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Abstract

People can learn a new concept almost perfectly from just a single example, yet
machine learning algorithms typically require hundreds or thousands of examples to
perform similarly. People can also use their learned concepts in richer ways than
conventional machine learning systems – for action, imagination, and explanation –
suggesting that concepts are far more than a set of features, exemplars, or rules, the
most popular forms of representation in machine learning and traditional models of
concept learning. For those interested in better understanding this human ability, or
in closing the gap between humans and machines, the key computational questions
are the same: How do people learn new concepts from just one or a few examples?
And how do people learn such abstract, rich, and flexible representations? An even
greater puzzle arises by putting these two questions together: How do people learn
such rich concepts from just one or a few examples?

This thesis investigates concept learning as a form of Bayesian program induc-
tion, where learning involves selecting a structured procedure that best generates the
examples from a category. I introduce a computational framework that utilizes the
principles of compositionality, causality, and learning-to-learn to learn good programs
from just one or a handful of examples of a new concept. New conceptual representa-
tions can be learned compositionally from pieces of related concepts, where the pieces
reflect real part structure in the underlying causal process that generates category
examples. This approach is evaluated on a number of natural concept learning tasks
where humans and machines can be compared side-by-side.

Chapter 2 introduces a large-scale data set of novel, simple visual concepts for
studying concept learning from sparse data. People were asked to produce new ex-
amples of over 1600 novel categories, revealing consistent structure in the generative
programs that people used. Initial experiments also show that this structure is useful
for one-shot classification.

Chapter 3 introduces the computational framework called Hierarchical Bayesian
Program Learning, and Chapters 4 and 5 compare humans and machines on six tasks
that cover a range of natural conceptual abilities. On a challenging one-shot classi-



fication task, the computational model achieves human-level performance while also
outperforming several recent deep learning models. Visual “Turing test” experiments
were used to compare humans and machines on more creative conceptual abilities,
including generating new category examples, predicting latent causal structure, gen-
erating new concepts from related concepts, and freely generating new concepts. In
each case, fewer than twenty-five percent of judges could reliably distinguish the hu-
man behavior from the machine behavior, showing that the model can generalize in
ways similar to human performance.

A range of comparisons with lesioned models and alternative modeling frameworks
reveal that three key ingredients – compositionality, causality, and learning-to-learn
– contribute to performance in each of the six tasks. This conclusion is further
supported by the results of Chapter 6, where a computational model using only two
of these three principles was evaluated on the one-shot learning of new spoken words.
Learning programs with these ingredients is a promising route towards more human-
like concept learning in machines.

Thesis Supervisor: Joshua B. Tenenbaum
Title: Professor of Cognitive Science and Computation
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Chapter 1

Introduction

How are people so smart, and how can we develop machines that learn and think in

a more human-like way? Over the last several decades, there have been remarkable

advances in the study of intelligence. Computer programs have beaten chess masters,

painted original artwork, defeated Jeopardy champions, driven autonomous cars, and

shattered records for object recognition and speech recognition. Progress has been

remarkable, and yet, the best example of intelligence is still natural intelligence. The

human mind is the best known solution to a diverse array of difficult computational

problems that people seem to solve every day: concept learning, object recognition,

scene understanding, language acquisition, speech recognition, amongst many others.

Machines also struggle to reproduce many general features of human intelligence,

including creativity, general purpose problem solving, and commonsense reasoning.

Several academic disciplines with different yet overlapping goals are actively work-

ing to uncover the computational underpinnings of these abilities. For researchers

interested in engineering more intelligent systems, these human cognitive abilities are

some of the most challenging engineering problems in computer science, sitting at the

research frontier of artificial intelligence and machine learning. For researchers in-

terested in building a deeper computational understanding of the mind, especially in

the fields of cognitive psychology, neuroscience, and cognitive science, these abilities

rank amongst the greatest mysteries of the mind and brain.

While the computer sciences and the basic sciences may bring differing goals and
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methodologies to the study of intelligence, there is a unique opportunity to make

joint progress through a shared enterprise: reverse engineering the human solutions

to everyday cognitive problems that currently elude machine solutions. By attempting

to replicate these abilities in machines, we may better understand the key ingredients

of human intelligence.

1.1 The computational problem of concept learning

This thesis focuses on concept learning – a core aspect of human intelligence that

is difficult to reproduce in machines. Concepts are the mental representations that

allow people to divide a continuously varying world into discrete categories of things.

A person walking through a park will effortlessly recognize “trees,” “picnic tables,”

“dogs,” “fountains,” etc., even if he or she has never seen that particular tree (or

type of tree) or that particular fountain before. This piece of cognition operates so

frequently and so effortlessly that it may seem mundane, but upon closer inspection,

it is also quite remarkable since trees, tables, dogs, and fountains vary widely in their

physical properties from one example to another. Nonetheless, people have managed

to learn concepts that glue each diverse set together, as well as more abstract concepts

such as all trees are “alive” or that couple in the park is in “love.”

Children are the most practiced concept learners, acquiring an estimated ten new

words per day from the age of one through high school (Bloom, 2000). Concept learn-

ing is an inductive problem, where the inferences that children and adults make seem

to go far beyond the data they are given. In a typical scenario, a child may receive

just a small number of positive examples of a “cat” or a “truck,” yet, remarkably,

this is often enough to acquire the beginnings of the concept (E. M. Markman, 1989;

Landau, Smith, & Jones, 1988; Xu & Tenenbaum, 2007). From just a handful of

examples, children seem to make plausible guesses on where to draw the boundaries

between concepts, carving out the infinite set of possible cats from the infinite set of

all possible objects.

The problem of learning classifiers from examples is also an active area of research
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in machine learning and cognitive modeling. The classifier is given a training set of

objects 𝑥1, . . . , 𝑥𝑛, usually represented as vectors in a features space, and category

labels 𝑦1, . . . , 𝑦𝑛 such that 𝑦𝑖 ∈ {1, . . . , 𝐾}. The goal is to find a function ℎ ∈ 𝐻 : 𝑥→
{1, . . . , 𝐾} that maps objects to category labels. The challenge is that the function

must not only correctly classify the training examples, but it must also generalize well

to new examples for which the labels are unknown. The best method for learning

classifiers is still a matter of debate, but leading approaches include support vector

machines, neural networks, decision trees, logistic regression, Bayesian networks, etc.

1.2 The puzzle of human concept learning

Despite a vast toolkit of learning algorithms and recent progress in areas like object

and speech recognition, machine learning is still far from capturing the human ability

to learn new concepts, at least for most interesting kinds of natural and man-made

categories. Machines struggle with two of the most remarkable aspects of human-

level concept learning. First, people can grasp the boundaries of a new concept from

just one or a few examples, and even young children can make meaningful gener-

alizations via “one-shot learning.” In contrast, the standard algorithms in machine

learning require tens, hundreds, or thousands of examples to perform similarly. Fur-

thermore, some of the most successful algorithms are the most data hungry, including

recent “deep learning” neural network models that have achieved exciting new levels

of performance on object and speech recognition benchmarks (Geman, Bienenstock,

& Doursat, 1992; LeCun, Bottou, Bengio, & Haffner, 1998; Krizhevsky, Sutskever, &

Hinton, 2012; Hinton et al., 2012).

Second, people learn more sophisticated concepts than machines do. Far more

than just a boundary in perceptual space (Solomon, Medin, & Lynch, 1999; A. B. Mark-

man & Ross, 2003), human concepts are representationally rich, useful for not only

classification, but also action, explanation, and imagination. Concepts can be used

to

∙ make predictions about unknown properties (Rips, 1975; Murphy & Ross, 1994),

29



∙ imagine or design new exemplars (J. Feldman, 1997),

∙ parse objects into parts and relations (Biederman, 1987),

∙ provide explanations (Lombrozo, 2009; Williams & Lombrozo, 2010),

∙ communicate with others (A. B. Markman & Makin, 1998),

∙ plan actions through ad hoc categories (Barsalou, 1983),

∙ design new abstract categories of objects (Ward, 1994; Jern & Kemp, 2013),

∙ and create complex concepts through conceptual combination (Murphy, 1988).

In contrast, the standard approach in machine learning is to study different functions

as separate tasks with separate algorithms and separate representations, to the ex-

tent that some functions are studied at all. For people, concepts provide the unity

between these functions, whereby performing a new task can change the underlying

representations (Solomon et al., 1999).

For a scientist interested in reverse engineering the mind, or for an engineer in-

terested in building a more human-like learning capacity in machines, the key com-

putational questions are the same: How do people learn new concepts from just one

or a few examples? And how do people learn such abstract, rich, and flexible repre-

sentations? Each of those two questions has spawned a largely separate tradition of

research that spans multiple decades and multiple disciplines. In the sections (1.3 and

1.4) that follow, I will review the important contributions these two traditions have

made to our computational understanding of concept learning. But I will also sug-

gest that we are still far from a satisfying computational account of either question,

particularly in light of the greater puzzle that arises from putting the two questions

together: How is it possible that people learn such rich representations from just one

or a few examples?

As if one-shot learning was not hard enough, under any theory of learning, learn-

ing more complex representations requires more data, not less, in order to achieve

some measure of good generalization (Valiant, 1984; Geman et al., 1992; McAllester,
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1998; Vapnik, 1999). Whether model complexity is measured by the number of hy-

potheses, the flexibility of the decision boundary, or the diffusion of prior probability,

complexity always comes at the price of generalization. A simpler model will always

be expected to generalize better than a more complex model, as measured by the

expected difference in error rate on training examples versus new examples. The puz-

zle is that people seem to navigate this dilemma with remarkable agility, successfully

learning rich concepts that generalize well from sparse data. How do people do it?

1.3 Tradition 1: Learning from one or a few exam-

ples

The puzzle of human concept learning has spawned two different traditions of research,

focused either on computational principles for learning from sparse data (Section

1.3) or structured representations that might explain the richness of human concepts

(Section 1.4). The next two sections summarize the contributions these traditions

have made towards understanding concept learning; while they leave us far from

a complete computational account, they do suggest three ingredients that might be

central to the human ability: compositionality, causality, and learning-to-learn.

Adults can learn a new concept from just one or a handful of examples. Imagine

a person seeing an image of a “Segway” for the first time such as the image in Fig.

1-1. The raw image is just one data point in a very high dimensional space of all

possible pixel images – far too little information, one might think, to learn anything

about the meaning of the word. Does the word “Segway” pick out all objects that are

the same color, the same size, the same material, or the same shape? Does it mean

objects on a white background? Does it mean objects with a motor? Does it mean

objects with two circles at the bottom with a T-shaped component floating above

them? All of these meanings – and many more – are logically possible definitions

for the word “Segway.” Yet people have strong expectations about how to generalize

and use a new word (N. Goodman, 1954; Quine, 1960), even after just one exposure,
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indicating that they acquired the basics of the concept. This includes the ability to

discriminate new examples of Segways from other examples of vehicles, like scooters

or unicycles, ruling out many plausible yet wrong definitions of the new concept

(Fig. 1-1). Although the need to learn new classes of vehicles may be uncommon,

people learn new concepts all the time, whether the concept is a new type of sporting

equipment, cooking contraption, workshop tool, gesture, or dance move. In each

of those domains, people’s intuitions are finely tuned, in that they only seriously

entertain a small subset of all possible hypotheses for any new concept.

Children may be the most practiced one-shot learners. For a child learning lan-

guage, the world is full of new concepts, and one-shot learning may play an important

role in the pace of language development. Although the acquisition of each new word

requires solving a difficult and highly under-constrained induction problem, a devel-

oping child knows approximately 14,000 words by the age of six, meaning that he or

she acquires about nine or ten new words per day (Carey, 1978; Bloom, 2000). Bor-

rowing a phrase from Carey (1978), this “word-learning wizardry” strongly suggests

that children must be learning at least some new words from just a few examples

(although see Horst and Samuelson (2008)), and research has found there are a vari-

ety of scenarios in which children can do one-shot word learning, making meaningful

generalizations that go far beyond the observed data (Carey & Bartlett, 1978; Landau

et al., 1988; E. M. Markman, 1989; Xu & Tenenbaum, 2007).

What is the computational basis for one-shot learning? If the data is not enough to

constrain the hypothesis, then prior knowledge must make up the difference. Bayesian

analyses have shown how one-shot learning is possible with appropriately constrained

hypothesis spaces and priors (Shepard, 1987; J. Feldman, 1997; Tenenbaum & Grif-

fiths, 2001; Xu & Tenenbaum, 2007), but where does this prior knowledge come

from?

Empirical and computational work suggests that learning-to-learn – also called

transfer learning or representation learning – is an important contributor to one-

shot learning, the idea that prior knowledge can itself be learned over the course

of learning previous concepts. Thus, an agent must learn how to learn effectively.
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Figure 1-1: People can learn a new concept such as a “Segway” from just one example,
grasping the concept well enough to discriminate new Segways from other similar
looking types of objects.

Prior experience may highlight the most relevant features or dimensions for whole

classes of concepts, such as the “shape bias” in word learning, the fact that objects

with the same name tend to have the same shape, compared to other dimensions like

color, texture, or size (Landau et al., 1988; L. B. Smith, Jones, Landau, Gershkoff-

Stowe, & Samuelson, 2002; Perry & Samuelson, 2011). Learning-to-learn via the

shape bias has been formalized in connectionist models (Colunga & Smith, 2005)

as well as learning overhypotheses in hierarchical Bayesian models (Kemp, Perfors,

& Tenenbaum, 2007), which are generative models that sample multiple concepts

from a common prior distribution. Learning-to-learn in hierarchical Bayesian models

occurs through inferring the shared prior from previous concepts and applying it

to the learning of new concepts. Not only does this class of models help to explain

phenomena in word learning and inductive generalization more broadly, but they have

also proven useful in machine learning applications (e.g., Salakhutdinov, Torralba,

& Tenenbaum, 2011; Salakhutdinov, Tenenbaum, & Torralba, 2012; Jia, Abbott,

Austerweil, Griffiths, & Darrell, 2013).

One limitation of these models is that the relevant features and dimensions must
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be defined in advance, whereas people learn new features as they learn new concepts

(Schyns, Goldstone, & Thibaut, 1998; Austerweil & Griffiths, 2013). Several computer

vision architectures can adapt previously learned features (Bart & Ullman, 2005) or

use previously learned feature priors (Fei-Fei, Fergus, & Perona, 2006) to reduce

the amount of training data they need to recognize new object classes. Recently,

the hierarchical Bayesian approach has been combined with neural networks models

to jointly learn a feature vocabulary, while also learning different priors for different

superordinate object classes (like mammals vs. vehicles) (Salakhutdinov, Tenenbaum,

& Torralba, 2013).

Learning-to-learn and hierarchical Bayesian modeling shows how one-shot learning

is possible with the right constraints, and that the constraints themselves can be

learned from previous experience. Nonetheless, many aspects of one-shot learning

remain unexplained. These models have only been applied to the simplest types of

conceptual representations – usually prototypes in a feature space (Rosch, Simpson,

& Miller, 1976). Other approaches have been applied to one-shot learning such as

explanation-based learning (e.g., Mitchell, Keller, & Kedar-cabelli, 1986), but the

limitations are similar; these models learn logical definitions for concepts (Bruner,

Goodnow, & Austin, 1956) which are too simple to explain the vast majority of

natural concepts (Murphy, 2002). More sophisticated types of representations have

been beyond the scope of one-shot learning, but they have been the focus of a second

tradition of research on concept learning.

1.4 Tradition 2: Learning rich conceptual represen-

tations

A different tradition of research has focused on the format of conceptual represen-

tation rather than the speed of concept learning. As mentioned in Section 1.2, one

indicator of the representational complexity is the variety of functions that concepts

support (Solomon et al., 1999; A. B. Markman & Ross, 2003). Concepts are not just
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for classification – they support action (Barsalou, 1983), communication (A. B. Mark-

man & Makin, 1998), imagination (Ward, 1994; Jern & Kemp, 2013), explanation

(Lombrozo, 2009; Williams & Lombrozo, 2010), and composition (Murphy, 1988).

These abilities are not independent, rather they hang together and interact (Solomon

et al., 1999), coming for free with the acquisition of the underlying concept. After one

exposure to a Segway (Figure 1-1), people could sketch a range of new instances, infer

missing or occluded parts, parse a Segway into its necessary components (wheels, han-

dlebars, motor, etc.), reason about the concept in unfamiliar situations (underwater),

and even create new complex concepts through conceptual combination (“apartment

Segway” vs. “mountain Segway”).

Another indicator of representational complexity is the interaction between con-

cepts and background knowledge. A review by Murphy (2002) found that these

“knowledge effects” have surfaced in seemingly every conceptual function that re-

searchers have checked. While the effects are broad, they can be particularly pro-

nounced when learning new concepts, with background influence flowing from previ-

ously learned features (Schyns & Rodet, 1997), previously learned concepts (Wattenmaker,

Dewey, Murphy, & Medin, 1986), and more abstract conceptual schemas that explain

why certain features hang together (Pazzani, 1991; Murphy & Allopenna, 1994).

Furthermore, causality – knowledge of the underlying causal process that produces

examples of a category – has been shown to influence the learning of new concepts.

Experiments show that providing a learner with different types of causal knowledge

changes how they learn and generalize, whether it is by manipulating the causal net-

work that underlies the features of objects (Rehder & Hastie, 2001; Rehder, 2003)

or the causal prescription for drawing a new type of handwritten character (Freyd,

1983).

Given the demanding role that any theory of conceptual representation must fill, it

is clear that concepts are far more than a collection of features, exemplars, prototypes

or rules, as was popular in early cognitive models (Rosch et al., 1976; Medin &

Schaffer, 1978; Nosofsky, Palmeri, & McKinley, 1994) and in conventional machine

learning (e.g., support vector machines and Kernel density estimators). One way
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of capturing richer conceptual structure is to build compositional representations,

a seemingly necessary ingredient for capturing abilities like conceptual combination

and imagination. Structural description models (e.g., Winston, 1975; Hummel &

Biederman, 1992) capture key notions of parts and relations that may play important

roles in the perception, learning, and organization of concepts (Tversky & Hemenway,

1984; Biederman, 1987; Augustine, Smith, & Jones, 2011). In this framework, a

Segway might be represented as two wheels connected by a platform, which supports

a motor and a post with handlebars, etc. This type of representation may also serve

to facilitate learning-to-learn. Previous learning about the parts and relations

common to many similar types of concepts, such as other vehicles like scooters and

unicycles (Figure 1-1), could help to construct a good representation for Segways from

existing primitives elements.

The influence of causality on learning and representation has been more difficult

to operationalize computationally. Concepts have been likened to intuitive theories

or causal explanations that give meaning to concepts (Murphy & Medin, 1985), “glu-

ing” features to objects that let core features stick while other equally applicable

features wash away. Borrowing examples from Murphy and Medin (1985), the fea-

ture “flammable” is more closely attached to wood than money due to the underlying

causal roles of the concepts, even though the feature is equally applicable to both

based strictly on the definition. Features can also be glued to other features, such as

“can fly,” “has wings,” and “has feathers,” again supported by their underlying causal

role in flying. Something like an intuitive theory could also explain how categorization

judgments can follow from observing previously unassociated features. For instance,

a man that jumps into a pool with his clothes on can be identified as “drunk,” even if

the features “in pool” and “has clothes on” were not previously associated with that

category. A related view holds that concepts are simulators, capable of bottom-up

perceptual inference and top-down simulation (Barsalou, 1999); “if a simulator for a

category can produce a satisfactory simulation of a perceived entity, the entity belongs

to the category” (p. 587).

Like in concept learning, causality has been influential in theories of perception
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as well, relating to the classic “analysis-by-synthesis” idea that sensory data can be

more richly represented by modeling the process that generated it. The canonical

examples of this approach are speech and visual perception (Bever & Poeppel, 2010).

For instance, some have argued that the richness of speech perception is best explained

by inverting the production plan, at the level of vocal tract movements, in order to

explain the large amounts of acoustic variability and the blending of cues across

adjacent phonemes (Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967).

While analysis-by-synthesis is typically applied to perception, there has been recent

interest in learning generative conceptual representations from experience. While

these models are still far simpler than needed to learn complete causal theories, they

are beginning to grapple with the types of compositional and causal representations

needed for generating real world complexity. For instance, something like a generative

grammar (Tu, Chen, Yuille, & Zhu, 2005; S.-C. Zhu & Mumford, 2006; L. Zhu,

Chen, & Yuille, 2009; Savova, Jakel, & Tenenbaum, 2009) or a generative program

(Stuhlmuller, Tenenbaum, & Goodman, 2010) may be needed to capture concepts

like “houses” (Koning & Eizenberg, 1981) that can vary in both the number and

configuration of their parts (windows, doors, chimneys, etc.), much like syntactic

structure in language. But it takes children years to induce the grammars of their

native languages, and formal analyses in linguistics typically study the problem as

the number of examples approaches infinity rather than one. Given the scope of the

challenge, there have been few successes in learning grammars or programs for natural

concepts from just one or a handful of training examples.

