed by each of the struc-
tured splits? We next compute the expected entropy of 
the posterior predictive distribution of the strong oracle, 
pstrong(y|u, Dsupp) computed over the support sets Dsupp 
in the test set of each compositional split (see Figure 4). 
We find that overall, all the splits have a similar amount 
of associated uncertainty over concepts, meaning that any 
difference in model performances across the splits would 
come from compositionality and extrapolation, as opposed 
to higher uncertainty over the “correct” concept. We next 
discuss the best models on the CURI benchmark. 
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Figure 3. Compositionality Gap. Different splits (x-axis) plotted w.r.t performance of the strong oracle (green line) and weak oracle 
(red line) on the mAP (top) and Accuracy (bottom) evaluated on respective test splits (using hard negatives in support and query sets). 
Difference between the two is the compositionality gap (compositionality gap). Yellow: shows the (best) relation-net model on schema 
inputs, purple: shows the model on image inputs, and gray: shows the model on sound inputs. Error bars are std across 3 independent 
model runs. 

Figure 4. Average test entropy (nats) (y-axis) of the strong oracle, 
that extrapolates perfectly over the concept space vs. compositional 
split (x-axis). 

5.2. Differences Between Models 

Best Models. A summary of all results is shown in Table 
2. In general, the best performing model is the relation-net 
applied to schema inputs, outperforming other combinations 
of models and input modalities on the Boolean, Concept 
IID, Complexity, and Instance IID splits on both the mAP as 
well as accuracy metrics (Figure 3); although as mentioned 
above, none of the models are close to the strong oracle. 
It is closely followed by the transformer model on schema 
inputs, which performs the best on Binding (color), Binding 
(shape), and Intrinsic splits. Utilizing schema inputs proves 
easier for abstraction except for the Extrinsic setting, where 
the task requires generalization to novel locations for ob-
jects in images, which is well supported by the inductive 
bias of the CNN encoder (Figure 2). In this case, the image-
transformer gets an mAP of 62.1 ± 0.7%, compared to the 
next best schema-transformer model at 60.9 ± 0.7. Further, 
relational learning proves more crucial in the schema case 
than for images, with all image models (regardless of pool-
ing) performing better than 59.4 ± 1.3% mAP (achieved for 
image-avg-pool) while schema-avg-pool models get only 
get to 53.4 ± 1.5%. 

When to use a transformer? Transformer models appear 
to outperform relation networks in splits concerning disen-
tangling. For instance, for the Intrinsic split with schema-
relation-net is at 55.1 ± 0.8% mAP vs. 57.9 ± 0.6% for 

schema-transformer. Similarly, for the Extrinsic split the 
image-transformer is at 62.1 ± 0.7% mAP compared to the 
image-relation-net at 60.8 ± 1.1%. We hypothesize that 
this is because the iterative message passing via. attention 
in transformers improves object representations for disen-
tangling compared to relation networks that lack such a 
mechanism. 

What is the relative difficulty of abstraction from differ-
ent modalities? One of the key contributions of our work 
is in providing multiple modalities (image, schema, sound) 
for productive concept learning. We next characterize the 
difficulty of abstraction based on modality for the various 
generalization settings. In the Intrinsic setting, we find 
that the schema models, which have access to a “perfect” 
disentangled representation significantly outperform image 
models—a schema-avg-pool model gets to 52.7 ± 3.1% 
mAP while an image-avg-pool model gets to 34.4 ± 0.0% 
mAP. 

Similarly, for the Counting split where the total number 
of objects are exactly specified in the schema (Figure 2), 
schemas are substantially better than images. For ex-
ample, schema-relation-nets get to 56.25 ± 5.32% mAP 
while image-avg-pool is at 48.4 ± 1.2% mAP. Interestingly, 
the next best model—image-relation-net—is substantially 
worse, at 39.45 ± 1.6%. Curiously, while transformer mod-
els perform well at disentangling, they seem to be quite 
poor for Counting, with image-transformer models getting 
to only 32.4 ± 1.4% mAP, suggesting a potential weakness 
for transformers. Overall, there appears to be an intimate 
link between the generalization setting and the input modal-
ity, suggesting avenues where representation learning could 
be improved for a given modality (e.g. images), relative to 
the kind of reasoning one is interested in (e.g. counting). 

