
One-shot learning by inverting a compositional causal
process

Brenden M. Lake
Dept. of Brain and Cognitive Sciences

MIT
brenden@mit.edu

Ruslan Salakhutdinov
Dept. of Statistics and Computer Science

University of Toronto
rsalakhu@cs.toronto.edu

Joshua B. Tenenbaum
Dept. of Brain and Cognitive Sciences

MIT
jbt@mit.edu

Abstract

People can learn a new visual class from just one example, yet machine learn-
ing algorithms typically require hundreds or thousands of examples to tackle the
same problems. Here we present a Hierarchical Bayesian model based on com-
positionality and causality that can learn a wide range of natural (although sim-
ple) visual concepts, generalizing in human-like ways from just one image. We
evaluated performance on a challenging one-shot classification task, where our
model achieved a human-level error rate while substantially outperforming two
deep learning models. We also tested the model on another conceptual task, gen-
erating new examples, by using a “visual Turing test” to show that our model
produces human-like performance.

1 Introduction
People can acquire a new concept from only the barest of experience – just one or a handful of
examples in a high-dimensional space of raw perceptual input. Although machine learning has
tackled some of the same classification and recognition problems that people solve so effortlessly,
the standard algorithms require hundreds or thousands of examples to reach good performance.
While the standard MNIST benchmark dataset for digit recognition has 6000 training examples per
class [19], people can classify new images of a foreign handwritten character from just one example
(Figure 1b) [23, 16, 17]. Similarly, while classifiers are generally trained on hundreds of images per
class, using benchmark datasets such as ImageNet [4] and CIFAR-10/100 [14], people can learn a

1
2

3

Human drawers

canonical

1
2

3

5

1 2

3
5.1

1 2
3

5.3

1 2

3

6.2

1 2

3

6.2

2
1 3

7.1

2
1 3

7.4

31

2

8.2

1 2
3

8.4

1

3

2

12

1

2
3

Simple drawers

canonical

1
32

6.5

2
1

3

24

1
23

17

3

2
1

20

2
1

3

11

3
1

2

10

1

2
3

23

3
2

1

17

1

2

3

16

3
1

2

20

b) c)a)

Figure 1: Can you learn a new concept from just one example? (a & b) Where are the other examples of the
concept shown in red? Answers for b) are row 4 column 3 (left) and row 2 column 4 (right). c) The learned
concepts also support many other abilities such as generating examples and parsing.

1

Figure 2: Four alphabets from Omniglot, each with five characters drawn by four different people.

new visual object from just one example (e.g., a “Segway” in Figure 1a). These new larger datasets
have developed along with larger and “deeper” model architectures, and while performance has
steadily (and even spectacularly [15]) improved in this big data setting, it is unknown how this
progress translates to the “one-shot” setting that is a hallmark of human learning [3, 22, 28].

Additionally, while classification has received most of the attention in machine learning, people
can generalize in a variety of other ways after learning a new concept. Equipped with the concept
“Segway” or a new handwritten character (Figure 1c), people can produce new examples, parse an
object into its critical parts, and fill in a missing part of an image. While this flexibility highlights the
richness of people’s concepts, suggesting they are much more than discriminative features or rules,
there are reasons to suspect that such sophisticated concepts would be difficult if not impossible
to learn from very sparse data. Theoretical analyses of learning express a tradeoff between the
complexity of the representation (or the size of its hypothesis space) and the number of examples
needed to reach some measure of “good generalization” (e.g., the bias/variance dilemma [8]). Given
that people seem to succeed at both sides of the tradeoff, a central challenge is to explain this
remarkable ability: What types of representations can be learned from just one or a few examples,
and how can these representations support such flexible generalizations?

To address these questions, our work here offers two contributions as initial steps. First, we introduce
a new set of one-shot learning problems for which humans and machines can be compared side-by-
side, and second, we introduce a new algorithm that does substantially better on these tasks than
current algorithms. We selected simple visual concepts from the domain of handwritten characters,
which offers a large number of novel, high-dimensional, and cognitively natural stimuli (Figure
2). These characters are significantly more complex than the simple artificial stimuli most often
modeled in psychological studies of concept learning (e.g., [6, 13]), yet they remain simple enough
to hope that a computational model could see all the structure that people do, unlike domains such
as natural scenes. We used a dataset we collected called “Omniglot” that was designed for studying
learning from a few examples [17, 26]. While similar in spirit to MNIST, rather than having 10
characters with 6000 examples each, it has over 1600 character with 20 examples each – making it
more like the “transpose” of MNIST. These characters were selected from 50 different alphabets on
www.omniglot.com, which includes scripts from natural languages (e.g., Hebrew, Korean, Greek)
and artificial scripts (e.g., Futurama and ULOG) invented for purposes like TV shows or video
games. Since it was produced on Amazon’s Mechanical Turk, each image is paired with a movie
([x,y,time] coordinates) showing how that drawing was produced.