1.5 Deep learning: An alternative

Deep learning – a leading machine learning approach – seems to eschew both of the

traditions outlined above, focused instead on scaling-up models to learn from larger

and larger datasets while maintaining the classic representational commitments of

neural network models in cognitive science (e.g., Rumelhart, McClelland, & the PDP

research Group, 1986). The typical form of representation involves multiple layers of
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neuron-like processing units and their connection weights, and the standard mode of

learning involves a gradual adaptation of those weights to many training examples.

Recently, there has been remarkable progress from this class of models on various

machine learning benchmarks; progress that has been so swift that it has captured

the attention of much of the field of machine learning, the tech industry, and the

even popular press. For example, a recent deep convolutional neural network nearly

halved the error rate of the previous state-of-the-art on the most challenging object

recognition task to date (Krizhevsky et al., 2012).

What was the secret to this success? While there have been important architec-

tural and training advancements, deep networks are not new; the basic architecture for

convolutional networks – like the network used to substantially improve object recog-

nition (Krizhevsky et al., 2012) – was proposed in Fukushima (1980) and its learning

algorithm was developed at least twenty-five years ago (LeCun et al., 1989). While

there have been a number of technical developments since then, the progress seems

to be driven primarily by scaling up. Computational advancements have greatly ex-

panded the size of trainable deep learning models, where the Krizhevsky et al. (2012)

network had 8 layers of simple neuron-like units and 60 million trainable parameters.

Since bigger models require bigger data sets, recent datasets for training models now

include millions of example images across thousands of categories.

As these models continue to grow, is human-level concept learning just beyond

the horizon? Is more data, more parameters, deeper models, and more Graphics Pro-

cessing Units (GPUs) all that will be needed to reach human-level concept learning,

as some of the hype around these models may suggest? We do not know the answer

yet, but if the previous analysis of human concept learning is correct, there is still

far to go and there is still difficult conceptual work to be done. A focus on learning

bigger neural networks using bigger data has been narrowing the gap between human

and machines in classification performance, but it runs the risk of ignoring or widen-

ing the gap in other respects, including the two places previously mentioned as key

computational challenges. (1) Learning with bigger data is unlikely to help explain

how people learn from just one or a few examples, and (2) learning better classifiers
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may not naturally lead to general purpose conceptual representation that generalize

flexibly to new tasks (see Szegedy et al., 2014).

This is not to say that deep learning will not play an important role in understand-

ing human concept learning. But its current direction may not be ideally suited for

capturing some of the most remarkable aspects of human-level concept learning. Also,

while deep learning provides a natural platform for learning-to-learn and develop-

ing hierarchical representations, it is a less elegant interface to other principles that

may play an important role in human concept learning, such as the notions of com-

positionality or causality developed in Sections 1.3 and 1.4. Thus, deep learning

can help test the necessity of these principles, which is one of the roles these models

play in this thesis. If these principles are indeed as important as they seem prima

facie, their incorporation into deep learning could fruitfully develop and ultimately

strengthen the approach.

1.6 Towards more human-like concept learning in

machines

There has been real progress in understanding human concept learning, spanning

multiple approaches and multiple disciplines, but we are still far from a unified com-

putational account. Models of one-shot learning have been developed for the simplest

types of representations such as sets of features, rules, or prototypes; they have not

yet been developed for more sophisticated types of representations like structural

descriptions, grammars, or programs. Deep learning methods have led to exciting

progress on tasks such as object classification and speech recognition, but it is un-

clear how this progress translates to one-shot learning or others tasks that rely on

conceptual knowledge.

This thesis has two goals. The first goal is to develop a set of challenging con-

cept learning tasks that allow humans and multiple computational approaches to be

compared side-by-side. In this thesis, humans and machines are compared on multi-
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ple natural forms of generalization such as one-shot classification, one-shot exemplar

generation, predicting latent structure, and generating new types of concepts. This is

a more diverse set of evaluations than is typically used in machine learning or in eval-

uating cognitive models of concept learning. For models to be successful, they must

both learn from sparse data and learn sophisticated task-general representations, two

aspects of human concept learning that are not often studied together.

The second goal is to develop a new computational framework that performs

better on these problems than existing approaches. Chapter 3 introduces Hierarchical

Bayesian Program Learning (HBPL), a model that utilizes compositionality, causality,

and learning-to-learn to rapidly acquire generative models from just one example. It

brings together multiple computational ideas from the different traditions of research

on concept learning (Sections 1.3 and 1.4). When tasked with one-shot concept

learning, the model aims to explain the raw sensory data by finding a casual generative

process that could have produced it, where the causal process is the operationalization

of a concept.

While analysis-by-synthesis has been influential in perception, there are difficulties

in adopting this approach to one-shot concept learning. The structure of the compu-

tational problem makes it far more challenging. Perceptual classification of sensory

data 𝑥 (e.g., a handwritten digit) involves selecting a category 𝑐 ∈ {1, ..., 𝐾} (the cat-

egories “0” through “9”). The analysis-by-synthesis framework uses a generative model

𝑃 (𝑥|𝜓𝑐) that describes how each class generates its exemplars by defining a probabil-

ity distribution over the space of exemplars. The generative models 𝜓 = {𝜓1, ..., 𝜓𝐾},
which could be complex causal process with multiple steps and and multiple layers of

structured representations, have already been learned, perhaps from a very large num-

ber of examples (e.g., Hinton & Nair, 2006). Classification just requires an evaluation

of the posterior distribution using Bayes’ rule

𝑃 (𝑐|𝑥, 𝜓) =
𝑃 (𝑥|𝑐, 𝜓)𝑃 (𝑐|𝜓)

𝑃 (𝑥)
=
𝑃 (𝑥|𝜓𝑐)𝑃 (𝑐)

𝑃 (𝑥)
. (1.1)

If each category has equal prior probability 𝑃 (𝑐), a simple decision rule that chooses
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the best category reduces to

argmax
𝑐

𝑃 (𝑥|𝜓𝑐). (1.2)

Even though the likelihood 𝑃 (𝑥|𝜓𝑐) may be hiding substantial complexity and that

makes it difficult to evaluate, the perceptual classification problem assumes much of

the hard work has already been done – in terms of acquiring the generative model for

each class.

There are good reasons to think an analysis-by-synthesis approach would not be

successful for one-shot concept learning. Learning of a generative process from one

example 𝑥 can be formulated as the selection of an unknown causal model 𝜓𝑐

𝑃 (𝜓𝑐|𝑥) =
𝑃 (𝑥|𝜓𝑐)𝑃 (𝜓𝑐)

𝑃 (𝑥)
. (1.3)

Similarly, if the goal is to choose the most likely structure, rather than the more

ambitious goal of maintaining a distribution over all possible structures, the learning

problem becomes

argmax
𝜓𝑐

𝑃 (𝑥|𝜓𝑐)𝑃 (𝜓𝑐). (1.4)

Rather than just considering 𝐾 discrete possibilities, as in classification, the search

process must consider a large, combinatorial, and potentially infinite space of struc-

tured causal models (graphs, grammars, programs, etc.). Not only are there com-

putational challenges in searching this space, but even if an effective search can be

conducted, learning might still require many training examples in order to generalize

well to new examples (Section 1.2).

Nonetheless, people seem to learn rich conceptual representations from just one

or a few examples. How do they do it? This thesis is a case study of concept

learning as Bayesian program induction – the idea that concepts can be represented

by structured procedures for generating examples. How can good programs be learned

from one example? This thesis introduces an approach called Hierarchical Bayesian

Program Learning (HBPL) that defines a prior distribution over a space of program-

like concepts; in other words, it is a generative model for generative models. The
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specific models developed in this thesis implement domain specific knowledge and

would require modification to be applied more generally. But this type of domain

specific knowledge may be necessary to capture the knowledge that people bring to

bear when learning a new concept, and beyond any particular domain, the approach

is committed to three key ingredients for learning good programs.

∙ Compositionality applies to representations that are constructed through a

combination of parts. As discussed in Section 1.4, the idea of decomposing

perceptual observations into primitive elements has been influential and widely

applicable: objects can be decomposed into natural parts (e.g., Hoffman &

Richards, 1984; Tversky & Hemenway, 1984; Biederman, 1987), spoken words

can be decomposed into phonemes, and handwritten characters can be decom-

posed into strokes of the pen. Not all part decompositions are equally good – a

sentence can be composed into a series of words or a series of characters – and

this definition of compositionality aims for the most general sense, agnostic to

the type and quality of the parts.

∙ Causality is a feature of some generative models that captures, at an abstract

level, aspects of the real causal process that produces examples of a category.

For a handwritten character, a causal model could be a motor program that

produces new examples, and for a spoken word, a causal model could be a

sequence of articulatory gestures that defines a word. Not all causal processes

are equally tractable to learn, and one-shot learning might only be a sensible

goal for a special subset of causal conceptual representations – ones that capture

a generative process at just the right level of abstraction. If a human or machine

was trying to learn the concept “tree” from just a single example, it would be

hopeless to try to learn or even represent a fully-detailed process of biological

growth, beginning with the tree genome and ending with the set of all possible

trees. But at the right level of abstraction, the essence of a tree could be

captured by a simple stochastic program, starting with one branch and then

recursively splitting until the tree terminates. Different types of concepts may
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have more or less transparent causal processes for the purposes of learning;

nonetheless, causality seems to play a wide role in conceptual representation,

particularly through mechanisms such as essentialism (S. A. Gelman, 2003) and

intuitive causal theories (Murphy & Medin, 1985).

∙ Learning-to-learn is a term going back to Harlow (1949) and often used inter-

changeably with “transfer learning” or “representation learning.” It is the idea

that parameters, constraints, parts, features, etc. are learned through previous

experience with related concepts and then applied to the task of learning new

concepts. For one-shot concept learning to be possible at all, the hypothesis

space would have to be strongly constrained by prior knowledge, and learning-

to-learn is one route to building finely tuned priors (Section 1.3). In hierarchical

Bayesian modeling (A. Gelman, Carlin, Stern, & Rubin, 2004), the prior on con-

cepts is shared by multiple concepts, where the prior itself is learned over the

course of learning the concepts. For discriminative models such as convolutional

networks and classic object recognition approaches, learning-to-learn can occur

through the sharing of features between the classifiers learned for old objects

and the classifiers learned for new objects (Torralba, Murphy, & Freeman, 2007;

Salakhutdinov et al., 2011; Srivastava & Salakhutdinov, 2013; Zeiler & Fergus,

2013). For the models developed in this thesis, learning-to-learn occurs through

multiple routes at multiple levels of the hierarchical generative process, where

previously learned primitive actions (Chapter 3) and larger generative pieces

(Chapter 5) can be re-used and re-combined to define new generative models.

Further transfer occurs by learning about the typical level of variability in ex-

emplars, providing the model with knowledge of how far to generalize from one

example.

These ingredients also combine synergistically where the whole may be larger than

the sum of its parts. People seem to be able to learn rich causal generative models

or programs from one example, but as discussed, there are major theoretical and

practical issues when trying to develop this ability in machines (Section 1.2). But
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Figure 1-2: Illustration of learning simple concepts through a compositional causal
process. Handwritten characters are on the right and spoken words are on the left.
Color coding highlights the re-use of primitive structure (motor actions or phonemes)
across different objects. The speech primitives are shown as spectrograms, where the
x-axis is time, the y-axis is frequency, and the shading is amplitude.

generative models do not need to be learned from scratch, and learning-to-learn

may play an important role in overcoming these obstacles through the development of

prior knowledge. Previously learned generative pieces can be re-used and re-combined

compositionally to define new generative models, providing a foundation of strong

yet flexible prior knowledge for one-shot learning. This idea is illustrated in Figure

1-2 for handwritten characters and spoken words, where the generative pieces of

handwritten characters are strokes and sub-strokes and the generative pieces of spoken

words are phonemes or primitive articulatory gestures.

In this thesis, the primary avenue for evaluating these ideas is through an in

depth case study of learning simple visual concepts, specifically handwritten charac-

ters from alphabets around the world. This domain offers a large number of novel,

high-dimensional, and cognitively natural stimuli (Figure 1-3). The objects are sig-

nificantly more complex than the simple artificial stimuli most often modeled in psy-

chological studies of concept learning, yet they remain simple enough to hope that

a computational model could perceive most of the structure that people do, unlike

domains such as natural scenes.

People can learn a new handwritten character from just one example, yet hand-
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Figure 1-3: A sample of simple visual concepts from the Omniglot dataset.

written character recognition in machine learning is typically studied after hundreds

or thousands of examples, such as the well-known MNIST benchmark for digit recog-

nition that uses 6000 examples per class (e.g., LeCun et al., 1998). In order to study

how people and machines learn many possible concepts from just one or a few exam-

ples each, we collected a dataset called “Omniglot” (Lake, Salakhutdinov, & Tenen-

baum, 2012; Salakhutdinov et al., 2013). While similar in spirit to MNIST, rather

than having 10 characters with 6000 examples each, it has over 1600 characters with

20 examples each – making it more like the “transpose” of MNIST. Chapter 2 uses the

Omniglot data set to conduct a large scale empirical study of the category production.

The results suggest that people learned new concepts with a surprisingly consistent

internal structure, and this finding directly inspired the computational models that

follow in later chapters.

The hierarchical Bayesian models that we develop learn to represent these visual

concepts as simple stochastic programs from one example composed of pen strokes

and their spatial relations. Pen strokes are operationalized as sequences of stochastic

motor primitives (Fig. 1-2-i), which can be re-used and combined in new ways to

define a new generative model of a character (Fig. 1-2-iii). A learned generative

model for a character is a stochastic motor program that can produce a different

example of a character every time it run (Fig. 1-2a-iv).

Six different tasks were used to compare people and various different types of com-

putational models, spanning a range of natural ways to generalize these simple visual
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concepts: one-shot classification, one-shot exemplar generation, one-shot exemplar

generation with dynamic predictions, latent dynamic structure prediction, new con-

cept generation from related concepts, and free generation of new concepts. Figure

1-4 illustrates five of these tasks and foreshadows the results. First, the model is

able to perform a one-shot classification task at human-level performance. Second,

it was evaluated on four “visual Turing tests” inspired by Turing’s famous criterion

for the assessment of artificial intelligence (Turing, 1950; French, 2002). We asked

people and the computational models to perform the same task and then judges were

asked to discriminate the human responses from machine responses. In each task,

less than 25% of judges were significantly better than chance performance, suggesting

that in many cases, the model can generalize in ways indistinguishable from human

performance.

Chapters 4 and 5 investigate each of these tasks in detail, showing that our ap-

proach can fool judges in ways that other models do not. What cognitive and com-

putational principles are responsible for the differences? A combination of model

comparisons and lesion analyses reveal that all three principles – compositionality,

causality, and learning-to-learn – impact model performance across the tasks. In

fact, each principle has some role to play in each of the six tasks, where the specific

roles are discussed after the results of each task. Also, as detailed in Chapters 4

and 5, the role of learning-to-learn is the most complex, and our investigations show

that transfer across different levels of the model hierarchy can become more or less

important depending on the task demands.

This is the outline for the rest of the thesis. Chapter 2 reviews a range of empirical

evidence for the type of models introduced in later chapters, and it also covers a

large-scale behavioral study of one-shot category production that reveals some of the

basic structure to the programs that produce handwritten characters. Chapter 3

introduces the compositional causal model that attempts to capture this structure by

modeling one-shot learning as program induction. Chapter 4 compares humans and

machines on the tasks of one-shot classification, one-shot exemplar generation, and

latent structure prediction. Chapter 5 investigates more creative tasks that involve
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a) b)

Classification

4.5% error rate in people
3.2% error rate in model

Generating new examples

51% correct in visual Turing test
3 of 48 judges above chance

human or machine?

Generating new concepts
from related concepts

example alphabet

example alphabet

human or machine?

human or machine?

49% correct in visual Turing test
8 of 35 judges above chance

Free generation of new 
concepts

51% correct in visual Turing test
2 of 25 judges above chance

human or machine?

human or machine?

Generating dynamic examples

human or machine?

59% correct in visual Turing test
6 of 30 judges above chance

Figure 1-4: Five of the tasks used to compare people and the computational models
developed in this thesis. All tasks except one-shot classification evaluated model
performance with a visual Turing test, where the aggregate percent correct is shown.
Images outlined in red are training data and the other images are either human or
model generalizations. In this figure, the human productions are always on the left.
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generating new types of concepts. Chapter 6 describes some related investigations

into the one-shot learning of spoken words, and Chapter 7 offers some concluding

remarks.
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Chapter 2

Simple visual concepts as generative

programs

Douglas Hofstadter wrote that “The central problem of Artificial Intelligence is the

question: what is the letter ‘a’?” (Hofstadter, 1985). He went on to postulate that

for a computer program to truly understand the letter ‘a’, so that it can recognize

it in all possible fonts and handwriting styles and learn new fonts from just a few

letters, that program would likely have to be AI complete. Whether or not this will

turn out to be the case, building a complete computational understanding of letters

is a remarkable challenge.

Six tasks with handwritten characters are studied in the chapters that follow,

which are important sub-problems of Hosftadter’s larger challenge that encompasses

both handwritten characters, typed characters, and concepts of font (McGraw, 1995;

Hofstadter, 1996; Rehling, 2001). The approach we take is to learn characters as

simple programs that are causal, dynamic, and compositional, akin to a motor pro-

gram consisting of multiple pen strokes. This is in contrast to leading theories of

letter perception Grainger, Rey, and Dufau (2008) and leading machine learning al-

gorithms (LeCun et al., 1998; Salakhutdinov & Hinton, 2009) that identify letters

through the extraction of features. While there is certainly still a role for feature-

based approaches, and the program-like knowledge may serve to complement rather

than replace other sources of knowledge, these programs play an essential role in the
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tasks that follow.

This chapter begins by reviewing behavioral and neuroimaging results that suggest

simple programs as a plausible form of representation for these simple visual concepts.

This chapter also presents a large-scale empirical study of concept production with

novel characters, serving to identify the key structure these programs have. These

findings inform the computational models introduced in later chapters.

2.1 Basic empirical phenomena

Is there empirical evidence that people represent characters by sophisticated causal

representations, and do these representations play a role in perception and learning?

There are a number of ways in which knowing how to produce (write) a character can

influence perception. An early study by Freyd (1983) documented the influence of

writing knowledge on classification, directly testing an analysis-by-synthesis theory

of character recognition. Participants were shown videos of characters being drawn,

where participants saw the final stroke drawn either upwards or downward. In a

subsequent classification task with distorted static examples, participants were faster

at classifying examples that were distorted in a way consistent with their production

knowledge. Similarly, this type of prior production knowledge about stroke direction

can influence apparent motion if a character appears stroke-by-stroke on a screen,

even overriding perceptual grouping cues (Tse & Cavanagh, 2000).

While those studies showed that production influences perception, Babcock and

Freyd (1988) showed that perception influences production, and that people can infer

latent causal representations from static images. A first group of participants per-

formed a speeded drawing task, using instructions A or B that specify different pen

directions (up vs. down) for the final stroke. The most distorted participant in each

condition was chosen for the second stage of the experiment. Another group of par-

ticipants learned to classify the characters drawn previously, viewing static examples

from either condition A (up) or B (down). In a later production task, participants

were asked to draw these characters from memory, and they tended to draw the final
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strokes consistent with the learned examples, either up or down, despite having never

written the character before or even seen it written.

James and Atwood (2009) proposed that production knowledge might interact

with perception through changes in the functional specificity in visual cortex. Adults

received training that was either visual only, typing, or writing based with pseudo-

letters over several sessions. In a fMRI scanner, they performed a one-back matching

task with trained novel letters vs. untrained ones, before and after training. For

two critical letter regions in visual cortex including the left posterior fusiform near

the visual word form area (Cohen et al., 2000), only writing training increased the

BOLD response when comparing trained versus untrained letters. Another study

with children from four to five years old showed that writing experience changes the

letter-specialization of visual cortex (James, 2010). Children received either visual

or motor training with Latin letters over several sessions. Only the motor training

increased the response of the left posterior fusiform regions.