When does language help? On average, training models 



CURI: Productive Concept Learning 

Table 2. Results for various models with different object encoders and pooling schemes (Figure 2) on the mAP metric (top half) and the 
accuracy metric (bottom half) on the compositional splits of the CURI dataset. The best model (Overall) is a relation-net trained with 
schema inputs according to both mAP and accuracy metrics. Results with easy negatives can be found in the appendix. 

Models Performance on Splits with Hard Negatives (mAP metric) 

Encoder Pooling Binding (color) Binding (shape) Intrinsic Complexity Boolean Concept IID Extrinsic Counting Instance IID Overall 

Image Average Pool 15.1 (±0.4) 28.7 (±1.0) 34.5 (±0.4) 45.8 (±0.4) 36.3 (±2.3) 56.7 (±1.0) 59.4 (±1.3) 48.5 (±1.3) 58.1 (±0.7) 42.57 
Image Relation Net 14.8 (±0.7) 29.1 (±1.8) 47.6 (±7.5) 45.4 (±0.4) 38.4 (±1.0) 58.5 (±0.7) 60.8 (±1.1) 40.3 (±2.0) 58.6 (±1.3) 43.72 
Image Transformer 14.2 (±0.2) 28.7 (±0.1) 54.1 (±3.0) 45.6 (±0.2) 44.0 (±2.2) 60.8 (±0.4) 62.1 (±0.8) 32.4 (±1.4) 61.5 (±0.9) 44.82 
Image Concat 13.5 (±0.4) 27.0 (±0.8) 34.0 (±1.0) 42.6 (±3.4) 29.6 (±2.4) 53.0 (±0.6) 60.8 (±0.7) 38.5 (±2.8) 57.1 (±0.9) 39.57 
Schema Average Pool 15.1 (±1.2) 28.3 (±1.9) 53.3 (±3.0) 48.4 (±1.0) 48.0 (±2.1) 54.6 (±1.3) 53.4 (±1.5) 55.0 (±6.4) 57.4 (±0.9) 45.94 
Schema Relation Net 15.3 (±0.9) 30.4 (±1.5) 55.1 (±0.9) 52.8 (±0.7) 51.1 (±1.4) 60.7 (±0.3) 59.8 (±0.4) 57.4 (±4.8) 63.9 (±0.4) 49.61 
Schema Transformer 15.9 (±0.9) 30.9 (±0.6) 57.9 (±0.6) 49.7 (±0.6) 46.9 (±1.1) 59.8 (±0.2) 60.9 (±0.6) 40.7 (±0.4) 59.8 (±0.5) 46.94 
Schema Concat 14.0 (±0.7) 27.0 (±0.8) 52.2 (±3.5) 48.0 (±1.2) 47.1 (±2.1) 53.3 (±0.9) 54.3 (±2.3) 50.0 (±3.2) 57.1 (±1.4) 44.78 
Sound Average Pool 9.4 (±0.6) 16.2 (±1.6) 26.5 (±2.3) 23.0 (±1.7) 24.1 (±1.6) 22.7 (±2.3) 25.7 (±-) 13.4 (±1.0) 23.5 (±1.4) 20.50 
Sound Relation Net 9.2 (±0.3) 17.5 (±0.4) 24.3 (±2.4) 23.3 (±1.0) 25.5 (±0.8) 21.8 (±-) 18.3 (±1.7) 13.0 (±1.7) 22.3 (±2.3) 19.47 
Sound Concat 8.0 (±0.6) 17.4 (±1.3) 29.4 (±1.6) 26.0 (±-) 22.3 (±1.1) 23.6 (±2.7) 23.2 (±1.4) 13.8 (±2.4) 21.7 (±0.5) 20.60 

Performance on Splits with Hard Negatives (accuracy metric) 