In addition to introducing new one-shot learning challenge problems, this paper also introduces
Hierarchical Bayesian Program Learning (HBPL), a model that exploits the principles of composi-
tionality and causality to learn a wide range of simple visual concepts from just a single example. We
compared the model with people and other competitive computational models for character recog-
nition, including Deep Boltzmann Machines [25] and their Hierarchical Deep extension for learning
with very few examples [26]. We find that HBPL classifies new examples with near human-level
accuracy, substantially beating the competing models. We also tested the model on generating new
exemplars, another natural form of generalization, using a “visual Turing test” to evaluate perfor-
mance. In this test, both people and the model performed the same task side by side, and then other
human participants judged which result was from a person and which was from a machine.

2 Hierarchical Bayesian Program Learning
We introduce a new computational approach called Hierarchical Bayesian Program Learning
(HBPL) that utilizes the principles of compositionality and causality to build a probabilistic gen-
erative model of handwritten characters. It is compositional because characters are represented
as stochastic motor programs where primitive structure is shared and re-used across characters at
multiple levels, including strokes and sub-strokes. Given the raw pixels, the model searches for a

2

x
(m)
11

x11

y11}

}

y12

x12
R1 x21

y21

R2 R1
R2

y
(m)
11

L
(m)
1

y
(m)
12 L

(m)
2

T
(m)
1 T

(m)
2

{A, ✏,�b}(m)

I(m)

x
(m)
21

y
(m)
21

x
(m)
12

{A, ✏,�b}(m)

I(m)

L
(m)
1

T
(m)
1

L
(m)
2

T
(m)
2

= independent = along s11
= independent

= start of s11

z11 = 17 z12 = 17 z21 = 42 z11 = 5 z21 = 17

character type 1 (= 2) character type 2 (= 2)...
1725 42 157

primitives

x11
y11

x
(m)
11
y
(m)
11

x21
y21

x
(m)
21

y
(m)
21

to
ke

n
le

ve
l
✓(

m
)

ty
p
e

le
v
el

R
(m)
1

R
(m)
2

R
(m)
1 R

(m)
2

Figure 3: An illustration of the HBPL model generating two character types (left and right), where the dotted
line separates the type-level from the token-level variables. Legend: number of strokes κ, relationsR, primitive
id z (color-coded to highlight sharing), control points x (open circles), scale y, start locations L, trajectories T ,
transformation A, noise ε and θb, and image I .

“structural description” to explain the image by freely combining these elementary parts and their
spatial relations. Unlike classic structural description models [27, 2], HBPL also reflects abstract
causal structure about how characters are actually produced. This type of causal representation
is psychologically plausible, and it has been previously theorized to explain both behavioral and
neuro-imaging data regarding human character perception and learning (e.g., [7, 1, 21, 11, 12, 17]).
As in most previous “analysis by synthesis” models of characters, strokes are not modeled at the
level of muscle movements, so that they are abstract enough to be completed by a hand, a foot, or
an airplane writing in the sky. But HBPL also learns a significantly more complex representation
than earlier models, which used only one stroke (unless a second was added manually) [24, 10] or
received on-line input data [9], sidestepping the challenging parsing problem needed to interpret
complex characters.

The model distinguishes between character types (an ‘A’, ‘B’, etc.) and tokens (an ‘A’ drawn by a
particular person), where types provide an abstract structural specification for generating different
tokens. The joint distribution on types ψ, tokens θ(m), and binary images I(m) is given as follows,

P (ψ, θ(1), ..., θ(M), I(1), ..., I(M)) = P (ψ)

M∏
m=1

P (I(m)|θ(m))P (θ(m)|ψ). (1)

Pseudocode to generate from this distribution is shown in the Supporting Information (Section SI-1).