Taken together, these studies show two important and inter-related results that

support the computational model to be described in Chapter 3: features of the la-

tent causal dynamics can be automatically inferred through the process of learning

(Babcock & Freyd, 1988), and these features can go on to influence classification and

other aspects of perception such as classification and apparent motion (Freyd, 1983;

Tse & Cavanagh, 2000).

Other results suggest the intriguing possibility that the brain uses partially over-

lapping neural representations for both the production and perception of characters.

James and Gauthier (2009) found interference effects between writing and perception,

suggesting a shared resource account. Participants were asked to visually identify

letters under noise while concurrently writing different letters. The authors found

evidence for specific interference effects, where identifying letters with curvy strokes

was more difficult while writing curvy letters compared to straight letters, and vice

versa for identifying letters with straight strokes.

Supporting this behavioral evidence, neuroimaging studies have confirmed that

motor systems are active during the perception of static characters. To study this
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potential link, researchers have typically compared characters that participants have

experience drawing (such as Latin characters) with another type of object they have

no (or much less) experience drawing. In one of the first of these studies, Longcamp,

Anton, Roth, and Velay (2003) showed participants printed Latin characters, pseudo-

characters that look like letters from a foreign alphabet, and a control character that

was three parallel lines. Using a region of interest (ROI) defined from activation

during a writing task, the authors found stronger activity in left premotor cortex for

the Latin characters compared to either pseudo-characters or the control. In a related

design, James and Gauthier (2006) looked at the same ROI when participants viewed

letters, faces, and objects. They found this region responded stronger to letters when

compared to faces or objects.

While the two studies mentioned used printed characters rather than handwritten

characters, and it is possible that these different types of stimuli could show different

neural signatures. Two studies found that the hand region of left primary motor

cortex responded more to static handwritten than static printed characters, using

both MEG (Longcamp, Tanskanen, & Hari, 2006) and fMRI (Longcamp, Hlushchuk,

& Hari, 2010).

While this neuroimaging evidence does not establish a causal relationship on its

own, it is suggestive when paired with the previous evidence that production knowl-

edge has behavioral signatures during perception. Additional supporting evidence

comes from a lesion study by S. W. Anderson, Damasio, and Damasio (1990). The

authors describe a patient with a surgical lesion to a left premotor area that resulted

in impaired performance for reading and writing of letters. This suggests that this

region, near the ROI of Longcamp et al. (2003), plays an active role in both percep-

tual and motor processes. Interestingly, however, numbers rather than letters were

unimpaired in the patient for both reading and writing measures.

Thus, there are many sources of evidence for the idea that dynamic causal repre-

sentations play an important role in perception and learning. Most of these studies

focused on familiar characters, such as a person’s native alphabet (e.g., James &

Gauthier, 2009; Longcamp et al., 2003) or novel characters after extensive training
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Figure 2-1: The top row shows example characters from our dataset in the original
printed form. Below are three example drawings from participants.

(e.g., Freyd, 1983; James & Atwood, 2009). It is still unclear whether similar types

of representations might be used when learning characters that are completely novel

with no directly relevant writing experience.

A notable exception is Babcock and Freyd (1988), which as discussed, showed that

participants inferred the direction of the last stroke in a completely novel character.

But by only studying the direction of one stroke, Babcock and Freyd (1988) did not

investigate the full depth and richness of these causal inferences nor the full structure

of these inferred motor programs. This chapter presents a large-scale experiment con-

ducted on Amazon Mechanical Turk designed to study the scope of these inferences.

Participants drew novel character concepts after seeing just a single example, a task

we refer to as “one-shot category production" that follows a long tradition of using the

generation of category exemplars as a window into conceptual representation (e.g.,

Battig & Montague, 1969; Rosch et al., 1976; J. Feldman, 1997; Jern & Kemp, 2013).

Our large-scale study produced about 32,000 images of characters across a set of 1600

concepts, and the on-line drawing trajectories were recorded for each image.

From the production data, we analyzed the extent to which people can infer a

robust motor program representation from a single example of a novel character. We

also analyzed the key structure present in these programs, including a consistent set

of parts, orderings of the parts, and directions of the parts. We also compared people

and an algorithm based on motor data on a one-shot classification task, testing the

plausibility of motor programs as a representation useful for classification.
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2.2 Category production experiment

When people perceive a new character, in what sense do they infer a new concept?

While this mental representation might be just a bundle of features, the concept

might also include richer structure in the space of motor programs. To investigate this

possibility, we analyzed how multiple drawers produced a particular concept during

the drawing production task. We reasoned that in order to do this task, participants

must infer a novel motor program, which will be reflected in the time course of

drawing. Consistency in the structure of these drawings would provide evidence

for two interlinked claims: people seem to grasp the same underlying concept from

one example, and this concept includes a highly structured generative program. To

investigate that type of structure present in these programs, for a given character, we

quantitatively analyzed the number, shape, direction, and order of the parts (strokes)

in the motor data.

2.2.1 Omniglot

The studied concepts were 1,600 characters elected from 50 different alphabets on

www.omniglot.com, which includes scripts from natural languages (e.g., Hebrew, Ko-

rean, Greek) and artificial scripts (e.g., Futurama and ULOG) invented for purposes

like TV shows or video games. The characters were taken from the web in printed

fonts, and several originals and their subsequently drawn images are shown in Fig-

ure 2-1. The drawing experiment was run through Amazon Mechanical Turk, and

participants were asked to draw at least one entire alphabet. For each template im-

age, they were asked to draw each character as accurately as possible. An alphabet’s

printed characters were displayed in rows on a web page, with an associated drawing

pad below each image. Participants could draw by holding down a mouse button and

moving the mouse, and we also included “forward,” “back,” and “clear” buttons. Some

participants made minor image adjustments with small mouse movements, and we

tried to mitigate this inconsistency by excluding strokes that were very short in time

and space from the analysis.
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Figure 2-2: For two concepts (out of the 1600 total), each box shows the motor data
produced by human drawers (left) or simple drawers (right). “Canonical” drawers are
in the dotted boxes, and their distances (Equation 2.1) to the other examples are
the numbers below each frame. Stroke color shows correspondence to the canonical,
circles indicate the beginning of each stroke, and numbers inside circles denote stroke
order.
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2.2.2 The number of parts

This analysis (and subsequent ones) used just 20 of the alphabets in the dataset,

excluding the six most common as determined by Google hits. The simplest statistic

to analyze was the number of parts. For each character, we investigated whether

the drawers clustered around a common number of parts (the mode number across

participants). Aggregating across each drawing in the dataset, the histogram in Figure

2-3A (red) shows the absolute difference between the actual number of strokes and

the mode number of strokes from all of the drawings of that character. Although this

distribution is guaranteed to peak at zero, a strikingly large percentage of drawers

used exactly the modal number (66%). As a control, a null dataset was created by

replacing each number of strokes by a uniform draw (1 to 6 here, but other values are

similar). This distribution was not nearly as peaked around the mode (Figure 2-3A

blue).

2.2.3 The shape of the parts

The parse of a character into parts (strokes) is at the core of each drawing. When

people look at a new concept, do they perceive the same parts? This is difficult to

analyze, since the number and length of the strokes can differ between images. A

similarity measure should also be invariant to the order and direction of the strokes.

Despite these challenges, we found that it was possible to analyze consistency in the

shape of the strokes, and we discuss our method in the section below.

Shape-based distance in motor space.

Since most drawers (66%) used the modal number of strokes, we restrict this and sub-

sequent analyses to only these modal drawings. With this simplification, the strokes

in two images can be matched in correspondence (one-to-one and onto). Our approach

also matches the sub-structure within two strokes, finding an alignment between the

points in the two trajectories (onto but not one-to-one). Given an optimal match-

ing at both levels, the overall shape distance is roughly the mean distance between
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all of the aligned trajectory points. Before computing distance, characters were also

transformed to be translation and scale invariant. This transformation subtracts the

center of gravity and rescales such that the range of the largest dimension is 105.

Examples of the distance are illustrated in Figure 2-2, where the number below each

drawing is the distance to the drawing in the dotted box.

The details of the distance measure are as follows. Consider two drawings 𝑆1, ..., 𝑆𝑘

and 𝑅1, ..., 𝑅𝑘 with 𝑘 strokes each. Each stroke is a sequence of positions 𝑆𝑖 =

[𝑆𝑖1, ..., 𝑆𝑖𝑛] with arbitrary length, where 𝑆𝑖𝑗 ∈ R2. The overall distance between the

characters is defined as

min
𝜋

1

𝑘

𝑘∑︁
𝑖=1

min [𝑑𝑡𝑤(𝑆𝑖, 𝑅𝜋(𝑖)), 𝑑𝑡𝑤(𝑆𝑖, 𝐹 (𝑅𝜋(𝑖)))], (2.1)

where 𝜋(·) is a permutation on the stroke indices 1, ..., 𝑘 (a bijective function from

the set {1, ..., 𝑘} to {1, ..., 𝑘}), and the flip function 𝐹 (𝑆𝑖) = [𝑆𝑖𝑛, ..., 𝑆𝑖1] reverses the

stroke direction to provide direction invariance. The distance 𝑑𝑡𝑤(·, ·) between two

trajectories is calculated by Dynamic Time Warping (DTW; Sakoe & Chiba, 1978),

which fits a non-linear warp such that each point in one trajectory is aligned with a

point in the other. The DTW distance is then the mean Euclidean distance across

all pairs of aligned points.

The simple drawer model.

Upon visual inspection of the stroke matches 𝜋(·) chosen by the outer minimization

in Equation 2.1, there is a striking consistency across drawers in the inferred parts

for a character. We show two characters in Figure 2-2, where color denotes the stroke

matches (left panels). While this qualitative correspondence may reflect richly struc-

tured motor processes, there could be a more simplistic explanation. The consistency

could be a consequence of selection bias, since we selected drawers that used the

modal number of strokes, and there will be fewer degrees of freedom available to a

𝑘-stroke drawer for any given 𝑘. In the special case of 𝑘 disjoint segments (like in

Braille), there may only be one production option. To explore the degrees of freedom
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and to provide a baseline for the observed consistency, we devised a “simple drawer”

model that is likely to mimic human drawers when the space is highly constrained,

but otherwise it more freely explores the potential motor space.

The simple drawer is given access to the same set of points a real drawer traversed

in the motor data, but without the sequential information. It then tries to draw the

same character as efficiently as possible using the same number of strokes. It must

visit every point exactly once, while minimizing the distance traveled while ink is flow-

ing. Given a real drawing with strokes 𝑆1, ..., 𝑆𝑘, the simple drawer’s interpretation

𝑄1, ..., 𝑄𝑘 is defined by the problem

argmin
𝑄1,...,𝑄𝑘

𝑘∑︁
𝑖=1

|𝑄𝑖|−1∑︁
𝑗=1

||𝑄𝑖𝑗 −𝑄𝑖(𝑗+1)||2, (2.2)

where | · | is the number of points in the stroke sequence, and || · ||2 is Euclidean

distance. Each point 𝑆𝑖𝑗 in the original drawing is equal to exactly one point 𝑄𝑎𝑏 in

the new drawing. This formulation encourages smooth strokes, but it also leads to

creative parses (Figure 2-2 right panels), in part because there are multiple optima.

A drawback of the model is that it sometimes draws paths where no ink exists.

To reduce this problem, the simpler drawer is not allowed to travel large distances

between adjacent points, where the upper bound is the maximal adjacent distance in

the corresponding real drawing. For optimization, we can reformulate the problem

as the well-known traveling salesman problem (TSP) by inserting 𝑘 cost-free “points”

to indicate the stroke breaks. Inspired by efficient approximate solvers for the TSP

problem, we optimized using simulated annealing with alternating Metropolis-Hasting

node swaps and Gibbs sampling (Rubinstein & Kroese, 2008).

Results.

The simple drawer was used to re-sketch each image, creating an entire parallel dataset

for comparative analysis. The shape-based consistency of a character is the mean

distance (Equation 2.1) between each pair of drawings of that character. Figure 2-3B

shows histograms of this consistency measure for the human drawers (red) and the
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simple drawers (blue). The aggregate histogram (right) for characters with two to

five strokes shows a large difference in the consistency of the parts. The histogram for

characters with one stroke (left) shows a closer correspondence between participants

and the simple drawer, due to the limited degrees of freedom.1 These results suggest

that people inferred motor programs that were based on a characteristic set of strokes

and this is an essential component to the structure of these programs.

2.2.4 The direction of the parts

Do different drawers infer the same stroke directions? For each character, a sin-

gle canonical drawer was chosen to minimize the sum shape-based distance across all

other drawers of that character (Equation 2.1). Example canonical drawers are shown

in the dotted boxes in Figure 2-2 (left). For each person’s drawing compared to the

canonical drawing, the chosen value of the inner minimization in Equation 2.1 indi-

cates whether each stroke, or that stroke in reverse direction (𝐹 (·)), is a better match

to the corresponding stroke in the canonical drawer. Aggregating across each stroke

in the dataset, Figure 2-3C (red) displays the proportion of times the modal stroke

direction was picked, using the canonical drawer as the reference point. The dataset of

simple drawers (blue) provides a direction-agnostic baseline. By comparison, people’s

inferred programs clearly have preferred directions.

2.2.5 The order of the parts

Is stroke order also consistent across drawers? As in the analysis of direction, and

the canonical drawers were used as the reference points, from which stroke order

was defined. For any person’s drawing compared to the canonical drawing of that

character, the chosen permutation 𝜋(·) from the outer minimization in Equation 2.1

defines a relative ordering of the strokes. Aggregating across each drawing, Figure

2-3D shows the proportion of times the modal stroke order was picked. Like the other

1Some single stroke characters can still be drawn in a number of ways, such as choosing the
starting location of an “O.” People tend to start at the top, while the simpler drawer is agnostic.
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Figure 2-4: Contour plots comparing human participants (left) vs. the parallel dataset
from the simple drawing model (right). Compared to the simple drawer, participants
showed a strong top-left bias for the first point of contact (top), and certain mouse
velocities were strongly favored (bottom).

statistics, stroke order was also highly consistent across characters. Unsurprisingly,

consistency was less pronounced as the number strokes increased.

2.2.6 General structure and biases

There are other constraints and biases in human drawing and motor capabilities.

Researchers have found a number of rules that usefully characterize how people draw

simple shapes and character: start drawing at the top-left, draw horizontal strokes

left-to-right, and draw vertical strokes top-to-bottom (Goodnow & Levine, 1973; Van

Sommers, 1984). This left-to-right bias is present even for writers of Hebrew with

experience writing words right-to-left (Goodnow, Friedman, Bernbaum, & Lehman,

1973). We also examined these statistics in the aggregate dataset of drawing. The top

row of Figure 2-4 shows contour plots comparing human participants (left column)

versus the parallel dataset from the simple drawer model (right column) on where in

the image canvas a drawing started. As found in past work, there was a strong bias

to beginning the drawing in the top-left (left column), and this can be compared with

61



the simple drawing dataset that covers the same canvas locations but does not have a

starting location preference (right column). The bottom row of Figure 2-4 visualizes

a contour plot of pen velocity, which was computed for each mouse event as 𝜕𝑥/𝜕𝑡,

where 𝜕𝑡 is inversely proportional to the number of mouse events in the stroke. The

plot reveals strong directional preferences to drawing downwards and rightwards (left

column), and this effect is especially evident when compared to the parallel dataset

with no directional preferences (right column).

This plot also suggests a more general type of structure found in the characters

themselves, not just in people’s drawing preferences. Although the simple drawer has

no directional preferences when drawing, its velocities were concentrated at 0, 90,

180, and 270 degrees, suggesting that characters are not composed of trajectories in

arbitrary directions. Instead, the composition of characters across alphabets seems

to be biased towards straight horizontal and vertical paths in the image plane. For

further findings about the general structure of characters across alphabets, see the

work of Changizi, Zhang, Ye, and Shimojo (2006).

2.3 One-shot classification

The previous analyses suggest that people infer rich motor-based concepts from just

a single example, and these programs have a consistent decomposition into parts.

People also have consistent preferences about the order and direction of the parts.

If the same inference processes were in operation during categorization, would these

representations prove useful for one-shot classification?

This question was investigated through several 20-way classification tasks. Each

task was created by showing people (or a computational model) twenty new characters

with just one example each. Test examples (in this case, two per class) then had to be

classified into the best fitting category. For the purposes of performing classification

using motor data, the twenty comparison categories needed to use the same number

of strokes in their motor data, where character exemplars were only used if they had

the modal number of parts across that character type. The classification tasks, for
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each number of strokes, were repeated twenty times by randomly picking different sets

of 20 characters with replacement from the bag of characters with a certain number

of strokes.

2.3.1 People

Human performance on one-shot classification was measured by running a study on

Amazon Mechanical Turk (AMT). Fifteen participants took part in 50 trials of clas-

sification. Each trial consisted of a single test image, and participants were asked to

pick one of the 20 other images that looked the most similar. This was the same task

that the models performed. However, people and the models were not evaluated on

the same set of characters, and the restriction to a certain number of strokes was not

in place for people. People viewed pixel images and not motor visualizations during

classification.

2.3.2 Models

∙ Human drawers. Classification was performed by computing the distances

between the character representations in motor space and picking the closet

match. The shape-based distance measure was used to compare items in motor

space (Equation 2.1), and this metric is invariant to the order and direction of

the strokes. As mentioned, a comparison can only be made if the motor data

has the same number of strokes in each character, which is not a limitation that

people have during classification.

∙ Simple drawers. The same procedure was followed using the parallel dataset

of simple drawers. Thus, while the classification methodology was identical, this

manipulation lesioned the quality and consistency of the parses in the motor

data.

∙ Pixels. This baseline measure simply picked the nearest neighbor in pixel space

using Euclidean distance.
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Figure 2-5: Classification performance based on one example of 20 different charac-
ters. Test instances were compared to each class, and the best match was selected.

inferred parts model at 48%, and then the simple drawer at 50%. The real stroke

data was far better than all of the other methods, with an average performance of

83% correct. We also tried to include stroke order and direction information in the

classification cost function, but performance did not improve significantly. Finally,

human one-shot classification performance was 96%, as measured behaviorally in a

20-way classification task (“human-level” in Fig. 2-5; see footnote for experimental

setup).2 Overall, the motor data was by far the most effective means for one-shot

classification.

2.4 Discussion

Our category production experiment produced over 32,000 images of handwritten

characters. Each of the roughly 1,600 characters was drawn by 20 different par-

ticipants, and we found a strong correspondence in the structure of their inferred

motor programs. On the whole, the number, shape, order, and direction of the parts

(strokes) was highly consistent across participants. Also the motor data provided a

2This study was run on Amazon Mechanical Turk with 15 participants and 50 trials. Each trial
consisted of a single test image, and participants were asked to pick one of the 20 other images that
looked the most similar. This was the same task that the models performed, except that characters
with different numbers of strokes were intermixed and a different set of alphabets was used.
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data was far better than all of the other methods, with an average performance of

83% correct. We also tried to include stroke order and direction information in the

classification cost function, but performance did not improve significantly. Finally,

human one-shot classification performance was 96%, as measured behaviorally in a

20-way classification task (“human-level” in Fig. 2-5; see footnote for experimental

setup).2 Overall, the motor data was by far the most effective means for one-shot

classification.

2.4 Discussion

Our category production experiment produced over 32,000 images of handwritten

characters. Each of the roughly 1,600 characters was drawn by 20 different par-

ticipants, and we found a strong correspondence in the structure of their inferred

motor programs. On the whole, the number, shape, order, and direction of the parts

(strokes) was highly consistent across participants. Also the motor data provided a

2This study was run on Amazon Mechanical Turk with 15 participants and 50 trials. Each trial
consisted of a single test image, and participants were asked to pick one of the 20 other images that
looked the most similar. This was the same task that the models performed, except that characters
with different numbers of strokes were intermixed and a different set of alphabets was used.
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Figure 2-5: One-shot classification performance based on one example of 20 different
characters. Test instances were compared to each class, and the best match was
selected.

2.3.3 Results

The results are summarized in Figure 2-5, where performance was measured across

a range of different numbers of strokes (Figure 2-5). Chance performance is 5% cor-

rect, and pixel distance performed at 20% correct on average. The simple drawer

performed at 50% correct on average. The real stroke data was far better with an

average performance of 83% correct. We also tried to include stroke order and direc-

tion information in the classification cost function, but performance did not improve

significantly. Finally, human one-shot classification performance was 96%, although

performance should not be directly compared since a different set of characters was

used.