Image Average Pool 76.3 (±0.6) 78.1 (±0.3) 82.3 (±0.2) 84.9 (±0.1) 84.4 (±0.5) 87.4 (±0.1) 90.8 (±0.2) 80.7 (±0.3) 87.6 (±0.1) 83.61 
Image Relation Net 75.6 (±0.9) 77.9 (±0.6) 84.7 (±1.2) 84.5 (±0.1) 84.5 (±0.5) 87.6 (±0.2) 90.9 (±0.1) 77.7 (±0.8) 87.5 (±0.3) 83.43 
Image Transformer 75.8 (±0.2) 78.2 (±0.0) 86.2 (±0.4) 84.9 (±0.2) 85.5 (±0.5) 87.8 (±0.0) 91.2 (±0.2) 75.6 (±0.4) 88.2 (±0.0) 83.71 
Image Concat 73.8 (±0.5) 76.9 (±0.3) 82.0 (±0.5) 84.4 (±0.3) 83.2 (±1.0) 86.6 (±0.2) 90.9 (±0.1) 77.5 (±0.7) 87.1 (±0.2) 82.49 
Schema Average Pool 74.6 (±1.1) 76.4 (±0.7) 85.0 (±1.0) 85.1 (±0.4) 85.3 (±0.9) 86.0 (±0.5) 89.2 (±0.5) 82.5 (±1.4) 86.4 (±0.6) 83.39 
Schema Relation Net 74.7 (±0.8) 77.2 (±0.6) 84.8 (±0.2) 86.5 (±0.1) 86.0 (±0.3) 87.3 (±0.1) 90.3 (±0.2) 82.2 (±0.8) 87.9 (±0.2) 84.10 
Schema Transformer 76.3 (±0.6) 77.9 (±0.2) 86.0 (±0.3) 85.0 (±0.1) 85.3 (±0.3) 87.3 (±0.1) 90.7 (±0.1) 76.4 (±1.0) 87.4 (±0.2) 83.59 
Sound Average Pool 68.4 (±1.2) 71.7 (±0.1) 77.9 (±1.5) 75.0 (±0.6) 79.0 (±0.7) 75.5 (±0.6) 80.8 (±-) 68.4 (±0.9) 74.7 (±0.5) 74.60 
Sound Relation Net 68.0 (±0.9) 71.8 (±0.4) 77.0 (±1.2) 75.3 (±0.7) 79.4 (±0.4) 73.9 (±-) 78.2 (±1.5) 68.7 (±1.0) 74.3 (±0.7) 74.07 
Sound Concat 65.5 (±0.7) 72.7 (±0.1) 79.3 (±0.9) 76.5 (±-) 77.4 (±0.7) 74.4 (±2.2) 80.1 (±0.8) 68.9 (±2.6) 73.8 (±0.3) 74.29 

with explicit concept supervision using the concept loss 
(Section 4.1) improves performance by 2.8 ± 0.6% mAP 
(SEM error). This is a small boost relative to the gap be-
tween the original model and the strong oracle, suggesting 
that this simple auxiliary loss is not sufficient to internalize 
the LOT in a neural network. Overall, image models benefit 
more from language than schema models which natively 
utilize symbols. 

6. Conclusion 
We introduced the compositional reasoning under uncer-
tainty (CURI) benchmark for evaluating few-shot concept 
learning in a large compositional space, capturing the kinds 
of productivity, unboundness and underdetermination that 
characterize human conceptual reasoning. We instantiate a 
series of meta-learning tasks, and evaluate numerous base-
line models on various aspects of compositional reasoning 
under uncertainty, including inferential coherence, boolean 
operation learning, counting, and disentangling. Further, we 
introduce the notion of a compositionality gap to quantify 
the difficultly of each generalization type, and to estimate 
the degree of compositionality in current deep learning mod-
els. We hope our contributions of dataset, compositional-
ity gaps, evaluation metrics and baseline models help spur 
progress in the important research direction of productive 

concept learning under uncertainty. 
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