2.1 Generating a character type

A character type ψ = {κ, S,R} is defined by a set of κ strokes S = {S1, ..., Sκ} and spatial relations
R = {R1, ..., Rκ} between strokes. The joint distribution can be written as

P (ψ) = P (κ)

κ∏
i=1

P (Si)P (Ri|S1, ..., Si−1). (2)

The number of strokes is sampled from a multinomial P (κ) estimated from the empirical frequencies
(Figure 4b), and the other conditional distributions are defined in the sections below. All hyperpa-
rameters, including the library of primitives (top of Figure 3), were learned from a large “background
set” of character drawings as described in Sections 2.3 and SI-4.

Strokes. Each stroke is initiated by pressing the pen down and terminated by lifting the
pen up. In between, a stroke is a motor routine composed of simple movements called sub-
strokes Si = {si1, ..., sini} (colored curves in Figure 3), where sub-strokes are separated by

3

brief pauses of the pen. Each sub-stroke sij is modeled as a uniform cubic b-spline, which
can be decomposed into three variables sij = {zij , xij , yij} with joint distribution P (Si) =
P (zi)

∏ni

j=1 P (xij |zij)P (yij |zij). The discrete class zij ∈ N is an index into the library of primi-
tive motor elements (top of Figure 3), and its distribution P (zi) = P (zi1)

∏ni

j=2 P (zij |zi(j−1)) is a
first-order Markov Process that adds sub-strokes at each step until a special “stop” state is sampled
that ends the stroke. The five control points xij ∈ R10 (small open circles in Figure 3) are sampled
from a Gaussian P (xij |zij) = N(µzij ,Σzij) , but they live in an abstract space not yet embedded
in the image frame. The type-level scale yij of this space, relative to the image frame, is sampled
from P (yij |zij) = Gamma(αzij , βzij).

Relations. The spatial relation Ri specifies how the beginning of stroke Si connects to the pre-
vious strokes {S1, ..., Si−1}. The distribution P (Ri|S1, ..., Si−1) = P (Ri|z1, ..., zi−1), since it
only depends on the number of sub-strokes in each stroke. Relations can come in four types with
probabilities θR, and each type has different sub-variables and dimensionalities:

• Independent relations, Ri = {Ji, Li}, where the position of stroke i does not depend on previ-
ous strokes. The variable Ji ∈ N is drawn from P (Ji), a multinomial over a 2D image grid that
depends on index i (Figure 4c). Since the position Li ∈ R2 has to be real-valued, P (Li|Ji) is
then sampled uniformly at random from within the image cell Ji.
• Start or End relations, Ri = {ui}, where stroke i starts at either the beginning or end of a

previous stroke ui, sampled uniformly at random from ui ∈ {1, ..., i− 1}.
• Along relations, Ri = {ui, vi, τi}, where stroke i begins along previous stroke ui ∈ {1, ..., i−

1} at sub-stroke vi ∈ {1, ..., nui
} at type-level spline coordinate τi ∈ R, each sampled uni-

formly at random.

2.2 Generating a character token

The token-level variables, θ(m) = {L(m), x(m), y(m), R(m), A(m), σ
(m)
b , ε(m)}, are distributed as

P (θ(m)|ψ) = P (L(m)|θ(m)

\L(m) , ψ)
∏
i

P (R
(m)
i |Ri)P (y

(m)
i |yi)P (x

(m)
i |xi)P (A(m), σ

(m)
b , ε(m))

(3)
with details below. As before, Sections 2.3 and SI-4 describe how the hyperparameters were learned.

Pen trajectories. A stroke trajectory T (m)
i (Figure 3) is a sequence of points in the image plane

that represents the path of the pen. Each trajectory T (m)
i = f(L

(m)
i , x

(m)
i , y

(m)
i) is a deterministic

function of a starting location L(m)
i ∈ R2, token-level control points x(m)

i ∈ R10, and token-level
scale y(m)

i ∈ R. The control points and scale are noisy versions of their type-level counterparts,
P (x

(m)
ij |xij) = N(xij , σ

2
xI) and P (y

(m)
ij |yij) ∝ N(yij , σ

2
y), where the scale is truncated below

0. To construct the trajectory T (m)
i (see illustration in Figure 3), the spline defined by the scaled

control points y(m)
1 x

(m)
1 ∈ R10 is evaluated to form a trajectory,1 which is shifted in the image plane

to begin at L(m)
i . Next, the second spline y(m)

2 x
(m)
2 is evaluated and placed to begin at the end of

the previous sub-stroke’s trajectory, and so on until all sub-strokes are placed.