2.4 General discussion

Chapter 1 motivated the idea of generative programs as conceptual representations,

and this chapter provided empirical evidence for the use of motor programs as a con-
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ceptual representation for handwritten characters. The chapter began by reviewing

empirical evidence for this hypothesis, where a number of studies found that produc-

tion knowledge – knowing how to write a character – can influence perception. This

influence also runs the other way, where static perception can reveal latent production

knowledge.

Additionally, in this chapter, a category production experiment produced over

32,000 images of handwritten characters. Each of the roughly 1,600 characters was

drawn by 20 different participants, and we found a striking correspondence in the

structure of their inferred motor programs. The number, shape, order, and direction

of the parts (strokes) was highly consistent across participants – highlighting the key

structure of the production programs. We also found general motor biases in the

drawing data where people tended to start drawing in particular locations and then

continue drawing in particular directions.

The motor data also provided a powerful basis for one-shot classification. These

results suggest that when people look at a new character, they can infer a richly

structured motor program, and this structure can be described in terms of a ordered

set of parts. In theory, this motor program representation should be capable of both

synthesizing new examples and classifying new instances with high accuracy. Chapter

3 introduces a computational model based on these principles, capable of inferring

latent motor programs from images, and Chapter 4 evaluates these motor programs

for one-shot classification, one-shot synthesis, and other tasks.
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Chapter 3

Hierarchical Bayesian Program

Learning

This chapter introduces a new computational approach called Hierarchical Bayesian

Program Learning (HBPL) that utilizes the principles of compositionality, causality,

and learning-to-learn to learn simple programs to represent handwritten characters.

The model defines a generative process for constructing novel character concepts,

and an abstract illustration of this process is shown in Figure 3-1. The process for

generating a new “type” of character is shown in levels i-iv. Each type of character is

a structured procedure for generating new examples of the concept, and this process

for producing new “tokens” is shown in levels v-vi. Thus, following the framework of

hierarchical Bayesian modeling (A. Gelman et al., 2004), HBPL can be described as

a generative model for generative models since it defines a procedure for generating

concepts, where each concept is itself a structured generative model.

The model is compositional since it defines a generative process for constructing

character programs combinatorially from more primitive structure, which is shared

and re-used across characters at multiple levels including sub-parts and parts (Chap-

ter 5). Given the raw pixel image and no additional information, learning requires

inverting the generative process to discover a structural description to explain the

image, using a combination of elementary parts and their spatial relations (Winston,

1975; Biederman, 1987; Hummel & Biederman, 1992). These parts and relations are
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themselves learned over the course of learning related concepts, in a process called

learning-to-learn.

HBPL departs from classic structural description models by reflecting abstract

causal structure about how characters are actually produced – a motor program

composed of pen strokes. As reviewed in Chapter 2, this type of causal represen-

tation is psychologically plausible, and it has been previously theorized to explain

both behavioral and neuro-imaging data regarding human character perception and

learning.

What is the right level of abstraction? We aimed to capture “just enough” of the

actual generative process that produces characters, although Section 7.4 discusses

aspects of this generative process such as cultural evolution that are beyond the scope

of this model. Ideally, the level of abstraction should be just enough to capture the

richness of the domain, where additional complexity comes at the risk of additional

computational burden or limitations on the generality of the model. As in most

previous “analysis by synthesis” models of handwritten characters, strokes are not

modeled at the level of muscle movements, so that they are abstract enough to be

completed by a hand, a foot, or an airplane writing in the sky. But HBPL also learns

a significantly more complex representation than earlier models, which used only one

stroke unless a second was added manually (Revow, Williams, & Hinton, 1996; Hinton

& Nair, 2006) or received on-line input data that includes the dynamics of writing

(Gilet, Diard, & Bessière, 2011), sidestepping the challenging parsing problem needed

to interpret complex characters from images.

As a hierarchical model, HBPL distinguishes between character types (an ‘A’,

‘B’, etc.) and tokens (an ‘A’ drawn by a particular person), where types provide an

abstract structural specification for generating different tokens. The joint probability

distribution on types 𝜓, tokens 𝜃(𝑚), and binary images 𝐼(𝑚) is given as follows,

𝑃 (𝜓, 𝜃(1), ..., 𝜃(𝑀), 𝐼(1), ..., 𝐼(𝑀)) = 𝑃 (𝜓)
𝑀∏︁
𝑚=1

𝑃 (𝐼(𝑚)|𝜃(𝑚))𝑃 (𝜃(𝑚)|𝜓). (3.1)

Section 3.1 describes the prior on programs 𝑃 (𝜓) which is the procedure for generating
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Figure 3-1: Illustrating the generative process behind handwritten characters. New
types are generated by choosing primitive actions from a library (i), combining these
sub-parts (ii) to make parts (iii), and combining parts to define simple programs
(iv). These programs can be run multiple times to create different tokens, which are
exemplars of the underlying concept (v). Exemplars are rendered as binary images
(vi).
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new character concepts. Section 3.2 describes the procedure for generating exemplars

of a program 𝑃 (𝜃(𝑚)|𝜓) and rendering those exemplars in image space 𝑃 (𝐼(𝑚)|𝜃(𝑚))

(Section 3.2.2). Learning a program from image data is operationalized as Bayesian

inference

𝑃 (𝜓, 𝜃(1), ..., 𝜃(𝑀)|𝐼(1), ..., 𝐼(𝑀)) =
𝑃 (𝜓)

∏︀𝑀
𝑚=1 𝑃 (𝐼(𝑚)|𝜃(𝑚))𝑃 (𝜃(𝑚)|𝜓)

𝑃 (𝐼(1), ..., 𝐼(𝑀))
(3.2)

which defines a distribution on plausible latent structures for explaining an image or

set of images of a character. This is a challenging distribution to compute or even

approximate efficiently, and Section 3.4 describes the search algorithm we developed

for solving this problem.

3.1 Generating a character type

A character type 𝜓 = {𝜅, 𝑆,𝑅} is defined by a set of 𝜅 strokes 𝑆 = {𝑆1, ..., 𝑆𝜅} and

spatial relations 𝑅 = {𝑅1, ..., 𝑅𝜅} between strokes. The joint distribution can be

written as

𝑃 (𝜓) = 𝑃 (𝜅)
𝜅∏︁
𝑖=1

𝑃 (𝑆𝑖)𝑃 (𝑅𝑖|𝑆1, ..., 𝑆𝑖−1), (3.3)

where the generative process that defines this probability distribution is specified in

Algorithm 1. The number of strokes 𝜅 is sampled from a multinomial 𝑃 (𝜅) estimated

from the empirical frequencies (Figure 3-3), and the other conditional distributions are

defined in the sections below. All hyperparameters, including the library of primitives

(top of Figures 3-1 and 3-2), were learned from a large “background set” of character

drawings as described in Section 3.3.
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Figure 3-3: Empirical frequency of the number of strokes in a character.

Algorithm 1 Generate a new character type

procedure GenerateType

𝜅← 𝑃 (𝜅) ◁ Sample the number of strokes

for 𝑖 = 1 ... 𝜅 do

𝑛𝑖 ← 𝑃 (𝑛𝑖|𝜅) ◁ Sample the number of sub-strokes

𝑆𝑖 ← GenerateStroke(𝑖, 𝑛𝑖) ◁ Sample a stroke with 𝑛𝑖 substrokes

𝜉𝑖 ← 𝑃 (𝜉𝑖) ◁ Sample the type of a stroke’s relation to previous strokes

𝑅𝑖 ← 𝑃 (𝑅𝑖|𝜉𝑖, 𝑆1, ..., 𝑆𝑖−1) ◁ Sample the details of the relation

end for

𝜓 ← {𝜅,𝑅, 𝑆}
return @GenerateToken(𝜓) ◁ Return the handle to a stochastic program

end procedure

3.1.1 Strokes

Each stroke is initiated by pressing the pen down and terminated by lifting the pen

up. In between, a stroke is a motor routine composed of simple movements called

sub-strokes 𝑆𝑖 = {𝑠𝑖1, ..., 𝑠𝑖𝑛𝑖
} (colored curves in Figure 3-2), where sub-strokes are

separated by brief pauses of the pen. The number of sub-strokes 𝑛𝑖 is sampled from

the empirical frequency 𝑃 (𝑛𝑖|𝜅) conditioned on the total number of strokes 𝜅 (Figure

3-4). This conditional probability controls overall character complexity, capturing the
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Figure 3-4: Empirical frequency of the number of sub-strokes within a stroke. This
variable was modeled conditional on the total number of strokes in the character.

trend in the dataset that characters with many strokes tend to have simpler strokes.

Given the number of sub-strokes, the process of generating a stroke and all of its

internal structure is specified in Algorithm 2. Each sub-stroke 𝑠𝑖𝑗 is modeled as a uni-

form cubic b-spline, which can be decomposed into three variables 𝑠𝑖𝑗 = {𝑧𝑖𝑗, 𝑥𝑖𝑗, 𝑦𝑖𝑗}
with joint distribution 𝑃 (𝑆𝑖) = 𝑃 (𝑧𝑖)

∏︀𝑛𝑖

𝑗=1 𝑃 (𝑥𝑖𝑗|𝑧𝑖𝑗)𝑃 (𝑦𝑖𝑗|𝑧𝑖𝑗). The discrete class

𝑧𝑖𝑗 ∈ N is an index into the library of primitive motor elements (top of Figure 3-2

and Figure 3-8), and its distribution 𝑃 (𝑧𝑖) = 𝑃 (𝑧𝑖1)
∏︀𝑛𝑖

𝑗=2 𝑃 (𝑧𝑖𝑗|𝑧𝑖(𝑗−1)) is a first-order

Markov Process learned from the empirical bigrams. These transition probabilities

can encode intuitive types of structural continuations, including right angles, repet-

itive structure, and common motifs, and some example high probability transitions

are shown in Figure 3-5.

The five control points 𝑥𝑖𝑗 ∈ R10 (small open circles in Figure 3-2) are sampled

from a Gaussian 𝑃 (𝑥𝑖𝑗|𝑧𝑖𝑗) = 𝑁(𝜇𝑧𝑖𝑗 ,Σ𝑧𝑖𝑗), and they live in an abstract space not yet

embedded in the image frame. The type-level scale 𝑦𝑖𝑗 of this space, relative to the

image frame, is sampled from 𝑃 (𝑦𝑖𝑗|𝑧𝑖𝑗) = Gamma(𝛼𝑧𝑖𝑗 , 𝛽𝑧𝑖𝑗). Thus, since any possible

configuration of control points can exist at the type-level, the primitive actions are

more like specifications for “types of parts” rather than specifications for a rigid set

of parts. At inference time, the model can produce any shape in order to explain an
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Figure 3-5: Illustration of likely primitive sequences. The leftmost column show the
start seeds, which are individual primitives in image space. The next five columns
show the most likely continuations when the next primitive is added. The primitives
were plotted using the mean of their shape and scale distributions.
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Figure 3-6: Empirical distribution of the start position of strokes, binned over a
2D image grid. The distribution is modeled conditional on the stroke index in the
character, where stroke 1 and stroke 2 are sampled from different distributions and
all further strokes are sampled from the same collapsed distribution.

observed image, although some shapes may be highly unlikely in the prior.

Algorithm 2 Generate the 𝑖th stroke with 𝑛𝑖 sub-strokes

procedure GenerateStroke(𝑖,𝑛𝑖)

𝑧𝑖1 ← 𝑃 (𝑧𝑖1) ◁ Sample the identity of the first sub-stroke

for 𝑗 = 2 . . .𝑛𝑖 do

𝑧𝑖𝑗 ← 𝑃 (𝑧𝑖𝑗|𝑧𝑖(𝑗−1)) ◁ Sample the identities of the other sub-strokes

end for

for 𝑗 = 1 . . .𝑛𝑖 do

𝑥𝑖𝑗 ← 𝑃 (𝑥𝑖𝑗|𝑧𝑖𝑗) ◁ Sample a sub-stroke’s control points

𝑦𝑖𝑗 ← 𝑃 (𝑦𝑖𝑗|𝑧𝑖𝑗) ◁ Sample a sub-stroke’s scale

𝑠𝑖𝑗 ← {𝑥𝑖𝑗, 𝑦𝑖𝑗, 𝑧𝑖𝑗}
end for

𝑆𝑖 ← {𝑠𝑖1, . . . , 𝑠𝑖𝑛𝑖
} ◁ A complete stroke definition

return 𝑆𝑖

end procedure
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3.1.2 Relations

The spatial relation 𝑅𝑖 specifies how the beginning of stroke 𝑆𝑖 connects to the previ-

ous strokes {𝑆1, ..., 𝑆𝑖−1}. Relations can come in four types, 𝜉𝑖 ∈ {𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡, 𝑆𝑡𝑎𝑟𝑡,
𝐸𝑛𝑑, 𝐴𝑙𝑜𝑛𝑔}, with probabilities 𝜃𝑅, and each type 𝜉𝑖 has different sub-variables and

dimensionality. Once the type is sampled from a multinomial 𝑃 (𝜉𝑖), the distribution

𝑃 (𝑅𝑖|𝜉𝑖, 𝑆1, ..., 𝑆𝑖−1) = 𝑃 (𝑅𝑖|𝜉𝑖, 𝑧1, ..., 𝑧𝑖−1), since it only depends on the number of

sub-strokes in each stroke. Here are the details for sampling each type of relation.

Examples of relations are shown in Figure 3-2.

∙ Independent relations, 𝑅𝑖 = {𝜉𝑖 = 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡, 𝐽𝑖, 𝐿𝑖}, where the position of

stroke 𝑖 does not depend on previous strokes. The variable 𝐽𝑖 ∈ N is drawn from

𝑃 (𝐽𝑖), a multinomial over a 2D image grid that depends on index 𝑖 (Figure 3-6).

This component of the model draws its inspiration from the consistency in start

position that was measured in the previous chapter (Section 2.2.6). Since the

position 𝐿𝑖 ∈ R2 has to be real-valued, 𝑃 (𝐿𝑖|𝐽𝑖) is then sampled uniformly at

random from within the image cell 𝐽𝑖.

∙ Start relations, 𝑅𝑖 = {𝜉𝑖 = 𝑆𝑡𝑎𝑟𝑡, 𝑢𝑖}, where stroke 𝑖 starts at the beginning of

a previous stroke 𝑢𝑖, sampled uniformly at random from 𝑢𝑖 ∈ {1, ..., 𝑖− 1}.

∙ End relations, 𝑅𝑖 = {𝜉𝑖 = 𝐸𝑛𝑑, 𝑢𝑖}, where stroke 𝑖 starts at the end of a

previous stroke 𝑢𝑖, sampled uniformly at random from 𝑢𝑖 ∈ {1, ..., 𝑖− 1}.

∙ Along relations, 𝑅𝑖 = {𝜉𝑖 = 𝐴𝑙𝑜𝑛𝑔, 𝑢𝑖, 𝑣𝑖, 𝜏𝑖}, where stroke 𝑖 begins along previ-

ous stroke 𝑢𝑖 ∈ {1, ..., 𝑖 − 1} at sub-stroke 𝑣𝑖 ∈ {1, ..., 𝑛𝑢𝑖} at type-level spline

coordinate 𝜏𝑖 ∈ R, each sampled uniformly at random.

Previous work has shown that people and simple generative models can learn relations

like these in one-shot (J. Feldman, 1997, 2009), and those ideas directly inspired this

sub-component of the overall generative model.
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3.2 Generating a character token

The token-level variables, 𝜃(𝑚) = {𝐿(𝑚), 𝑥(𝑚), 𝑦(𝑚), 𝑅(𝑚), 𝐴(𝑚), 𝜎
(𝑚)
𝑏 , 𝜖(𝑚)}, are dis-

tributed as

𝑃 (𝜃(𝑚)|𝜓) = 𝑃 (𝐿(𝑚)|𝜃(𝑚)

∖𝐿(𝑚) , 𝜓)
∏︁
𝑖

𝑃 (𝑅
(𝑚)
𝑖 |𝑅𝑖)𝑃 (𝑦

(𝑚)
𝑖 |𝑦𝑖)𝑃 (𝑥

(𝑚)
𝑖 |𝑥𝑖)𝑃 (𝐴(𝑚), 𝜎

(𝑚)
𝑏 , 𝜖(𝑚))

(3.4)

where pseudocode for generating from this distribution is given in Algorithm 3. As

before, Section 3.3 describes how the hyperparameters were learned.

Algorithm 3 Run the stochastic program of type 𝜓 to make an image

procedure GenerateToken(𝜓)

for 𝑖 = 1 ... 𝜅 do

𝑅
(𝑚)
𝑖 ← 𝑅𝑖 ◁ Directly copy the type-level relation

if 𝜉(𝑚)
𝑖 = ‘along’ then

𝜏
(𝑚)
𝑖 ← 𝑃 (𝜏

(𝑚)
𝑖 |𝜏𝑖) ◁ Add variability to the attachment along the spline

end if

𝐿
(𝑚)
𝑖 ← 𝑃 (𝐿

(𝑚)
𝑖 |𝑅(𝑚)

𝑖 , 𝑇
(𝑚)
1 , ..., 𝑇

(𝑚)
𝑖−1 ) ◁ Sample stroke’s starting location

for 𝑗 = 1 ... 𝑛𝑖 do

𝑥
(𝑚)
𝑖𝑗 ← 𝑃 (𝑥

(𝑚)
𝑖𝑗 |𝑥𝑖𝑗) ◁ Add variability to the control points

𝑦
(𝑚)
𝑖𝑗 ← 𝑃 (𝑦

(𝑚)
𝑖𝑗 |𝑦𝑖𝑗) ◁ Add variability to the sub-stroke scale

end for

𝑇
(𝑚)
𝑖 ← 𝑓(𝐿

(𝑚)
𝑖 , 𝑥

(𝑚)
𝑖 , 𝑦

(𝑚)
𝑖 ) ◁ Compose a stroke’s pen trajectory

end for

𝐴(𝑚) ← 𝑃 (𝐴(𝑚)) ◁ Sample global image transformation

𝜖(𝑚) ← 𝑃 (𝜖(𝑚)) ◁ Sample the amount of pixel noise

𝜎
(𝑚)
𝑏 ← 𝑃 (𝜎

(𝑚)
𝑏 ) ◁ Sample the amount blur

𝐼(𝑚) ← 𝑃 (𝐼(𝑚)|𝑇 (𝑚), 𝐴(𝑚), 𝜎
(𝑚)
𝑏 , 𝜖(𝑚)) ◁ Render and sample the binary image

return 𝐼(𝑚)

end procedure
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3.2.1 Pen trajectories

A stroke trajectory 𝑇
(𝑚)
𝑖 (Figure 3-2) is a sequence of points in the image plane

that represents the path of the pen. Each trajectory 𝑇
(𝑚)
𝑖 = 𝑓(𝐿

(𝑚)
𝑖 , 𝑥

(𝑚)
𝑖 , 𝑦

(𝑚)
𝑖 ) is

a deterministic function of a starting location 𝐿
(𝑚)
𝑖 ∈ R2, token-level control points

𝑥
(𝑚)
𝑖 ∈ R10, and token-level scale 𝑦(𝑚)

𝑖 ∈ R. The control points and scale are noisy

versions of their type-level counterparts, 𝑃 (𝑥
(𝑚)
𝑖𝑗 |𝑥𝑖𝑗) = 𝑁(𝑥𝑖𝑗, 𝜎

2
𝑥𝐼) and 𝑃 (𝑦

(𝑚)
𝑖𝑗 |𝑦𝑖𝑗) ∝

𝑁(𝑦𝑖𝑗, 𝜎
2
𝑦) where the scale is truncated below 0.

To construct the trajectory 𝑇 (𝑚)
𝑖 (see illustration in Figure 3-2), the spline defined

by the scaled control points 𝑦(𝑚)
1 𝑥

(𝑚)
1 ∈ R10 is evaluated to form a trajectory,1 which

is shifted in the image plane to begin at 𝐿(𝑚)
𝑖 . Next, the second spline 𝑦(𝑚)

2 𝑥
(𝑚)
2 is

evaluated and placed to begin at the end of the previous sub-stroke’s trajectory, and

so on until all sub-strokes are placed.

Token-level relations must be exactly equal to their type-level counterparts, 𝑃 (𝑅
(𝑚)
𝑖 |𝑅𝑖) =

𝛿(𝑅
(𝑚)
𝑖 −𝑅𝑖), except for the “along” relation which allows for token-level variability for

the attachment along the spline using a truncated Gaussian 𝑃 (𝜏
(𝑚)
𝑖 |𝜏𝑖) ∝ 𝑁(𝜏𝑖, 𝜎

2
𝜏 ).

Given the pen trajectories of the previous strokes, the start position of 𝐿(𝑚)
𝑖 is sam-

pled from 𝑃 (𝐿
(𝑚)
𝑖 |𝑅(𝑚)

𝑖 , 𝑇
(𝑚)
1 , ..., 𝑇

(𝑚)
𝑖−1 ) = 𝑁(𝑔(𝑅

(𝑚)
𝑖 , 𝑇

(𝑚)
1 , ..., 𝑇

(𝑚)
𝑖−1 ),Σ𝐿). The function

𝑔(·) locates the stroke at an appropriate position depending on the relation

∙ For Independent relations, 𝑔(·) = 𝐿𝑖 (where 𝐿𝑖 is the type-level global location)

∙ For End relations, 𝑔(·) = end(𝑇
(𝑚)
𝑢𝑖 ) where end(·) selects the last element in a

sequence of trajectory points.

∙ For Along relations, 𝑔(·) = spline-eval(𝑇 (𝑚)
𝑢𝑖 , 𝑣𝑖, 𝜏𝑖) is the evaluation at position

𝜏𝑖 along the spline that defines the 𝑣𝑖th sub-stroke segment that makes up the

stroke trajectory 𝑇 (𝑚)
𝑢𝑖 .

1The number of spline evaluations is computed to be approximately 2 points for every 3 pixels
of distance along the spline (with a minimum of 10 evaluations).
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Figure 3-7: Samples from distribution on global scale and translation transformations,
where the original program is at the top left of the grid.

3.2.2 Image

An image transformation 𝐴(𝑚) ∈ 𝑅4 is sampled from 𝑃 (𝐴(𝑚)) = 𝑁([1, 1, 0, 0],Σ𝐴),

where the first two elements control a global re-scaling and the second two control a

global translation of the center of mass of 𝑇 (𝑚). Samples from this distribution, as

applied to an instantiated program, are shown in Figure 3-7.

After applying the transformation 𝐴(𝑚) to the trajectories 𝑇 (𝑚), ink is placed along

the trajectories using a grayscale ink model to create a 105x105 grayscale image (for

the Omniglot dataset in Section 2.2.1). The continuous gray values of the pixels

0 ≤ 𝜌𝑖𝑗 ≤ 1 are interpreted as probabilities of turning the pixels on.

The ink model closely follows the formulation developed by Hinton and Nair

(2006). Each point on the trajectory 𝑇 (𝑚) contributes up to two “units” of ink to

the four closest pixels using bilinear interpolation, where the ink units decrease lin-

early from 1 to 0 if two points are less than two pixel units apart. This method

creates a thin line of ink, which is expanded out by convolving the image twice with

the filter

𝑏 *

⎡⎢⎢⎢⎣
𝑎/12 𝑎/6 𝑎/12

𝑎/6 1− 𝑎 𝑎/6

𝑎/12 𝑎/6 𝑎/12

⎤⎥⎥⎥⎦ (3.5)

and thresholding values greater than 1.

79



This grayscale image is then perturbed by two noise processes, making the gradient

more robust during optimization and encouraging partial solutions during classifica-

tion. The first noise process blurs the model’s rendering of a character. Blurring

is accomplished through a convolution with a Gaussian filter with standard devia-

tion 𝜎
(𝑚)
𝑏 . The amount of noise 𝜎

(𝑚)
𝑏 is itself a random variable, sampled from a

uniform distribution on a pre-specified range,2 allowing for the model to adaptively

adjust the fidelity of its fit to an image (Mansinghka, Kulkarni, Perov, & Tenenbaum,

2013). The second noise process stochastically flips pixels with probability 𝜖(𝑚), such

that the overall probability of inking a binary pixel is a Bernoulli with probability

𝑃 (𝐼𝑖𝑗 = 1) = (1 − 𝜖(𝑚))𝜌𝑖𝑗 + 𝜖(𝑚)(1 − 𝜌𝑖𝑗). The amount of noise is also a random

variable that can be adaptively set during inference.3 The grayscale pixels then pa-

rameterize 105x105 independent Bernoulli distributions, completing the full model of

binary images 𝑃 (𝐼(𝑚)|𝜃(𝑚)) = 𝑃 (𝐼(𝑚)|𝑇 (𝑚), 𝐴(𝑚), 𝜎
(𝑚)
𝑏 , 𝜖(𝑚)).

3.3 Learning high-level knowledge of motor programs

The Omniglot dataset (Section 2.2.1) was randomly split into a 30 alphabet “back-

ground” set and a 20 alphabet “evaluation” set, constrained such that the background

set included the six most common alphabets as determined by Google hits. This

was also the same split that was used to evaluate the drawing data in Chapter 2.

Pairs of background images with their corresponding motor data were used to learn

the hyperparameters of the HBPL model. Several illustrations of the learned hyper-

parameters were already shown, including the empirical distribution on the number

of strokes (Figure 3-3), the empirical distribution on the number of sub-strokes (Fig-

ure 3-4), and the position models for a drawing’s first, second, and third stroke, etc.

(Figure 3-6). Another critical component of the model is the learned set of primitive

motor elements, which is shown in Figure 3-8 and described in Section 3.3.1. In the

next sections, the details are provided for learning the models of primitives, positions,

2The distribution on amount of blur is 𝜎(𝑚)
𝑏 ∼ uniform(0.5, 16). The probability map is blurred

by two convolutions with a Gaussian filter of size 11 with standard deviation 𝜎(𝑚)
𝑏 .

3The distribution on the amount of pixel noise is 𝜖(𝑚) ∼ uniform(.0001, 0.5).
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Figure 3-8: A subset of primitives. The top row shows the ten most common ones,
and the other rows show an additional random subset. Each primitive is a Gaussian
distribution on the control points of a spline. The first control point (circle) is shown
as filled, and thus the most common primitives favor drawing down and to the right.

relations, token variability, and image transformations.

3.3.1 Learning primitives

A library of primitive motor actions was learned from the background set of drawing

data (Figure 3-8). These primitives serve multiple roles. Not only do they bias

the model to generate common shapes found in characters, but since the primitives

are directed trajectories, they implement some of the direction preferences found in

Sections 2.2.4 and 2.2.6.

The learned actions are position-invariant and can be placed anywhere within

the image frame. The actions can also produce trajectories of various sizes, where

the scale is modeled as a separate random variable. However, the action primitives

prefer certain sizes (Figure 3-9), where the preferences were learned based on their

occurrence patterns in the background set. Scale specificity is necessary for capturing

interesting transition structure between primitives (Figure 3-5). Otherwise, each
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3-9: Size selectivity in the action primitives. The empirical histograms on
size for eight otherwise identical actions (horizontal movements). The units on the
x-axis are the fraction of the image canvas spanned by the movement. Primitives are
arranged from most frequent (back) to least (front), where smaller actions were more
frequent.

instantiation of a primitive action could occur at a different scale, making it difficult

to capture features like repetition.

In the Omniglot dataset, the sub-stroke trajectories have non-uniform spatial and

temporal sampling intervals, due to the fact that it is a synthesis of drawing data from

many different web browsers and computers. Even within a single participant, the

intervals are irregular since only particular mouse events are tracked by the browser

with a time stamp. To standardize the data, first, all pen trajectories were normalized

in time to have a 50 millisecond sampling interval as approximated by linear interpo-

lation. If the pen moved less than one pixel between two points, it was marked as a

pause. Sub-strokes were defined as the segments extracted between pairs of pauses.

A sequence of pauses was counted as just a single pause between sub-strokes.

After the sub-strokes were extracted, all trajectories were normalized to have a

uniform spatial resolution with one pixel distance between points, so that only the

shape of the trajectory was relevant for clustering. Furthermore, sub-stroke trajectory

was normalized to have zero mean and a common scale along its longest dimension.

Sub-stroke trajectories with less than 10 points were removed. This resulted in about

55,000 sub-stroke trajectories that could be used for clustering in order to learn prim-

itives.

Each sub-stroke was fit with a spline and re-represented by its five control points
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in R10. To achieve partial but not complete scale invariance, the scale was also

included as an additional dimension (but weighted as two dimensions). The data

fed to the clustering algorithm had ten dimensions for shape and two for scale. A

diagonal Gaussian Mixture Model (GMM) fit with expectation maximization was

used to partition sub-strokes into 1250 primitive elements. Small primitives with less

than five data points were removed. Given this partition, the parameters for each

primitive 𝑧, 𝜇𝑧, Σ𝑧, 𝛼𝑧 and 𝛽𝑧, could be fit with maximum likelihood estimation

(MLE).

An example of the size selectivity of the primitives is shown Figure 3-9, which

shows the distribution on size for eight otherwise identical actions that look like the

second action in the top row of Figure 3-8. The clustering algorithm tends to divide

frequent actions into many primitives selective for different sizes, while less frequent

actions span a wider range of sizes in the image canvas.

The transition probabilities between primitives 𝑃 (𝑧𝑖𝑗|𝑧𝑖(𝑗−1)) were estimated by

the smoothed empirical counts, after the sub-strokes were assigned to the most likely

primitive. The regularization was chosen via cross-validation (Figure 3-5).

Due to the large amount of training data, cross-validation also indicated that using

more primitives marginally improves predictive performance on held-out stroke and

sub-strokes data, but this comes at increased computational cost with otherwise little

noticeable benefit.

3.3.2 Learning start positions

The distribution of stroke start positions 𝑃 (𝐿𝑖) (Section 3.1) was estimated by dis-

cretizing the image plane and then fitting a separate multinomial grid model for a

drawing’s first and second stroke (Figure 3-6). This model component was inspired

by the structure discovered in Section 2.2.6, in the chapter that investigated general

structure in concept production. All additional strokes share a single aggregated grid

model. The probability of each cell was estimated from the empirical frequencies,

and the complexity parameters for the grid granularity, smoothing, and aggregation

threshold were chosen by cross-validation. Evidently, position is concentrated in the
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top-left (Figure 3-6), where the concentration is stronger for earlier strokes.

3.3.3 Learning relations and token variability

The hyperparameters governing relations and token variability are less straightfor-

ward to estimate, since they cannot be directly computed from the motor data. In-

stead, we fit a large number of motor programs to 800 images in the background set

using temporary values of these parameters. After the programs were fit to these real

background characters, the values were re-estimated based on this set of programs.

The temporary hyperparameter values were chosen based on an earlier version of

this model that used a more complicated fitting procedure (Lake, Salakhutdinov, &

Tenenbaum, 2013).

Relational parameters, including mixing probabilities for the relation types 𝜃𝑅

and position noise Σ𝐿, were estimated by assuming a flat prior on relation types and

examining about 1600 motor programs fit to the background set. Based on the fit

statistics, the values for the mixing proportions of relations were computed to be 34%

for independent, 5% for start, 11% for end, and 50% for along.

The token-level variability parameters for shape 𝜎𝑥, scale 𝜎𝑦, and attachment 𝜎𝜏

govern how much the pen trajectories change from exemplar to exemplar. Thus,

the 1600 motor programs were re-fit to new examples of those characters using the

procedure described in Section 4.2. The variance of the relevant exemplar statics

could be computed by comparing the values in the parses fit to the original image

versus the new image. The token-level variance in the sub-stroke control points,

scales, and attachment positions were estimated as the expectation of the squared

deviation from the mean of each pair.

3.3.4 Learning image parameters

The distribution on global transformations 𝑃 (𝐴(𝑚)) was also learned from the back-

ground set, and samples from the distribution are shown in Figure 3-7. For each

image, the center of mass and range of the inked pixels was computed. Second, im-
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ages were grouped by character, and a transformation (scaling and translation) was

computed for each image so that its mean and range matched the group average.

Based on this large set of approximate transformations, a covariance on transforma-

tions Σ𝐴 could be estimated. The ink model hyperparameters 𝑎 = 0.5 and 𝑏 = 6 were

fit with maximum likelihood given a small subset of background pairs of images and

drawings.

3.4 Inference for discovering motor programs from

images

Posterior inference in this model is very challenging, since parsing an image 𝐼(𝑚) re-

quires exploring a large combinatorial space of different numbers and types of strokes,

relations, and sub-strokes. Fortunately, researchers interested in handwriting recogni-

tion have developed fast bottom-up methods for analyzing the structure of handwrit-

ten characters. We take advantage of these algorithms, using a fast structural analysis

to propose values of the latent variables in HBPL. This produces a large set of possible

motor programs – each approximately fit to the image of interest. The most promising

motor programs are chosen and refined with continuous optimization and MCMC. The

end product is a list of 𝐾 high-probability parses, 𝜓[1], 𝜃(𝑚)[1], ..., 𝜓[𝐾], 𝜃(𝑚)[𝐾], which

are the most promising candidates discovered by the algorithm. An example of the

end product is illustrated in Figure 3-12a, and the steps of the algorithm are detailed

below.

3.4.1 Discrete approximation

Here is a summary of the basic approximation to the posterior. These parses approx-

imate the posterior with a discrete distribution,

𝑃 (𝜓, 𝜃(𝑚)|𝐼(𝑚)) ≈
𝐾∑︁
𝑖=1

𝑤𝑖𝛿(𝜃
(𝑚) − 𝜃(𝑚)[𝑖])𝛿(𝜓 − 𝜓[𝑖]), (3.6)
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Image

a)
Thinned

b)

Thinned
c)

Raw graph

d)

Cleaned graph
e)

Figure 3-10: Illustration of extracting the character skeleton. a) Original image.
b) Thinned image. c) Zoom highlights the imperfect detection of critical points
(red pixels). d) Maximum circle criterion applied to the spurious critical points. e)
Character graph after merging.

where each weight 𝑤𝑖 is proportional to parse score, marginalizing over type-level

shape variables 𝑥 and attachment positions 𝜏 ,

𝑤𝑖 ∝ 𝑤𝑖 = 𝑃 (𝜓
[𝑖]
∖𝑥,𝜏 , 𝜃

(𝑚)[𝑖], 𝐼(𝑚)) (3.7)

and constrained such that
∑︀

𝑖𝑤𝑖 = 1.

Rather than using just a point estimate for each parse, the approximation can

be improved by incorporating some of the local variance around the parse. Since

the token-level variables 𝜃(𝑚), which closely track the image, allow for little vari-

ability, and since it is inexpensive to draw conditional samples from the type-level

𝑃 (𝜓|𝜃(𝑚)[𝑖], 𝐼(𝑚)) = 𝑃 (𝜓|𝜃(𝑚)[𝑖]) as it does not require evaluating the likelihood of the

image, just the local variance around the type-level is estimated with the token-level

fixed. Metropolis Hastings is run to produce N samples (Section 3.4.6) for each parse

𝜃(𝑚)[𝑖], denoted by 𝜓[𝑖1], ..., 𝜓[𝑖𝑁 ], where the improved approximation is

𝑃 (𝜓, 𝜃(𝑚)|𝐼(𝑚)) ≈ 𝑄(𝜓, 𝜃(𝑚), 𝐼(𝑚)) =
𝐾∑︁
𝑖=1

𝑤𝑖𝛿(𝜃
(𝑚) − 𝜃(𝑚)[𝑖])

1

𝑁

𝑁∑︁
𝑗=1

𝛿(𝜓 − 𝜓[𝑖𝑗]). (3.8)

Given an approximate posterior for a particular image, the model can evaluate the

posterior predictive score of a new image by re-fitting the token-level variables (bottom

Figure 3-12b), as explained in Section 4.2 on inference for one-shot classification.
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a)

28.2 0.391
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b)
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47.2

c)

Figure 3-11: Illustration of the random walk choosing between three potential moves,
after drawing the topmost vertical edge (in the direction of the black arrow) and reach-
ing a new decision point. The three potential trajectories are fit with the smoothest
spline that stays within the image ink and does not deviate more than 3 pixels in
any direction from the original trajectory (thick yellow line). Given these smoothed
trajectory options, move a) has a local angle of 0 degrees (computed between the blue
and purple vectors), move b) is 28 degrees, and move c) is 47 degrees.

3.4.2 Extracting the character skeleton

Search begins by applying a thinning algorithm to the raw image (Figure 3-10a) that

reduces the line width to one pixel (Lam et al., 1992) (Figure 3-10b). This thinned

image is used to produce candidate parses, although these parses are ultimately scored

on the original image. The thinned image can provide an approximate structural

analysis in the form of an undirected graph (as in Figure 3-10e), where edges (green)

trace the ink and nodes (red) are placed at the terminal and fork (decision) points.

While these decision points can be detected with simple algorithms (Liu et al., 1999),

this process is imperfect and produces too many fork points (red pixels in Figure

3-10b and c). Many of these inaccuracies can be fixed by removing spurious branches

and duplicate fork points with the “maximum circle criterion” (Liao & Huang, 1990).

This algorithm places the largest possible circle on each critical point, such that the

circle resides within the original ink (gray regions in Figure 3-10d). All critical points

with connecting circles are then merged (Figure 3-10e).

3.4.3 Generating random parses

A candidate parse is generated by a taking a random walk on the character skeleton

with a “pen,” visiting nodes until each edge has been traversed at least once. For many

characters in the dataset, the graphs are sufficiently large that unbiased random walks
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do not explore the interesting parts of the parse space, which grows exponentially in

the number of edges. Instead of an unbiased walk, the random walker stochastically

prefers actions 𝐴 that minimize the local angle of the stroke trajectory around the

decision point

𝑃 (𝐴) ∝ exp(−𝜆𝜃𝐴), (3.9)

where 𝜃𝐴 is the angle associated with action (Figure 3-11) and 𝜆 is a constant. Two

other possible actions, picking up the pen and re-tracing a trajectory, pay a cost of

45 and 90 degrees respectively. If the pen is in lifted position, the random walk must

pick a node to put the pen down on to start the next stroke. To bias the random walk

towards completing the drawing efficiently, the start node is chosen in proportion to

1/𝑏𝛾, where 𝑏 is the number of new (unvisited) edges branching from that node.

This random walk process is repeated many times to generate a range of candidate

parses. Random walks are generated until 150 parses or 100 unique strokes, shared

across all of the parses, have been sampled. Limiting the number of unique strokes is

a natural criterion, since sub-parsing these strokes is a computational bottleneck, as

described in the next section. Larger values of the constants 𝜆 and 𝛾 are better for

parsing complex characters, since low stochasticity is critical for finding smooth parses

in a tremendous search space. But smaller values of 𝜆 and 𝛾 are better for simple

characters, where the algorithm has the computational resources to more exhaustively

explore the parse space. To get the best of both, different values of 𝜆 and 𝛾 are

sampled before starting each random walk, producing both low and high entropy

random walks as candidates.

3.4.4 Searching for sub-strokes

Before any candidate parse can be scored as a complete motor programs (Eq. 3.7), the

strokes must be sub-divided into sub-strokes. To do so, the strokes in each random

walk are smoothed while enforcing that the trajectories stay within the original ink

(as in Figure 3-11), in order to correct for spurious curves that arise from thinning

algorithms (see Figure 3-11a for an example). The smoothed strokes are then parsed
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into sub-strokes by running a simple greedy search for each stroke trajectory. During

search, operators add, remove, perturb, or replace pauses along the trajectory to form

sub-strokes. To score the quality of the decomposition, the sub-strokes are fit with

splines, classified as primitives 𝑧𝑖, and scored by the generative model for strokes

𝑃 (𝑥
(𝑚)
𝑖 , 𝑦

(𝑚)
𝑖 , 𝑧𝑖) = 𝑃 (𝑧𝑖)

𝑛𝑖∏︁
𝑗=1

𝑃 (𝑦
(𝑚)
𝑖𝑗 |𝑦𝑖𝑗)𝑃 (𝑦𝑖𝑗|𝑧𝑖𝑗)

∫︁
𝑃 (𝑥

(𝑚)
𝑖𝑗 |𝑥𝑖𝑗)𝑃 (𝑥𝑖𝑗|𝑧𝑖𝑗) d𝑥𝑖𝑗,

(3.10)

where 𝑦𝑖 is approximated by setting it equal to 𝑦(𝑚)
𝑖 . There is also a hard constraint

that the spline approximation to the original trajectory can miss its target by no

more than 3 pixels.

After the search process is run for each stroke trajectory, each candidate motor

program with variables 𝜓 and 𝜃(𝑚) is fully-specified and tracks the image structure

relatively closely. The stroke order is optimized for the best 2𝐾 motor programs, and

then finally the prior score 𝑃 (𝜃(𝑚)|𝜓)𝑃 (𝜓) is used to select the 𝐾 best candidates to

progress to the next stage of search, which fine-tunes the motor programs.