Token-level relations must be exactly equal to their type-level counterparts, P (R
(m)
i |Ri) =

δ(R
(m)
i − Ri), except for the “along” relation which allows for token-level variability for

the attachment along the spline using a truncated Gaussian P (τ
(m)
i |τi) ∝ N(τi, σ

2
τ). Given

the pen trajectories of the previous strokes, the start position of L
(m)
i is sampled from

P (L
(m)
i |R(m)

i , T
(m)
1 , ..., T

(m)
i−1) = N(g(R

(m)
i , T

(m)
1 , ..., T

(m)
i−1),ΣL), where g(·) = Li whenR(m)

i is

independent (Section 2.1), g(·) = end(T
(m)
ui) or g(·) = start(T (m)

ui) when R(m)
i is start or end, and

g(·) is the proper spline evaluation when R(m)
i is along.

1The number of spline evaluations is computed to be approximately 2 points for every 3 pixels of distance
along the spline (with a minimum of 10 evaluations).

4

a) b)

c)

1 2 ≥ 4

number of strokes

stroke start positions

library of motor primitives

0 2 4 6 8
0

2000

4000

6000
Number of strokes

fre
qu

en
cy

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

3

Figure 4: Learned hyper-
parameters. a) A subset of
primitives, where the top
row shows the most com-
mon ones. The first con-
trol point (circle) is a filled.
b&c) Empirical distribu-
tions where the heatmap
c) show how starting point
differs by stroke number.

Image. An image transformation A(m) ∈ R4 is sampled from P (A(m)) = N([1, 1, 0, 0],ΣA),
where the first two elements control a global re-scaling and the second two control a global transla-
tion of the center of mass of T (m). The transformed trajectories can then be rendered as a 105x105
grayscale image, using an ink model adapted from [10] (see Section SI-2). This grayscale image
is then perturbed by two noise processes, which make the gradient more robust during optimiza-
tion and encourage partial solutions during classification. These processes include convolution with
a Gaussian filter with standard deviation σ(m)

b and pixel flipping with probability ε(m), where the
amount of noise σ(m)

b and ε(m) are drawn uniformly on a pre-specified range (Section SI-2). The
grayscale pixels then parameterize 105x105 independent Bernoulli distributions, completing the full
model of binary images P (I(m)|θ(m)) = P (I(m)|T (m), A(m), σ

(m)
b , ε(m)).

2.3 Learning high-level knowledge of motor programs

The Omniglot dataset was randomly split into a 30 alphabet “background” set and a 20 alphabet
“evaluation” set, constrained such that the background set included the six most common alphabets
as determined by Google hits. Background images, paired with their motor data, were used to learn
the hyperparameters of the HBPL model, including a set of 1000 primitive motor elements (Figure
4a) and position models for a drawing’s first, second, and third stroke, etc. (Figure 4c). Wherever
possible, cross-validation (within the background set) was used to decide issues of model complexity
within the conditional probability distributions of HBPL. Details are provided in Section SI-4 for
learning the models of primitives, positions, relations, token variability, and image transformations.

2.4 Inference

Posterior inference in this model is very challenging, since parsing an image I(m) requires exploring
a large combinatorial space of different numbers and types of strokes, relations, and sub-strokes. We
developed an algorithm for finding K high-probability parses, ψ[1], θ(m)[1], ..., ψ[K], θ(m)[K], which
are the most promising candidates proposed by a fast, bottom-up image analysis, shown in Figure
5a and detailed in Section SI-5. These parses approximate the posterior with a discrete distribution,

P (ψ, θ(m)|I(m)) ≈
K∑
i=1

wiδ(θ
(m) − θ(m)[i])δ(ψ − ψ[i]), (4)

where each weight wi is proportional to parse score, marginalizing over shape variables x,

wi ∝ w̃i = P (ψ
[i]
\x, θ

(m)[i], I(m)) (5)

and constrained such that
∑
i wi = 1. Rather than using just a point estimate for each parse, the

approximation can be improved by incorporating some of the local variance around the parse. Since
the token-level variables θ(m), which closely track the image, allow for little variability, and since it
is inexpensive to draw conditional samples from the type-level P (ψ|θ(m)[i], I(m)) = P (ψ|θ(m)[i]) as
it does not require evaluating the likelihood of the image, just the local variance around the type-level
is estimated with the token-level fixed. Metropolis Hastings is run to produce N samples (Section
SI-5.5) for each parse θ(m)[i], denoted by ψ[i1], ..., ψ[iN], where the improved approximation is