3.4.5 Optimization and fine-tuning

Holding the discrete variables fixed, the set of continuous variables (including 𝐿(𝑚),

𝜏 (𝑚), 𝑥(𝑚), 𝑦(𝑚), 𝜖(𝑚), 𝜎(𝑚)
𝑏 ) are optimized to fit the pixel image with Matlab’s “active-

set” constrained optimization algorithm, using the full generative score as the ob-

jective function (Eq. 3.7). There are two simplifications to reduce the number of

variables: the affine warp 𝐴(𝑚) is disabled and the relations 𝑅𝑖 are left unspecified

and re-optimized during each evaluation of the objective function. After optimization

finds a local maximum, the optimal joint setting of stroke directions and stroke order

are chosen using exhaustive enumeration for characters with five strokes or less, while

considering random subsets for more complex characters. Finally, the best scoring

relations are chosen, and a greedy search to split strokes (at any sub-stroke transition)

and merge strokes (at places where a stroke begins at the end of the previous stroke)

proceeds until the score can no longer be improved.
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3.4.6 MCMC to estimate local variance

At this step, the algorithm has 𝐾 high-probability parses 𝜓[1], 𝜃(𝑚)[1], ..., 𝜓[𝐾], 𝜃(𝑚)[𝐾]

which have been fine-tuned to the images. Each parse spawns a separate run of

MCMC to estimate the local variance around the type-level by sampling from 𝑃 (𝜓|𝜃(𝑚)[𝑖]).

This is inexpensive since it does not require evaluating the likelihood of the image.

Metropolis Hastings moves with simple Gaussian proposals are used for the shapes

𝑥, scales 𝑦, global positions 𝐿, and attachments 𝜏 . The sub-stroke ids 𝑧 are updated

with Gibbs sampling. Each chain is run for 200 iterations over variables and then

sub-sampled to get 𝑁 = 10 evenly spaced samples to form the 𝑄(·) approximation to

the posterior in Eq. 3.8.

3.5 Inference for one-shot classification

One-shot classification involves evaluating the probability of a test image 𝐼(𝑇 ) given

a single training image of a new character 𝐼(𝑐), where the choice of amongst 𝐶 classes

for 𝑐 = 1, ..., 𝐶. An example trial of one-shot classification is shown in Figure 4-1.

HBPL uses a Bayesian classification rule for which an approximate solution can be

computed

argmax
𝑐

log𝑃 (𝐼(𝑇 )|𝐼(𝑐)). (3.11)

Intuitively, the approximation uses the HBPL search algorithm to get 𝐾 = 5 parses

of 𝐼(𝑐), runs 𝐾 MCMC chains to estimate the local type-level variability around each

parse, and then runs 𝐾 gradient-based optimization procedures to re-fit the token-

level variables 𝜃(𝑇 ) (all are continuous) to fit the test image 𝐼(𝑇 ). The approximation

can be written as (see Section A.1 for derivation)

log𝑃 (𝐼(𝑇 )|𝐼(𝑐)) ≈ log

∫︁
𝑃 (𝐼(𝑇 )|𝜃(𝑇 ))𝑃 (𝜃(𝑇 )|𝜓)𝑄(𝜃(𝑐), 𝜓, 𝐼(𝑐)) d𝜓 d𝜃(𝑐) d𝜃(𝑇 )(3.12)

≈ log
𝐾∑︁
𝑖=1

𝑤𝑖 max
𝜃(𝑇 )

𝑃 (𝐼(𝑇 )|𝜃(𝑇 )) 1

𝑁

𝑁∑︁
𝑗=1

𝑃 (𝜃(𝑇 )|𝜓[𝑖𝑗]), (3.13)
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where 𝑄(·, ·, ·) and 𝑤𝑖 are from Eq. 3.8. Figure 3-12b shows examples of this classifi-

cation score.

While inference so far involves parses of 𝐼(𝑐) refit to 𝐼(𝑇 ), it also seems desirable

to include parses of 𝐼(𝑇 ) refit to 𝐼(𝑐), namely 𝑃 (𝐼(𝑐)|𝐼(𝑇 )). We can re-write our clas-

sification rule (Eq. 3.11) to include both the forward and reverse terms (Eq. 3.16),

which is the rule we use,

argmax
𝑐

log𝑃 (𝐼(𝑇 )|𝐼(𝑐)) = argmax
𝑐

log𝑃 (𝐼(𝑇 )|𝐼(𝑐))2 (3.14)

= argmax
𝑐

log[
𝑃 (𝐼(𝑇 ), 𝐼(𝑐))

𝑃 (𝐼(𝑐))
𝑃 (𝐼(𝑇 )|𝐼(𝑐))] (3.15)

= argmax
𝑐

log[
𝑃 (𝐼(𝑐)|𝐼(𝑇 ))
𝑃 (𝐼(𝑐))

𝑃 (𝐼(𝑇 )|𝐼(𝑐))], (3.16)

where 𝑃 (𝐼(𝑐)) ≈ ∑︀
𝑖𝑤𝑖 from Eq. 3.7. These two rules are equivalent if inference is

exact, but due to our approximation, the two-way rule performs better as judged by

pilot results.

3.6 Variants of the modeling approach

Across the suite of tasks presented in the next chapters, we compare against five

variants of the HBPL approach. These alternative models allow us to conduct a

targeted analysis of why HBPL works for any given task.

3.6.1 Affine model

The full HBPL model is compared to a transformation-based “affine model” that

models the variance in image tokens as just global scales, translations, blur, and pixel

noise. This works in a similar spirit to congealing models the can perform one-shot

classification by learning a model of transformations from related concepts (Miller,

Matsakis, & Viola, 2000). This model still benefits from good bottom-up image

analysis and the same motor program inference procedure (Section 3.4). However,
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Figure 3-12: Illustration of HBPL inference for parsing and then one-shot classifica-
tion. a) The raw image (i) is processed by a thinning algorithm (Lam et al., 1992)
(ii) and then analyzed as an undirected graph (Liu et al., 1999) (iii) where parses
are guided random walks (Section 3.4). b) The five best parses found for that image
(top row) are shown with their log𝑤𝑗 (Eq. 3.7), where numbers inside circles denote
stroke order and starting position, and smaller open circles denote sub-stroke breaks.
These five parses were re-fit to three different raw images of characters (left in image
triplets), where the best parse (top right) and its associated image reconstruction
(bottom right) are shown above its score (approximate log𝑃 (𝐼(𝑇 )|𝐼(𝑐)) in Eq. 3.13).
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Figure 3-13: Illustration of the affine model performing classification. HBPL parses
for one character were fit to three others (left in image triplets), where the best parse
(top) and its associated image reconstruction (bottom) are shown above its score
(approximate log𝑃 (𝐼(𝑇 )|𝐼(𝑐)) in Eq. 3.17).

the model is essentially “without strokes” since the splines are frozen in a rigid state

after parsing, before the classification procedure of fitting a new image (Section 3.5).

During classification, only the warp 𝐴(𝑚), blur 𝜎(𝑚)
𝑏 , and noise 𝜖(𝑚) are re-optimized

to a new image as shown in Figure 3-13. Formally, the classification function is

log𝑃 (𝐼(𝑇 )|𝐼(𝑐)) ≈ log
𝐾∑︁
𝑖=1

𝑤𝑖 max
{𝐴(𝑇 ),𝜎

(𝑇 )
𝑏 ,𝜖(𝑇 )}

𝑃 (𝐼(𝑇 )|𝜃(𝑇 )) 1

𝑁

𝑁∑︁
𝑗=1

𝑃 (𝜃(𝑇 )|𝜓[𝑖𝑗]). (3.17)

This equation is the same as the classification rule in Eq. 3.13 except the argument of

“max” was changed from 𝜃(𝑇 ) to {𝐴(𝑇 ), 𝜎
(𝑇 )
𝑏 , 𝜖(𝑇 )}. The two-way Bayesian classification

rule (Eq. 3.16) was found to perform worse than the one-way rule (Eq. 3.11), so the

one-way rule was used for the classification experiments for fairer comparison.

3.6.2 No Type-level Transfer Learning

Transfer learning, also known as representation learning or learning-to-learn, is a key

principle in HBPL (Section 1.6). This chapter outlined the many hyperparameters

that govern the generative process that produces programs, including the fitting pro-
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cedures for learning them based on a large set of image and drawing pairs in the

background set of characters. To separately examine the role of the structure of

the model versus the parameters of the model discovered through transfer learning,

a model was considered that lesions the role of transfer learning in the type-level

parameters (Section 3.1). The lesions change the following parameters:

∙ Sub-stroke shape. The distribution on type-level control points 𝑥𝑖𝑗, which was

previously defined by a Gaussian 𝑃 (𝑥𝑖𝑗|𝑧𝑖𝑗) = 𝑁(𝜇𝑧𝑖𝑗 ,Σ𝑧𝑖𝑗) for primitive iden-

tifier identifier 𝑧𝑖𝑗 (Figure 3-8), was replaced by a uniform distribution in R10

bounded by the allowed range of the control points. This means that HBPL

favors no particular sub-stroke shape over any other.

∙ Sub-stroke scale. The scale of sub-strokes 𝑦𝑖𝑗, which was previously modeled

separately for each primitive as 𝑃 (𝑦𝑖𝑗|𝑧𝑖𝑗) = Gamma(𝛼𝑧𝑖𝑗 , 𝛽𝑧𝑖𝑗), was replaced by

a uniform distribution between zero pixels and the entire length of the image

frame.

∙ Stroke relations. Since the interaction between strokes is another feature of the

model learned from the background data set, the mixture of relations governed

by 𝜃𝑅 was lesioned and only independent strokes were allowed.

∙ Stroke position. The distribution on stroke start positions, which was previously

fit to the empirical statistics (Figure 3-6), was replaced as a uniform distribution

in image space for all the strokes in a character.

In summary, this simpler compositional casual model attempts to fit the image as

closely as possible while using as few sub-strokes as possible. Although the model can

produce any sub-stroke it needs at inference time, it has few preferences about what

those trajectories should look like a priori. For example, Figure 3-14 shows a diverse

set of motor programs that produce a ‘+’ sign, where each program has the same

prior probability since it uses the same number of strokes and sub-strokes. However,

it is important to emphasize that this does not imply they have the same posterior

probability, when the likelihood of the image is taken into account. It is often the
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Figure 3-14: A set of programs with the same prior probability, under a model with
no type-level transfer learning.

case that “better” parses, such as parsing a plus sign with a horizontal and vertical

stroke, fit the raw pixels better than the alternatives. In these cases, most of the

interesting work is being done by bottom-up rather than top-down processes.

The learned distributions on the number of strokes 𝑃 (𝜅) and the number of sub-

strokes 𝑃 (𝑛𝑖|𝜅) were not lesioned, as they are less important and usually swamped by

the other terms in the model score during inference. Also, this lesioned model leaves

the learned token-level parameters untouched, and they are lesioned separately in the

following alternative model (Section 3.6.3).

3.6.3 No Token-level Transfer Learning

Transfer learning from the background set of characters occurs at multiple levels of

the HBPL hierarchy, including the token-level variability across multiple instances

of the same motor program (Figure 3-1 level v). This model examines the effect of

setting these token-level parameters to values that allow too much variability, while

other the type-level structural parameters are left intact.

The token-level variability parameters for spline shape 𝜎𝑥, scale 𝜎𝑦, and attach-

ment 𝜎𝜏 govern how much the pen trajectories change from exemplar to exemplar. In

other words, they govern motor variability as well as simple structural variability for

the attachment relations. The procedure for fitting these parameters was described in

Section 3.3.3. To lesion the effect of learning on these parameters, their values were
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set to three times the values given by the fitting procedure – values that cause signif-

icantly more exemplar variability than appropriate when sampling new instances of a

motor program (Section 6-3). In addition, the variability parameter Σ𝐴 that governs

the affine transformations was similarly set such that its standard deviations were

three times the amount suggested by the learning-to-learn procedure.

The affine model (Section 3.6.1) can also be interpreted as another way of lesioning

token-level transfer learning. Rather than setting the variability parameters too high,

they are set too low – in a way so extreme that they disallow any token-level variability.

3.6.4 One spline model

The “one spline” model was inspired by earlier analysis-by-synthesis models for hand-

written character recognition, especially the spline-based model of Revow et al. (1996)

and a more sophisticated implementation by Hinton and Nair (2006) that controlled

a pen by attaching springs and adjusting their stiffness. In some ways, these mod-

els capture the actual causal generative process quite closely, by specifying a motor

program for moving a pen along a trajectory to produce a character. However, these

earlier models differ from HBPL in that they are not compositional – characters were

modeled with just one spline/stroke (Revow et al., 1996) or one stroke unless an ad-

ditional stroke was added by hand (Hinton & Nair, 2006). In contrast, HBPL must

solve a difficult parsing problem by decomposing a character in to many splines at

two levels of hierarchy: strokes and sub-strokes.

To investigate the role of compositionality in the concept learning tasks in this

thesis, we developed a non-compositional model of handwritten characters that use

just a single pen trajectory modeled as a spline. Unlike the models that inspired this

approach, the “one spline” model is a complete generative model like HBPL where its

hyperparameters were learned from the background set of drawing data in Omniglot.
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Generative model

As in HBPL, there is a type and token-level distinction in generating a character

concept. The program for generating types is shown in Algorithm 4 and the program

for generating tokens is shown in Algorithm 5. At the type-level, the first step is to

sample the number of control points in the spline 𝑛 from the empirical distribution

(Figure 3-15a). The second step is to sample the control points for the spline. The

first control point 𝑃 (𝑋1) is sampled from the empirical distribution of start positions

(Figure 3-15b). Additional control points are sampled from a first-order Markov

Process given the previous control point 𝑃 (𝑋𝑖|𝑋𝑖−1), where Figure 3-15c shows the

empirical distribution on difference in position between consecutive control points. As

is the case with HBPL, the model can capture a general downwards and rightwards

bias. This transition distribution 𝑃 (𝑋𝑖|𝑋𝑖−1) is modeled as a mixture of Gaussians.

The generative process for character tokens is an analogous (although simpler)

algorithm to the one developed for HBPL (Section 3.2). Stroke variance is modeled

as Gaussian noise on the control points 𝑃 (𝑋
(𝑚)
𝑖 |𝑋𝑖) = 𝑁(𝑋𝑖, 𝜎

2
𝑥𝐼). The distribution

on the variables including the affine transformation 𝐴(𝑚), pixel noise 𝜖(𝑚), blur 𝜎(𝑚)
𝑏 ,

and binary image 𝐼(𝑚) are taken directly from their implementation in HBPL to

facilitate the closest possible comparison between the models.

Algorithm 4 One spline model: Sample a spline that defines a character concept

procedure GenerateOneSplineType

𝑛← 𝑃 (𝑛) ◁ Sample the number of control points

𝑋1 ← 𝑃 (𝑋1) ◁ Sample the first control point

for 𝑖 = 2 ... 𝑛 do

𝑋𝑖 ← 𝑃 (𝑋𝑖|𝑋𝑖−1) ◁ Sample the next control point given the previous

end for

𝜓 ← {𝑛,𝑋}
return @GenerateOneSplineToken(𝜓) ◁ Return function handle

end procedure

97



−50 −25 0 25 50
−50

−25

0

25

50

0 10 20 30 40 50 60
0

500

1000
Number of control points

fre
qu

en
cy

a)

b) c)

Figure 3-15: Conditional distributions used to generate characters from the one stroke
model. a) Distribution on the number of control points in a spline. b) Position of
the first control point. c) Contour plot of the transition model describing where the
next control point should be placed given that the current control point is located at
point (0, 0).

Algorithm 5 One spline model: Add variance to spline of type 𝜓 to make an
image

procedure GenerateOneSplineToken(𝜓)

for 𝑖 = 1 ... 𝑛 do

𝑋
(𝑚)
𝑖 ← 𝑃 (𝑋

(𝑚)
𝑖 |𝑋𝑖) ◁ Sample variance on control points

end for

𝐴(𝑚) ← 𝑃 (𝐴(𝑚)) ◁ Sample global image transformation

𝜖(𝑚) ← 𝑃 (𝜖(𝑚)) ◁ Sample the amount of pixel noise

𝜎
(𝑚)
𝑏 ← 𝑃 (𝜎

(𝑚)
𝑏 ) ◁ Sample the amount blur

𝐼(𝑚) ← 𝑃 (𝐼(𝑚)|𝑋(𝑚), 𝐴(𝑚), 𝜎
(𝑚)
𝑏 , 𝜖(𝑚)) ◁ Render and sample the binary image

return 𝐼(𝑚)

end procedure
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Figure 3-16: Illustration of the one stroke model performing classification. For de-
scription and comparison with other models, see Figures 3-12 and 3-13.

Parameter learning

An important set of hyper-parameters is the prior distribution on the number of

control points. This variable cannot be directly observed in the original background

drawings. Instead, the drawings were converted into a single trajectory where a

straight line was drawn between the end and beginning of consecutive strokes. This

trajectory was modeled as a uniform cubic b-spline (as in HBPL), and the number of

control points was adaptively selected by adding control points until the error in the

spline approximation plateaued (with a minimum of six control points). In this way,

each drawing in the background set could be summarized by a single spline, and then

number of control points in those splines is summarized in Figure 3-15a.

With each drawing summarized by a spline, the empirical distribution on where

to place a new control point given the previous was computed (Figure 3-15c) and

modeled as a Gaussian mixture model with forty mixture components fit with expec-

tation maximization. The distribution on the first control point was computed using

the same procedure as HBPL’s position model for its first stroke (Figure 3-15b).
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Inference

The inference procedure for learning motor programs and one-shot classification was

the same as in HBPL (Section 3.4 and 3.5) except for the following differences. The

bottom-up algorithm proposes a range of parses of characters into strokes. Rather

than spawning additional seach procedures to parse those strokes into sub-strokes

as in HBPL (Section 3.4.4), the parse is converted into a single trajectory using the

spline-fitting procedure described above in Section 3.6.4. As in HBPL, the candidate

parses need to be evaluated in a preliminary fashion so the most promising parses

can be further optimized while the rest are discarded. Rather than scoring each

preliminary motor program with the prior on motor programs (Section 3.4.4), the one

stroke model also includes the image score, since it has a greater tendency to draw

outside the inked regions and these candidates should be appropriately penalized

before further consideration in the search algorithm.

3.6.5 Simple strokes model

HBPL was compared with a much simpler stroke-based model from earlier work that

we refer to as “simple strokes” (Lake, Salakhutdinov, Gross, & Tenenbaum, 2011).

Simple strokes is also a hierarchical generative model of handwritten characters (Fig-

ure 3-17), where character types are compositions of spline-based primitive strokes.

While the model is compositional and relies on learning-to-learn, its operationalization

of strokes is rather impoverished, and thus the model is too abstract to be considered

causal in the same way that HBPL is. The model has a number of limitations when

compared to HBPL.

∙ There were no relations so the position of each stroke is independent of the

others.

∙ The library of 1000 primitive strokes were rigid spline centroids, functioning

more like stochastic image fragments than flexible trajectories. The spline con-

trol points could not vary at either the type or token level.
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Figure 3-17: The generative process behind the simple strokes model, where a char-
acter concept is defined by a set of parts with no relations. At the character token
level, strokes can vary in position but not in their shape or scale.

∙ The primitive strokes had a fixed size and scale that did not vary within or

across characters.

∙ There was no affine transformation to model variations in size across images of

a character.

A full description of the generative model can be found in Lake et al. (2011).

At inference time, a character image is fit by a subset of latent rigid stroke trajec-

tories. These trajectories cannot change shape, and thus the model must choose the

best rigid strokes, however ill-fitting (see Figure 3-18). Essentially, a simple stroke

character is represented as rigid stroke-like image fragments that vary slightly in po-

sition but not in shape from token to token (Figure 3-17). In contrast, HBPL has the

flexibility to fit any trajectory during inference, since each primitive defines a type of

part that has infinite support in control point space – although with vanishingly small

probability as it moves away from the mean of the Gaussian defining the primitive.
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Figure 3-18: Examples of the “simple strokes” model fitting stroke decompositions to
images.
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Chapter 4

Classification, exemplar generation,

and structure prediction

This chapter investigates some of the basic tasks supported by human conceptual

representations: classification, exemplar generation, feature prediction, and parsing

objects into their constituent parts. Remarkably, the abilities (and many more) are

available to a learner after only the barest of experience with a new concept. A

paradigmatic case of this is learning a new handwritten character, and here we com-

pare this human ability with Hierarchical Bayesian Program Learning (HBPL), vari-

ants of the HBPL approach, deep learning models, and classic pattern recognition

techniques. The four tasks covered in this chapter are as follows:

∙ One-shot classification (Section 4.2).

∙ One-shot exemplar generation (Section 4.3).

∙ One-shot exemplar generation with dynamics (Section 4.5).

∙ Predicting latent dynamic structure (Section 4.6).
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4.1 Behavioral experiments on Amazon’s Mechani-

cal Turk

The behavioral experiments in this chapter, as well as in the following chapters, were

conducted on-line using the Amazon Mechanical Turk (AMT) platform. AMT has

been shown to be a source of high quality behavior data, and many classic findings

in cognitive psychology have been replicated using data collected on-line (Crump,

McDonnell, & Gureckis, 2013). The sections below detail the general procedure we

used for collecting data on Mechanical Turk.

4.1.1 Participants

We aimed to compensate the participants at a rate off at least six dollars per hour,

based on the average time it took participants to complete a a particular experiment.

Most experiments were short and lasted between 10 and 20 minutes.

Participants were recruited from a pool of AMT workers based in the United

States, as filtered through AMT’s worker qualification system. Additional qualifica-

tions ensured that a worker had at least a 95 percent success rate of getting his or

her work approved for payment. Furthermore, we required that he or she complete at

least 75 percent of the tasks (known as HITs on AMT) that he or she begins. AMT’s

participant agreement certifies that workers are age 18 or older.

Informally, we have found that the requirement that workers are based in the

United States is particularly important for ensuring data quality. This requirement

was double checked through a self-reported survey question after each experiment.

We also desired unique participants for each behavioral study. This requirement

was implemented by tracking AMT workerId’s across the experiments and showing a

different loading page for those who have already participated in previous studies.
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4.1.2 Instruction checks

It is also important to explicitly check that participants read the instructions and

understand the task – a factor that has been shown to influence data quality on

AMT (Crump et al., 2013). We required participants to pass a multiple choice quiz

of (typically five) questions after reading the instructions and before the experiment

begins. Rather than rejecting participant who failed to answer all of the questions

correctly, participants were recycled by allowing them to re-read the instructions

and retake the quiz, an effective procedure that has been used in previous work

(Oppenheimer, Meyvis, & Davidenko, 2009). If a question was answered incorrectly,

participants were told how many questions they had missed but not which ones or

what the correct answers are. They were then sent back to re-read the instructions

and retake the quiz. The quiz tested important features of the experiment rather

than incidental details. Furthermore, during each of the experiments, a button was

provided so the instructions could be reviewed at any point.

4.1.3 Quality checks

Although every effort was made to include the data from all those who participated,

some participants may not devote sufficient effort to the experiment. Since the main

dependent measure of interest was accuracy in many of the experiments in this thesis,

and accuracy was hypothesized to be low in some conditions, it would be inappropriate

to exclude participants on the basis of accuracy. Instead, for experiments with a

binary forced choice (usually the left (L) and right (R) arrow keys), long sequences

of repeated responses (‘LLLLRRRR...’), alternating responses (‘LRLRLRLR...’), or

heavily bias responses ‘LLLLLLLL...’ were detected and used as criteria for exclusion.

The criteria for exclusion was very conservative, where this pattern would occur less

than one in ten thousand times (𝑝 < .0001) by a responder with a 50% chance of

repeating the previous response or a responder unbiased between ‘L’ and ‘R’.

For experiments with multiple conditions, the conditions were run simultaneously

(unless otherwise noted) where the website assigns conditions to participants uniform
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a) b)

Figure 4-1: Where are the other examples of the new character concepts shown in
red? Answers are row 4 column 3 (a) and row 2 column 4 (b).

at random. If a demo trial was included in the instructions that might change between

conditions, this was blocked during ‘preview mode’ on AMT, in order to ensure each

participant saw instructions from just one condition. Also, workers were asked to

report any technical difficulties by checking a box after the experiment and explaining

the source of the difficulty. If a technical problem led them to restart the experiment,

perhaps getting a different condition than originally assigned, the data from this

participant was not analyzed.

4.2 One-shot classification

People, HBPL, variants of HBPL, and several machine learning approaches were

evaluated on one-shot classification of new handwritten characters. The one-shot

classification tasks require discriminations to be made within an alphabet of letters,

providing a more challenging test than the between-alphabet classification tasks stud-

ied in Chapter 2.

4.2.1 Stimuli

Ten alphabets were chosen from the Omniglot evaluation set to form the ten within-

alphabet classification tasks (Figure 4-2). Each task has 40 trials consisting of a test
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image compared to just one example of 20 new characters from the same alphabet.

Figure 4-1 shows two example trials.

The images for each task were produced by four relatively typical drawers of

that alphabet, and the set of 20 characters was picked to maximize diversity when

alphabets had more than 20 characters. The four drawers were randomly paired to

form two groups, and one drawer in each group provided the test examples for 20

trials while the other drawer provided the 20 training examples for each of these test

trials. For each alphabet shown in Figure 4-2, rows 1 and 2 were paired (where row

1 were the training examples) and rows 3 and 4 were paired (where row 3 was the

training examples).

4.2.2 People

Forty AMT participants were tested on one-shot classification. On each trial, as in

Figure 4-1, participants were shown an image of a new character and asked to click

on another image that shows the same character. To ensure classification was indeed

one-shot, participants completed just one randomly selected trial from each of the 10

within-alphabet classification tasks, so that characters never repeated across trials.

There were two practice trials with the Latin and Greek alphabets followed by 10

more trials. There was feedback after every trial.

4.2.3 Models

Hierarchical Bayesian Program Learning was compared with two different sets of

computational models for one-shot classification. The first set includes three deep

learning models that have previously been applied to handwritten character recogni-

tion. While deep learning is a leading approach in character recognition and object

recognition, these models are rarely evaluated in the one-shot learning setting that is

a hallmark of human concept learning (Section 1.5). The second set includes variants

of HBPL and its general approach, which were designed to reveal which modeling

principles are necessary for building a high performance one-shot classifier. All of
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Figure 4-2: Ten alphabets from the Omniglot dataset, each with 20 characters drawn
by four different people.
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Figure 4-3: HBPL performing classification. The five best parses found for that
image (top row) are shown with their normalized log posterior probability (log𝑤𝑗
Eq. 3.7). The numbers inside circles denote stroke order and starting position, and
smaller open circles denote sub-stroke breaks. These five parses were re-fit to three
different raw images of characters (left in image triplets), where the best parse (top
right) and its associated image reconstruction (bottom right) are shown above its
score (approximate log𝑃 (𝐼(𝑇 )|𝐼(𝑐)) in Eq. 4.1).

109



the models were pre-trained on the background set of 30 alphabets that included 964

characters, and none of these alphabets (and characters) were seen again or used for

evaluating one-shot learning.

∙ Hierarchical Bayesian Program Learning (HBPL). HBPL performs one-

shot classification by inferring a set of likely latent motor programs for a training

example 𝐼(𝑐) and then evaluating the probability of the test example 𝐼(𝑇 ) given

these motor programs. Decisions are made by the Bayesian classification rule

argmax
𝑐

log𝑃 (𝐼(𝑇 )|𝐼(𝑐)), (4.1)

which requires computing the probability of a test image 𝐼(𝑇 ) given each of the

20 training images 𝐼(𝑐) for 𝑐 = 1, ..., 20. This classification rule is approximated

using a method described in Section 3.5, where the model finds 𝐾 = 5 likely

parses of 𝐼(𝑐), estimates the local type-level variance around each parse using

MCMC, and then runs𝐾 gradient-based optimize procedures to re-fit the motor

programs to the test image 𝐼(𝑇 ). An illustration of the model performing one-

shot classification is shown in Figure 4-3 (reprinted from an earlier Figure 3-12).

∙ Deep Boltzmann Machines (DBMs). A Deep Boltzmann Machine is a gen-

erative model of binary images that learns a hierarchy of distributed representa-

tions for producing the raw data, in the style of classical neural networks. The

model is hierarchical in that the bottom layer has units corresponding to pixels

and higher layers represent learned abstract features. Unlike Deep Belief Net-

works (Hinton & Salakhutdinov, 2006), which have directed connections, DBMs

have only undirected connections between units. Following Salakhutdinov and

Hinton (2009), the DBM used in this task had three hidden layers of 1000 hid-

den units each. The original images were down-sampled to 28x28 pixels with

greyscale values from [0,1].

It was generatively pre-trained on the background set of characters using the

approximate learning algorithm from (Salakhutdinov & Hinton, 2009). The
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background set was artificially enhanced by generating slight modifications of

the training images, including translations (+/- 3 pixels), rotations (+/- 5 de-

grees), and scales (0.9 to 1.1). This helps reduce overfitting and learn more

about the 2D image topology, which is built in to some deep models like con-

volution networks (LeCun et al., 1998). To evaluate classification performance,

first the approximate posterior distribution over the DBMs top-level features

was inferred for each image in the evaluation set, followed by performing 1-

nearest neighbor in this feature space using cosine similarity.

∙ Hierarchical Deep model (HD). The more elaborate Hierarchical Deep

model is also a probabilistic generative model that extends the DBM so that

it more elegantly handles learning new concepts from few examples. The HD

model is derived by composing hierarchical nonparametric Bayesian models with

Deep Boltzmann Machines (Salakhutdinov et al., 2013). The HD model learns

a hierarchical Dirichlet process (HDP) prior over the activities of the top-level

features in a Deep Boltzmann Machine, which allows one to represent both

a layered hierarchy of increasingly abstract features and a tree-structured hi-

erarchy of super-classes for sharing abstract knowledge among related classes.

Given a new test image, the approximate posterior over class assignments can

be quickly inferred, as detailed in Salakhutdinov et al. (2013).

∙ Convolutional network (Convnet). Convolutional networks are a class of

deep neural networks trained as discriminative classifiers rather than generative

models. A differentiating feature is that convnets use trainable filters that are

convolved with an image or a previous layer of units arranged in an image-

like grid (LeCun et al., 1989, 1998). This architecture allows the model to

learn features and detect them anywhere in the image frame, unlike in standard

neural networks where the learned features are not location invariant. Convnets

have had a resurgence of popularity in recent years, and they are state-of-the-

art model for object recognition in the big data setting (e.g., Krizhevsky et al.,

2012).
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We adapted a convnet that achieved good performance on the MNIST digit

classification benchmark, with less than 1% test error (compare with LeCun et

al. (1998)), and scaled it up to learn classifiers for characters in the background

set of Omniglot. Since the model is discriminative, it was trained to distinguish

between 964 characters based on 18 examples per class. The raw data was

resized to be 28 x 28 pixels and each image was centered based on its center

of mass as in MNIST. The first hidden layer was a convolutional layer with

200 trainable 10x10 filters followed by a max pooling layer. The second hid-

den layer included 400 fully-connected units trained with dropout (Srivastava,

Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). The last layer was

softmax output units representing the 964 classes in the background set. Recti-

fied linear units were used as the activation function throughout, excluding the

softmax units. The model achieved impressive generalization performance on

the 964-way classification task of about 22% test error. The one-shot learning

experiments thus tested the models capacity for learning-to-learn, evaluating

whether the features learned in this large-scale classification task would also

prove useful for one-shot learning. One-shot classification was performed by

computing the distributed representation of an image in the layer of 400 fully-

connected units and then performing 1-nearest neighbor in feature space using

cosine similarity.

∙ Nearest neighbors (NN). Raw images are directly compared using cosine

similarity and 1-NN.

An additional set of five models describe variants of the Hierarchical Bayesian Pro-

gram Learning approach and other models that learn a form of stroke-based decom-

position.

∙ No Transfer Learning at the Type Level (HBPL-NT-type). This model

tested HBPL after lesioning the type-level transfer learning from the background

set, including the library of learned primitives, relations, and start position

preferences. See Section 3.6.2 for details.
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∙ No Transfer Learning at the Token Level (HBPL-NT-token). This

model tested HBPL after lesioning the token-level transfer learning from the

background set, including motor variability and size variability in the sub-stroke

components. See Section 3.6.3 for details.

∙ One spline model (1-Spline). A new character was learned as a motor pro-

gram consisting of just one stroke, as in previous analysis-by-synthesis models

of digit recognition (Revow et al., 1996; Hinton & Nair, 2006). See Section 3.6.4

for details.

∙ Affine model (Affine). The standard HBPL model was used to fit the train-

ing images, and then exemplar variability during classification was modeled

exclusively as a global rescaling, translation, and blurring of the original motor

program. See Section 3.6.1 for details.

∙ Simple strokes (SS). Simple strokes is a hierarchical generative model of

characters that uses simpler rigid stroke parts that do not vary from exemplar

to exemplar, except for their positions in the image. See Section 3.6.5 for details.

4.2.4 Results

A comparison of performance between people, HPBL, and the deep learning models is

shown in Figure 4-4. As predicted, people were skilled one-shot learners, achieving an

average error rate of 4.5%. HBPL achieved a similar error rate of 3.2%, out performing

the deep learning models including the Convnet (15.5% errors), the Hierarchical Deep

model (34.8%), and the Deep Boltzmann Machine (38%). The nearest neighbor

baseline was 78.3% error.

Figure 4-5 compares HBPL with various lesioned versions and related approaches

to one-shot learning. Removing the learning-to-learn at the type level did not damage

performance (3.5% errors), while all other lesions did including lesioning learning-

to-learn at the token level (11.0%) and constraining the model to only use affine

transformations and global noise parameters (17.5%). A closely matched model with
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Figure 4-4: Error rate (%) on one-shot classification. Five different classes of models
are compared with human performance.
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Figure 4-5: Error rate (%) on one-shot classification. Six variants of the HBPL
approach are compared with human performance.

only one complex spline also performed worse (11.0%), and an earlier version of some

of the ideas in HBPL, but with rigid non-causal strokes, performed poorly (62.5%).

4.2.5 Discussion

This task has implications for the concept learning ingredients described in Section

1.6. Are compositionality, causality, and learning-to-learn necessary for one-shot clas-

sification? The set of comparison models allow these ingredients to be removed, one

at a time, to investigate the effect on performance. The one spline model is not

compositional by design, but it has an abstract causal understanding of how strokes
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produce images and its parameters are fit through learning-to-learn. Its higher error

rate seems to suggest that compositionality plays a role in achieving good classifica-

tion performance, and the one spline model suffers due to its inability to decompose

its motor program into simpler pieces.

The Hierarchical Deep model is arguably the most “compositional” of the deep

learning models tested; it relies heavily on learning-to-learn which endows it with a

library of high-level object parts (Salakhutdinov et al., 2013). However, the model

lacks a abstract causal knowledge of strokes and its internal representation is quite dif-

ferent than an explicit motor program. This notion of causality is absent in each of the

deep learning models, suggesting that causality leads to a rather large payoff in per-

formance and that it may be the most important factor in this task. Causality is also

one of the largest differentiating factors between HBPL and the poorly-performing

Simple Strokes model.

Finally, learning-to-learn was lesioned at two different levels of the HBPL hierar-

chy. As discussed, decomposing a generative model into parts improves performance,

but do the nature of these parts matter? The success of the HBPL-NT-type model

suggests that the type of parts may have little impact in this classification task. Thus,

the fact that HBPL favors parts present in previous concepts does not appear to be

critical for this task, and a more general notion of bottom-up parts – similar in spirit

to Hoffman and Richards (1984) – may suffice for these purposes. However, there

are other tasks where these types of parts play an important role (Section 4.6 and

Chapter 5).

This result does not imply that learning-to-learn is unimportant when combined

with the influence of compositionality and causality. Without learning-to-learn at the

token level, HBPL would have no way of knowing how much variability to expect from

two instantiations of the same motor program, and on what dimensions objects can

vary and still maintain category identity. While the variability parameters control the

sharpness of the generalization curve, HBPL-NT-token lesions all of the variability

parameters in the same way, causing the model to generalize more broadly along

many important variables. But this lesion does not necessarily change the topology
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of the space, although other variants of this lesion could, and the right answer during

classification may remain unchanged even though the generalization gradient is more

forgiving for all possible categories.

Nonetheless, these token-level variability parameters matter for one-classification

performance, where loosening the generalization (HBPL-NT-token) or severely tight-

ening the generalization (affine model) lead to decrements in performance. In sum-

mary, all three ingredients – compositionality, causality, and learning-to-learn – are at

least partially responsible for the model’s human-level performance on this one-shot

classification task.

4.3 One-shot generation of new examples

People are flexible one-shot learners; not only can they classify new examples of a

concept, they can also generate new examples of that concept. While all generative

classifiers can produce examples, it can be difficult to synthesize a range of compelling

new examples in their raw form, especially since most generative approaches in com-

puter vision generate only features of raw images rather than images themselves (e.g.,

Fei-Fei et al., 2006). Deep Boltzmann Machines (Salakhutdinov & Hinton, 2009) and

other deep learning models have been shown to generate realistic digits after train-

ing on thousands of examples, but how well does this approach perform from just a

single training image? To evaluate various computational models, humans and ma-

chines were asked to perform the same one-shot generation task, and their behavior

was compared using a visual Turing Test. Examples are shown in Figure 4-6.

4.3.1 People

Eighteen participants on AMT were asked to produce examples of novel handwritten

characters (Section 4.1). The set of 50 characters used for production were randomly

selected from the Omniglot evaluation set. Six of these images are shown in the

leftmost columns of Figure 4-7. Each participant was asked to “draw a new example”

of 25 characters, resulting in nine examples per character. As in all tasks that asked
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A B A B

A B A B

A B A B

Figure 4-6: Visual Turing test for generating new examples of a new concept, where
an example image of the new concept is shown above each pair of grids. One grid was
generated by 9 people and the other is 9 samples from the HBPL model. Which grid
in each pair (A or B) was generated by the machine? Answers by column moving left
to right: A,B,A; B,A,A
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participants to draw, the images were produced using a mouse or track pad. Also, the

raw mouse trajectories were smoothed using B-splines, since the trajectories contain

jitter (partly due to discretization) that the models do not attempt to replicate.

4.3.2 Models

To simulate drawings from nine different people, each of the models generated nine

samples, after seeing exactly the same images that people did. The process of gen-

erating new examples is described below, and grids of generated characters for each

model is shown in Figure 4-7. Although HBPL’s ink model is a good approximation

to the actual ink model produced by the online interface, low-level image differences

were entirely eliminated by re-rendering stroke trajectories in the same way for the

models and people. This section describes how each model generates new examples

given a single reference image.

∙ Hierarchical Bayesian Program Learning (HBPL). The task was to gen-

erate a new example image 𝐼(2) given another image 𝐼(1), and thus, it is desirable

to produce samples from 𝑃 (𝐼(2), 𝜃(2)|𝐼(1)). Sampling from this posterior predic-

tive distributions utilizes the approximate posterior 𝑄(·) (Eq. 3.8) developed

in Section 3.4.1. A distribution that is straightforward to sample from can be

derived as follows:

𝑃 (𝐼(2), 𝜃(2)|𝐼(1)) =
∫︀
𝑃 (𝐼(2), 𝜃(2)|𝜃(1), 𝜓)𝑃 (𝜃(1), 𝜓|𝐼(1)) d(𝜓, 𝜃(1))

=
∫︀
𝑃 (𝐼(2)|𝜃(2))𝑃 (𝜃(2)|𝜓)𝑃 (𝜃(1), 𝜓|𝐼(1)) d(𝜓, 𝜃(1))

≈
∫︀
𝑃 (𝐼(2)|𝜃(2))𝑃 (𝜃(2)|𝜓)𝑄(𝜃(1), 𝜓, 𝐼(1)) d(𝜓, 𝜃(1))

=
∑︀𝐾

𝑖=1

∑︀𝑁
𝑗=1

𝑤𝑖

𝑁
𝑃 (𝐼(2)|𝜃(2))𝑃 (𝜃(2)|𝜓[𝑖𝑗]).

The HBPL inference algorithm was run to collect 𝐾 = 10 parses of the image

𝐼(1). When using the above formulation directly, the model would repeatedly

sample just the best-scoring parse in most cases, since even small differences in
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the parses can lead to large differences in weights 𝑤𝑖 due to the high-dimensional

raw data. To avoid dramatically underestimating the variety of parses in the

posterior, the weights 𝑤𝑖 were set to be inversely proportional to their rank

order 1/𝜎(𝑖) where 𝜎(·) is the permutation function, or rank of the 𝑖th parse

when sorted from highest to lowest score. The new sampling distribution is

then

𝑃 (𝐼(2), 𝜃(2)|𝐼(1)) =
1∑︀𝐾

𝑖=1 𝑖
−1

𝐾∑︁
𝑖=1

1

𝜎(𝑖)

𝑁∑︁
𝑗=1

1

𝑁
𝑃 (𝐼(2)|𝜃(2))𝑃 (𝜃(2)|𝜓[𝑖𝑗]). (4.2)

Also, rather than sampling an image transformation 𝐴(2), it was manually set

to match a human drawing of the same character to directly control for any

differences in size.