P (ψ, θ(m)|I(m)) ≈ Q(ψ, θ(m), I(m)) =

K∑
i=1

wiδ(θ
(m) − θ(m)[i])

1

N

N∑
j=1

δ(ψ − ψ[ij]). (6)

5

Image

Thinned

Traced graph (raw)

traced graph (cleaned)

Binary image

Thinned image

planning

planning cleaned

Binary image

Thinned image

planning

planning cleaned

0 -60 -89 -159 -168

Binary image

Thinned image

planning

planning cleaned

a) b)i

ii

iii

1
2

train

0

12

−59.6

1

−88.9

1
2

−159

1

−168

1
2

test

−2.12e+03

1
2

12

−1.98e+03

12 1

−2.07e+03

1
12

−2.09e+03

12
1

−2.12e+03

1

1
2

train

0

12

−59.6

1

−88.9

1
2

−159

1

−168

1
2

test

−2.12e+03

1
2

12

−1.98e+03

12 1

−2.07e+03

1
12

−2.09e+03

12
1

−2.12e+03

1

1
2

train

0

12

−59.6

1

−88.9

1
2

−159

1

−168

1
2

test

−2.12e+03

1
2

12

−1.98e+03

12 1

−2.07e+03

1
12

−2.09e+03

12
1

−2.12e+03

1

1
2

train

0

12

−59.6

1

−88.9

1
2

−159

1

−168

1
2

test

−2.12e+03

1
2

12

−1.98e+03

12 1

−2.07e+03

1
12

−2.09e+03

12
1

−2.12e+03

1

1
2

train

0

12

−59.6

1

−88.9

1
2

−159

1

−168

1
2

test

−2.12e+03

1
2

12

−1.98e+03

12 1

−2.07e+03

1
12

−2.09e+03

12
1

−2.12e+03

1

-1273

1
2

train

0

12

−59.6

1

−88.9

1
2

−159

1

−168

1
2

test

−2.12e+03

1
2

12

−1.98e+03

12 1

−2.07e+03

1
12

−2.09e+03

12
1

−2.12e+03

1

1
2

train

0

12

−59.6

1

−88.9

1
2

−159

1

−168

1
2

test

−2.12e+03

1
2

12

−1.98e+03

12 1

−2.07e+03

1
12

−2.09e+03

12
1

−2.12e+03

1

-831

1
2

train

0

12

−59.6

1

−88.9

1
2

−159

1

−168

1 2

test

−831

1 2 12

−881

12 1

−983

1
1

2

−979

1
2 1

−1.17e+03

1

1
2

train

0

12

−59.6

1

−88.9

1
2

−159

1

−168

1 2

test

−831

1 2 12

−881

12 1

−983

1
1

2

−979

1
2 1

−1.17e+03

1

1
2

train

0

12

−59.6

1

−88.9

1
2

−159

1

−168

1

2

test

−1.41e+03

1

2 12

−1.22e+03

12 1

−1.18e+03

1 12

−1.72e+03

12 1

−1.54e+03

1

1
2

train

0

12

−59.6

1

−88.9

1
2

−159

1

−168

1

2

test

−1.41e+03

1

2 12

−1.22e+03

12 1

−1.18e+03

1 12

−1.72e+03

12 1

−1.54e+03

1

-2041
Figure 5: Parsing a raw image. a) The raw image (i) is processed by a thinning algorithm [18] (ii) and then
analyzed as an undirected graph [20] (iii) where parses are guided random walks (Section SI-5). b) The five
best parses found for that image (top row) are shown with their logwj (Eq. 5), where numbers inside circles
denote stroke order and starting position, and smaller open circles denote sub-stroke breaks. These five parses
were re-fit to three different raw images of characters (left in image triplets), where the best parse (top right)
and its associated image reconstruction (bottom right) are shown above its score (Eq. 9).

Given an approximate posterior for a particular image, the model can evaluate the posterior predic-
tive score of a new image by re-fitting the token-level variables (bottom Figure 5b), as explained in
Section 3.1 on inference for one-shot classification.

3 Results
3.1 One-shot classification

People, HBPL, and several alternative models were evaluated on a set of 10 challenging one-shot
classification tasks. The tasks tested within-alphabet classification on 10 alphabets, with examples
in Figure 2 and detailed in Section SI-6 . Each trial (of 400 total) consists of a single test image of
a new character compared to 20 new characters from the same alphabet, given just one image each
produced by a typical drawer of that alphabet. Figure 1b shows two example trials.

People. Forty participants in the USA were tested on one-shot classification using Mechanical Turk.
On each trial, as in Figure 1b, participants were shown an image of a new character and asked to
click on another image that shows the same character. To ensure classification was indeed “one
shot,” participants completed just one randomly selected trial from each of the 10 within-alphabet
classification tasks, so that characters never repeated across trials. There was also an instructions
quiz, two practice trials with the Latin and Greek alphabets, and feedback after every trial.

Hierarchial Bayesian Program Learning. For a test image I(T) and 20 training images I(c) for
c = 1, ..., 20, we use a Bayesian classification rule for which we compute an approximate solution

argmax
c

logP (I(T)|I(c)). (7)

Intuitively, the approximation uses the HBPL search algorithm to get K = 5 parses of I(c), runs
K MCMC chains to estimate the local type-level variability around each parse, and then runs K
gradient-based searches to re-optimizes the token-level variables θ(T) (all are continuous) to fit the
test image I(T). The approximation can be written as (see Section SI-7 for derivation)

logP (I(T)|I(c)) ≈ log

∫
P (I(T)|θ(T))P (θ(T)|ψ)Q(θ(c), ψ, I(c)) dψ dθ(c) dθ(T) (8)

≈ log

K∑
i=1

wi max
θ(T)

P (I(T)|θ(T))
1

N

N∑
j=1

P (θ(T)|ψ[ij]), (9)

where Q(·, ·, ·) and wi are from Eq. 6. Figure 5b shows examples of this classification score. While
inference so far involves parses of I(c) refit to I(T), it also seems desirable to include parses of I(T)

refit to I(c), namely P (I(c)|I(T)). We can re-write our classification rule (Eq. 7) to include just the
reverse term (Eq. 10 center), and then to include both terms (Eq. 10 right), which is the rule we use,

argmax
c

logP (I(T)|I(c)) = argmax
c

log
P (I(c)|I(T))

P (I(c))
= argmax

c
log

P (I(c)|I(T))

P (I(c))
P (I(T)|I(c)),

(10)

6

where P (I(c)) ≈ ∑
i w̃i from Eq. 5. These three rules are equivalent if inference is exact, but due

to our approximation, the two-way rule performs better as judged by pilot results.

Affine model. The full HBPL model is compared to a transformation-based approach that models
the variance in image tokens as just global scales, translations, and blur, which relates to congealing
models [23]. This HBPL model “without strokes” still benefits from good bottom-up image analysis
(Figure 5) and a learned transformation model. The Affine model is identical to HBPL during search,
but during classification, only the warp A(m), blur σ(m)

b , and noise ε(m) are re-optimized to a new
image (change the argument of “max” in Eq. 9 from θ(T) to {A(T), σ

(T)
b , ε(T)}).

Deep Boltzmann Machines (DBMs). A Deep Boltzmann Machine, with three hidden layers of
1000 hidden units each, was generatively pre-trained on an enhanced background set using the
approximate learning algorithm from [25]. To evaluate classification performance, first the approx-
imate posterior distribution over the DBMs top-level features was inferred for each image in the
evaluation set, followed by performing 1-nearest neighbor in this feature space using cosine similar-
ity. To speed up learning of the DBM and HD models, the original images were down-sampled, so
that each image was represented by 28x28 pixels with greyscale values from [0,1]. To further reduce
overfitting and learn more about the 2D image topology, which is built in to some deep models like
convolution networks [19], the set of background characters was artificially enhanced by generating
slight image translations (+/- 3 pixels), rotations (+/- 5 degrees), and scales (0.9 to 1.1).

Hierarchical Deep Model (HD). A more elaborate Hierarchical Deep model is derived by com-
posing hierarchical nonparametric Bayesian models with Deep Boltzmann Machines [26]. The HD
model learns a hierarchical Dirichlet process (HDP) prior over the activities of the top-level fea-
tures in a Deep Boltzmann Machine, which allows one to represent both a layered hierarchy of
increasingly abstract features and a tree-structured hierarchy of super-classes for sharing abstract
knowledge among related classes. Given a new test image, the approximate posterior over class
assignments can be quickly inferred, as detailed in [26].

Simple Strokes (SS). A much simpler variant of HBPL that infers rigid “stroke-like” parts [16].

Nearest neighbor (NN). Raw images are directly compared using cosine similarity and 1-NN.
Table 1: One-shot classifiers
Learner Error rate
Humans 4.5%
HBPL 4.8%
Affine 18.2 (31.8%)

HD 34.8 (68.3%)
DBM 38 (72%)

SS 62.5%
NN 78.3%

Results. Performance is summarized in Table 1. As predicted, peo-
ple were skilled one-shot learners, with an average error rate of 4.5%.
HBPL achieved a similar error rate of 4.8%, which was significantly
better than the alternatives. The Affine model achieved an error rate
of 18.2% with the classification rule in Eq. 10 left, while perfor-
mance was 31.8% error with Eq. 10 right. The deep learning models
performed at 34.8% and 38% error, although performance was much
lower without pre-training (68.3% and 72%). The Simple Strokes and
Nearest Neighbor models had the highest error rates.

3.2 One-shot generation of new examples

Not only can people classify new examples, they can generate new examples – even from just one
image. While all generative classifiers can produce examples, it can be difficult to synthesize a range
of compelling new examples in their raw form, especially since many models generate only features
of raw stimuli (e.g, [5]). While DBMs [25] can generate realistic digits after training on thousands
of examples, how well do these and other models perform from just a single training image?

We ran another Mechanical Turk task to produce nine new examples of 50 randomly selected hand-
written character images from the evaluation set. Three of these images are shown in the leftmost
column of Figure 6. After correctly answering comprehension questions, 18 participants in the USA
were asked to “draw a new example” of 25 characters, resulting in nine examples per character.
To simulate drawings from nine different people, each of the models generated nine samples after
seeing exactly the same images people did, as described in Section SI-8 and shown in Figure 6.
Low-level image differences were minimized by re-rendering stroke trajectories in the same way for
the models and people. Since the HD model does not always produce well-articulated strokes, it
was not quantitatively analyzed, although there are clear qualitative differences between these and
the human produced images (Figure 6).

7

People HBPL Affine HDExample

Figure 6: Generating new
examples from just a single
“target” image (left). Each
grid shows nine new exam-
ples synthesized by peo-
ple and the three computa-
tional models.

Visual Turing test. To compare the examples generated by people and the models, we ran a visual
Turing test using 50 new participants in the USA on Mechanical Turk. Participants were told that
they would see a target image and two grids of 9 images (Figure 6), where one grid was drawn
by people with their computer mice and the other grid was drawn by a computer program that
“simulates how people draw a new character.” Which grid is which? There were two conditions,
where the “computer program” was either HBPL or the Affine model. Participants were quizzed
on their comprehension and then they saw 50 trials. Accuracy was revealed after each block of
10 trials. Also, a button to review the instructions was always accessible. Four participants who
reported technical difficulties were not analyzed.

Results. Participants who tried to label drawings from people vs. HBPL were only 56% percent cor-
rect, while those who tried to label people vs. the Affine model were 92% percent correct. A 2-way
Analysis of Variance showed a significant effect of condition (p < .001), but no significant effect of
block and no interaction. While both group means were significantly better than chance, a subject
analysis revealed only 2 of 21 participants were better than chance for people vs. HBPL, while 24
of 25 were significant for people vs. Affine. Likewise, 8 of 50 items were above chance for people
vs. HBPL, while 48 of 50 items were above chance for people vs. Affine. Since participants could
easily detect the overly consistent Affine model, it seems the difficulty participants had in detecting
HBPL’s exemplars was not due to task confusion. Interestingly, participants did not significantly
improve over the trials, even after seeing hundreds of images from the model. Our results suggest
that HBPL can generate compelling new examples that fool a majority of participants.

4 Discussion

Hierarchical Bayesian Program Learning (HBPL), by exploiting compositionality and causality, de-
parts from standard models that need a lot more data to learn new concepts. From just one example,
HBPL can both classify and generate compelling new examples, fooling judges in a “visual Turing
test” that other approaches could not pass. Beyond the differences in model architecture, HBPL was
also trained on the causal dynamics behind images, although just the images were available at eval-
uation time. If one were to incorporate this compositional and causal structure into a deep learning
model, it could lead to better performance on our tasks. Thus, we do not see our model as the final
word on how humans learn concepts, but rather, as a suggestion for the type of structure that best
captures how people learn rich concepts from very sparse data. Future directions will extend this
approach to other natural forms of generalization with characters, as well as speech, gesture, and
other domains where compositionality and causality are central.

Acknowledgments
We would like to thank MIT CoCoSci for helpful feedback. This work was supported by ARO MURI
contract W911NF-08-1-0242 and a NSF Graduate Research Fellowship held by the first author.

8

References
[1] M. K. Babcock and J. Freyd. Perception of dynamic information in static handwritten forms. American

Journal of Psychology, 101(1):111–130, 1988.
[2] I. Biederman. Recognition-by-components: a theory of human image understanding. Psychological

Review, 94(2):115–47, 1987.
[3] S. Carey and E. Bartlett. Acquiring a single new word. Papers and Reports on Child Language Develop-

ment, 15:17–29, 1978.
[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical image

database. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009.
[5] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 28(4):594–611, 2006.
[6] J. Feldman. The structure of perceptual categories. Journal of Mathematical Psychology, 41:145–170,

1997.
[7] J. Freyd. Representing the dynamics of a static form. Memory and Cognition, 11(4):342–346, 1983.
[8] S. Geman, E. Bienenstock, and R. Doursat. Neural Networks and the Bias/Variance Dilemma. Neural

Computation, 4:1–58, 1992.
[9] E. Gilet, J. Diard, and P. Bessière. Bayesian action-perception computational model: interaction of pro-

duction and recognition of cursive letters. PloS ONE, 6(6), 2011.
[10] G. E. Hinton and V. Nair. Inferring motor programs from images of handwritten digits. In Advances in

Neural Information Processing Systems 19, 2006.
[11] K. H. James and I. Gauthier. Letter processing automatically recruits a sensory-motor brain network.

Neuropsychologia, 44(14):2937–2949, 2006.
[12] K. H. James and I. Gauthier. When writing impairs reading: letter perception’s susceptibility to motor

interference. Journal of Experimental Psychology: General, 138(3):416–31, Aug. 2009.
[13] C. Kemp and A. Jern. Abstraction and relational learning. In Advances in Neural Information Processing

Systems 22, 2009.
[14] A. Krizhevsky. Learning multiple layers of features from tiny images. PhD thesis, Unviersity of Toronto,

2009.
[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep Convolutional Neural

Networks. In Advances in Neural Information Processing Systems 25, 2012.
[16] B. M. Lake, R. Salakhutdinov, J. Gross, and J. B. Tenenbaum. One shot learning of simple visual concepts.

In Proceedings of the 33rd Annual Conference of the Cognitive Science Society, 2011.
[17] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Concept learning as motor program induction:

A large-scale empirical study. In Proceedings of the 34th Annual Conference of the Cognitive Science
Society, 2012.

[18] L. Lam, S.-W. Lee, and C. Y. Suen. Thinning Methodologies - A Comprehensive Survey. IEEE Transac-
tions of Pattern Analysis and Machine Intelligence, 14(9):869–885, 1992.

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied to Document Recog-
nition. Proceedings of the IEEE, 86(11):2278–2323, 1998.

[20] K. Liu, Y. S. Huang, and C. Y. Suen. Identification of Fork Points on the Skeletons of Handwritten Chinese
Characters. IEEE Transactions of Pattern Analysis and Machine Intelligence, 21(10):1095–1100, 1999.

[21] M. Longcamp, J. L. Anton, M. Roth, and J. L. Velay. Visual presentation of single letters activates a
premotor area involved in writing. Neuroimage, 19(4):1492–1500, 2003.

[22] E. M. Markman. Categorization and Naming in Children. MIT Press, Cambridge, MA, 1989.
[23] E. G. Miller, N. E. Matsakis, and P. A. Viola. Learning from one example through shared densities on

transformations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2000.

[24] M. Revow, C. K. I. Williams, and G. E. Hinton. Using Generative Models for Handwritten Digit Recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(6):592–606, 1996.

[25] R. Salakhutdinov and G. E. Hinton. Deep Boltzmann Machines. In 12th Internationcal Conference on
Artificial Intelligence and Statistics (AISTATS), 2009.

[26] R. Salakhutdinov, J. B. Tenenbaum, and A. Torralba. Learning with Hierarchical-Deep Models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 35(8):1958–71, 2013.

[27] P. H. Winston. Learning structural descriptions from examples. In P. H. Winston, editor, The Psychology
of Computer Vision. McGraw-Hill, New York, 1975.

[28] F. Xu and J. B. Tenenbaum. Word Learning as Bayesian Inference. Psychological Review, 114(2):245–
272, 2007.

9

	Introduction
	Hierarchical Bayesian Program Learning
	Generating a character type
	Generating a character token
	Learning high-level knowledge of motor programs
	Inference

	Results
	One-shot classification
	One-shot generation of new examples

	Discussion