∙ Affine model. This model uses the same 𝐾 parses of the example images 𝐼(1)

as in HBPL, but it does not allow for token-level variability (Section 3.6.1).

All of the above steps for sampling from HBPL were followed, except that

none of the token-level variables were re-sampled, meaning that 𝑃 (𝜃(2)|𝜓[𝑖𝑗]) =

𝛿(𝜃(2) − 𝜃(1)[𝑖]) where 𝜃(1)[𝑖] is defined in Equation 3.6. The generated examples

can have some subtle structural variability, but the most salient differences

between the multiple new examples was due to the image transformations 𝐴(2).

∙ One spline model. This model attempts to parse an image and generate new

exemplars with just a single flexible spline (Section 3.6.4). Generation proceeds

through the same procedure described above for HBPL, although there is no

sampling at the type-level using MCMC so 𝑁 = 1 in 𝑄(·) (Eq. 3.8).

∙ No Transfer Learning at the Type Level (HBPL-NT-type). This model

tested HBPL after lesioning the type-level transfer learning from the background

set, including the library of learned primitives, relations, and start position

preferences. See Section 3.6.2 for details.

∙ No Transfer Learning at the Token Level (HBPL-NT-token). This
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model tested HBPL after lesioning the token-level transfer learning from the

background set, where the low-level spline variability and size variability in the

sub-stroke components were set to three times the normal values. See Section

3.6.3 for details.

∙ Hierarchical Deep (HD). Given a single example of a new character, the

model quickly approximately infers which super-class the new character belongs

to. Given the super-class parameters, the model samples the states of the top-

level DBM’s features from the HDP prior, followed by computing grayscale pixel

values for the bottom layer of the DBM. Since the HD model does not always

produce well-articulated strokes, it was not quantitatively analyzed. But there

are also clear qualitative differences between HD and human produced images;

for instance, the HD model tends to close loops in unnatural ways (Figure 4-8).

4.3.3 Visual Turing test

To compare the examples generated by people and the models, we ran a visual Turing

test using 150 new participants on AMT. Participants were told that they would see

a target image and new examples of that character. There were two grids of 9 images,

where one grid was drawn by people with their computer mice and the other grid was

drawn by a computer program that “simulates how people draw a new character.”

Which grid is which? Example trials are shown in Figure 4-6. There were five

conditions, where the “computer program” was either one of the five models listed

above and shown in Figure 4-6, excluding the HD model. Participants saw 49 trials1

and accuracy was revealed after each block of 10 trials. Participant responses were

made by pressing the left and right arrow keys.

The HBPL-NT-token condition was not run with the other conditions. It was run

at a later date with 50 participants randomly assigned to either that condition or the

HBPL condition, where the latter condition was a replication to guard against the

1One character was not tested since HBPL’s optimization procedure failed on a few of its parses.
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Figure 4-8: Generating new examples with the HD model.

possibility of a changing AMT population. The group average accuracy in the repli-

cation was within half a percentage point of the original average, and not significantly

different, so all the data was collapsed into a single experiment. Three participants

were removed since two people pressed just one key for the whole experiment and one

reported technical difficulties. Participants were compensated $1.75 for a task that

took 10.9 minutes to complete on average, including the instructions quiz and survey,

with an average of 4.5 minutes spent on the trials and breaks.

4.3.4 Results

Can any of the computational models pass the visual Turing test? The behavioral

results are summarized in Figures 4-9 and 4-10. The visual Turing tests were summa-

rized by the average percent correct for judges discriminating human versus machine

performance, where lower values indicates the model behavior is a better match to

the human behavior (Figure 4-9). Chance performance is 50%, and performance near

chance suggests that judges were unable to find reliable signals as to the origin of

the behavior. Models were also evaluated by the percent of individual judges signif-

icantly better than chance, defined as the case where their 95% confidence interval
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HBPL

HBPL−NT−type

one−spline

HBPL−NT−token

affine

Figure 4-9: Percent correct for human judges in a visual Turing test. Lower values
indicate better model performance. Five different computational models were tested.
Error bars are standard error.
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one−spline
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affine

Figure 4-10: Percent of human judges significantly better than chance in a visual
Turing test. Lower values indicate better model performance.
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(Clopper-Pearson approximation) rules out guessing.

Judges who tried to label drawings from people vs. HBPL were only 52% per-

cent correct on average. Only 3 of the 48 participants were reliably better than

chance across the individual trials, although the group average just passed signifi-

cance (𝑡(47) = 2.03, 𝑝 = 0.048). Participants who tried to label people vs. the affine

model were 94% percent correct (32/33 judges above chance). Since participants

could easily detect the overly consistent affine model, it seems the difficulty judges

had in detecting HBPL was not due to general properties of the task. The remaining

models included HBPL-NT-token (80% correct with 17/19 judges above chance), the

one spline model (65% and 14/26), and HBPL-NT-type (54% and 3/21). Our re-

sults indicate that HBPL and HBPL-NT-type can generate compelling new examples

that fool a majority of participants. Although HBPL-NT-type was reliably better

than chance (𝑡(20) = 2.25, 𝑝 < 0.05), it was not reliably easier to detect than HBPL

(𝑡(67) = 0.79, 𝑝 > 0.05).

In most of the conditions, participants did not show much improvement across the

blocks of the experiment, even after seeing hundreds of images from the model and

receiving blocked feedback (Figure 4-11). There was no noticeable improvement in

the HBPL or HBPL-NT-type condition, where the percent correct was near chance

across the blocks. The affine model was also stable, where the percent correct was

consistently better than 88%. The most dramatic change was for the HBPL-NT-token

model, where performance began near chance and then jumped dramatically after the

first session of blocked feedback.

An analysis of the self-reported strategies in the HBPL-NT-token condition re-

vealed that many participants noticed that one set of drawings was consistently slop-

pier, but they were initially unsure whether to attribute those drawings to people

or the computer program. The first round of feedback quickly clarified what the

right strategy was. Several people indicated they initially thought the computer

could “draw better” or would produce images that were “more perfect,” suggesting

that heavy token-level noise does not fit with people’s naive predictions for how a

computer program should operate – their notions of “naive AI.” But this intuition
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Figure 4-11: Accuracy across blocks in the visual Turing test for exemplar generation.
Error bars are standard error. The red dotted line indicates chance performance.

was quickly overridden when presented with conflicting evidence. In contrast, no

obvious differentiating cues were identified in the examples produced by HBPL and

HBPL-NT-type. These findings may have implications for understanding people’s

commonsense intuitions about the operation of computer programs, and a discussion

of these issues is presented in Section 7.7.

4.3.5 Discussion

Which of the main modeling principles, compositionality, causality, and learning-to-

learn, are needed to pass this visual Turing test? Interestingly, the ingredients seem

to play a similar role as in the one-shot classification task. This may be because the

required generalization is at the token level, whether it is for classifying new exemplars

are generating new exemplars of a class.

Compositionality is important since the one spline model does not always produce

compelling new examples, and it does not pass the visual Turing test. Causality is

similarly important. As shown in Figure 4-6, the Hierarchical Deep model produces

exemplar variability of the wrong form, including topological changes and pixel blur,

and it does not always produce characters that are well formed. This suggests that
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compositionality and learning-to-learn are not always sufficient for good performance,

unless they are grounded in a model at the right level of causal abstraction.

Finally, as in the one-shot classification task, learning-to-learn was more important

at the token level than the type level. A model with too much token variability

(HBPL-NT-token) and a model with too little token variability (affine) were easy to

detect as a machine in the visual Turing test.

Is the nature of the part decomposition important? The performance of the HBPL-

NT-type model was not significantly worse than the full model, although many of its

productions appear poorly structured due to the lack of constraints in its prior on

parses. Thus, we ran a follow-up study to directly compare the two models and see

whether there is a role for type-level learning-to-learn in this task.

4.4 One-shot generation of new examples: Direct

model comparison

This experiment aimed to compare models more directly, where participants were

asked to evaluate which set of drawings looked more human-like. In the previous ex-

periment (Section 4.3), there was no significant difference between HBPL and HBPL-

NT-type, but a real effect could have been masked by the indirect nature of the

comparison. In the visual Turing test paradigm, models are directly compared with

human behavior and not each other, and thus any difference between the models

would have to be filtered through a difference in performance in the comparison with

people. Instead, this experiment directly asked judges which model produced more

human-like examples.

4.4.1 Method

Fifty participants were recruited on AMT, and they were asked to help evaluate a

computer program designed to mimic how people draw new characters. Participants

were randomly assigned to two conditions. The first was the comparison of interest,
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where participants were asked their preference between images produced by HBPL

and by HBPL-NT-type. The second condition was a control in which participants

should show a strong preference, based on the results in Section 4.3. In this condition,

people were asked their preference between images produced by HBPL and by the

affine model. A difference here would indicate participants understood the task.

The instructions stated that a program was asked to look at a target image of a

character, and then produce nine different examples, in an attempt to simulate nine

different people drawing a new character with their computer mice. They were shown

a sequence of 49 trials each with two grids produced by “the computer program.”

These were the same grids of generated examples that were used in the previous

experiment (Section 4.3). They were asked to evaluate “which grid looks more human-

like to you.” No feedback of any kind was given after each judgment. Participants

were compensated $1.75 for a task that took an average of 10.8 minutes with the

instructions quiz and survey, and an average of 5 minutes was spent on the trials.

One participant was not analyzed after reporting technical problems.

4.4.2 Results and discussion

The results are summarized in Figure 4-12. Participants who compared HBPL and

the affine model showed a significant preference for HBPL, choosing its behavior

as more human-like on 75% of the trials (𝑡(26) = 5.51, 𝑝 < .001). Participants

who compared HBPL and HBPL-NT-type preferred HBPL on only 51% of the trials

(𝑡(21) = 0.40, 𝑝 > .05). Breaking down the preferences of individual subjects, 18

of 27 participants significantly preferred HBPL over the affine model, while 0 of 22

participants significantly preferred HBPL to HBPL-NT-type.

This experiment offered additional support, including the previous analysis of

classification performance and the visual Turing test, for the conclusion that type-

level transfer learning is not essential for one-shot classification or one-shot generation

of new examples. Interestingly, one image of a new character seems to provide enough

structural constraints so that a compositional causal model to performs these two

tasks successfully. However, token-level transfer learning was shown to be important
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Figure 4-12: Preference for HBPL (%) according to human judges in a direct com-
parison of two computational models. Error bars show standard error.

in both tasks, and type-level transfer learning plays an important role in some of the

tasks that follow.

4.5 One-shot dynamic generation of new examples

The results of Section 4.3 show that HBPL can generate convincing new examples

from just a single image of a new character, and the results of Section 4.2 show that

HBPL can perform one-shot classification at a high level of accuracy. In the process

of doing those tasks, HBPL makes detailed dynamic predictions about the latent

structure of the motor program defining a class of objects. What if the judges in a

visual Turing test had access to those dynamics through a direct window into the

drawing process? If they could view the characters being drawn, would it be easy to

discriminate humans and machines? This experiment investigates a dynamic version

of the task of generating new examples.

4.5.1 People

Human drawings were produced by asking AMT participants to draw a new example

of a novel handwritten character. This was the same task as in Section 4.3.1, so

the same set of drawings was used for this experiment. Although nine drawings by

different people were produced for each of the fifty characters, only one randomly
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selected drawing for each character was used in this task.

4.5.2 Models

Two factors were manipulated orthogonally: the quality of the parses (HBPl vs.

HBPL-NT-transfer) and whether dynamics properties such as stroke order and stroke

direction were random or optimal (dyn-random vs. dyn-opt). Unlike the previous

experiment, only the best (highest probability) parse for each new character was used

in the generation task. Since the underlying dynamics is the critical component tested

in this task, rather than exemplar variability, only the best model predictions of the

underlying dynamics were used for each character.

∙ Hierarchical Bayesian Program Learning (HBPL). This is the full hier-

archical Bayesian model discussed in Chapter 3. The procedure for generating

new examples was the same as in Section 4.3 except that only the best of the

𝐾 = 10 parses was used.

∙ Random stroke order and direction (HBPL-dyn-random). This model

borrowed the movies produced by HBPL, except those movies were transformed

by randomizing the order and directions of the component strokes. These “ran-

dom dynamics” comparison allows for a targeted lesion of the structured dynam-

ics that people show in their drawing (Chapter 2) and the model learns-to-learn

from a large amount of background drawing data.

∙ Reverse stroke order and direction (HBPL-dyn-reverse). Similarly, this

model borrowed the movies produced by HBPL, except those movies were trans-

formed by playing the motor trace in reverse. In particular, the order of the

strokes was reversed, and the direction (start and end points) were also reversed

for each stroke individually. These “reverse dynamics” is another means of le-

sioning the predicted dynamics, implying the model learned-to-learn a dynamic

bias that was exactly the opposite that most people show (drawing bottom-to-

top and right-to-left).
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∙ No transfer learning and random dynamics (HBPL-NT-type-dyn-

random). This model tested HBPL after lesioning the type-level transfer

learning from the background set, including the library of learned primitives,

relations, and start position preferences. See Section 3.6.2 for details. Thus, the

parses are based on bottom-up image topology and not the top-down influence

of the prior. Since this model is defined to have no stroke order or direction

preferences, its dynamics are analogous to HBPL-dyn-random but with less

structured parses more generally. A comparison of the parses produced by

HBPL and this model is shown in Figure 4-13.

∙ No transfer learning and structured dynamics (HBPL-NT-type-dyn-

opt). This model borrowed the movies produced by HBPL-NT-type-dyn-

random and transformed them to have “optimal dynamics,” as defined by the

full HBPL prior. The underlying parses were inferred given a model without

type-level transfer learning (HBPL-NT-type). Then the order, direction, and re-

lations between the strokes were re-optimized given the full HBPL prior, where

the shape, scale, position, etc. of the strokes were frozen at the original values.

4.5.3 Visual Turing test

150 new participants were recruited on AMT. Participants viewed a series of fifty

trials, where a trial displayed pairs of movies instead of pairs of entire character grids.

One movie showed a person drawing and one movie showed a computer program

drawing, and participants were asked to indicate which movie shows the computer.

The two movies were played sequentially, and each movie paused on the last frame

after playing. Participants also had the option of re-watching the sequence. Some

example trials are shown in Figure 4-13.

There were five conditions where the computer drawings were selected from one

of the five models described above. Since the models do not make millisecond-scale

predictions, the human and model drawing movies were rendered to be approximately

five seconds long, where the time spent drawing each stroke was proportional to its
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HBPL-NT-typeHBPLPeople

Figure 4-13: Examples trials in the dynamic visual Turing test. The display for a trial
consisted of the example image (left column), one human drawing, and one machine
drawing (either HBPL, HBPL-NT-type, or another model). Dynamic movies were
shown to judges, and this figure only shows the last frame.

length. Pauses were shown between different strokes but not different sub-strokes.

Also, as explained to the participants, the ink color changed every time the drawer lifts

up the pen, making it easier to track the different pen strokes. Otherwise the renderer

was the same as used in the previous exemplar generation task (Section 4.3). As

before, accuracy was displayed every ten trials. Participants were compensated $2.75

for a task that took 19.6 minutes to complete on average, including the instructions

quiz and survey, with an average of 12.4 minutes spent on the trials and breaks. Seven

participants who reported technical problems were removed.

4.5.4 Results

Can the models generate dynamics that appear realistic, and if so, how would they

perform on a dynamic visual Turing test? The results are summarized in Figures

4-14 and 4-15. The performance of judges in each condition was significantly above

chance, indicating there were some revealing signals for each of the computational

models (Figure 4-14). Judges who saw pairs of movies from people versus HBPL were
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Figure 4-14: Percent correct for human judges in a visual Turing test. Lower values
indicate better model performance. Five different computational models were tested.
Error bars are standard error.
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Figure 4-15: Percent of human judges significantly better than chance in a visual
Turing test. Lower values indicate better model performance.
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59% correct in their judgments (6/30 of the individual judges were above chance).

When the same movies were used but the stroke order and direction was random-

ized, the detection rate increased to 71% correct (20/29 above chance) which was sig-

nificantly easier to detect compared to the optimal dynamics (𝑡(57) = 4.96, 𝑝 < .001).

When the same movies were used but the entire motor program was reversed, the de-

tection rate also increased to 67% correct (10/23) and was also significantly easier to

detect (𝑡(51) = 2.81, 𝑝 < .01). Evidently, the presence of structured dynamics was an

important signal to participants in this task, and many mentioned that their strate-

gies involved an analysis of where on the page the pen began drawing and whether the

strokes were drawn in unnatural directions and orders. 13/29 mentioned a strategy

like this in the randomized condition and 10/23 did in the reverse condition.

The influence of dynamics seemed to be interestingly different for models without

type-level learning-to-learn. Judges were 63% correct when this model had optimal

dynamics (14/33) and equally accurate at 63% when this model had random dynamics

(10/28). The number of judges who mentioned that their strategies involved detecting

unusual start locations, stroke directions, or stroke orders was 6/33 and 12/28 in the

two dynamic conditions, respectively. A 2 x 2 analysis of variance, with type-level

transfer learning and random/optimal dynamics as factors, showed a main effect

of dynamics (𝐹 (1, 116) = 10.0, 𝑝 < .01) and no significant main effect of transfer

learning. Interestingly, there was a significant interaction effect (𝐹 (1, 116) = 8.5, 𝑝 <

.01), suggesting that judges were more sensitive to unrealistic dynamics when the

parses were better (Figure 4-16). Finally, when accuracy is plotted over time in

Figure 4-17, there is little evidence for learning effects.

4.5.5 Discussion

These results are considered with respect to the three main model ingredients (Section

1.6). Since this task is an extension of the task in Section 4.3, all of the same modeling

components play a role here: compositionality, causality, and learning-to-learn at

the token level. In addition, analyses reveal that transfer at the type level and the

structured dynamics, also a product of learning-to-learn, interact in an interesting
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Figure 4-16: Illustration of interaction between transfer learning and dynamics their
influence on visual Turing test performance. Error bars are standard error.
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Figure 4-17: Accuracy over time in the dynamic visual Turing tests. Error bars are
standard error.
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way (Figure 4-16); judges were more sensitive to unrealistic dynamics when the parses

were more realistic (see also Section 4.6). Although HBPL falls somewhat short of

passing a visual Turing test for this task, it is clear that any fully successful model

needs to capture the structured dynamics of human drawing.

The sensitivity of judges to structured dynamics was supported by an additional

experiment in Appendix A.2 that probed people’s intuitions about dynamic structure

in parsing. Judges were shown two movies, where one was a movie of the original

drawing by a person and another was the same movie with reversed dynamics. Judges

were asked to choose which movie was the original. Even though there was no feedback

of any kind, the mean accuracy was 85% and many people explicitly mentioned start

location and stroke direction as strategies for making their judgments. This supports

the conclusion that people are sensitive to the structure of the underlying production

dynamics.

The tasks investigated so far have found only subtle influences of type-level learning-

to-learn, which is tied to some of the model’s most interesting structural components.

The next experiment investigates the role of this prior knowledge in a more direct

way through the task of predicting latent structure.

4.6 Predicting latent dynamic structure

The goal of this task is to predict the ground truth latent causal structure that

produced a raw image of a character. As all of the characters in the Omniglot dataset

were drawn by people, and thus this is a test of the ability of each model to predict

the latent structure people chose when drawing an image.

Unlike the previous tasks, this task does not facilitate a direct comparison between

humans and machines. But there is evidence that people are sensitive to dynamic cues

in static images of characters, where people can both implicitly and explicitly infer

the direction a stroke was drawn in (Babcock & Freyd, 1988). Furthermore, Chapter

2 provides another form of evidence that these concepts are richly structured, and

that there is consistent structure to predict in people’s drawings: the number of parts,
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Figure 4-18: Columns from left to right: original image, ground truth strokes, the pre-
dicted parse from HBPL, and the predicted parse from HBPL-NT-type-dyn-random.
The numbers below each parse is the distance to ground truth (Equation 4.4). Stroke
color shows the correspondence to the ground truth strokes, circles indicate the be-
ginning of each stroke, and numbers inside circles denote stroke order.

the decomposition into parts, the direction of parts, and the order of the parts.

4.6.1 Stimuli

One hundred and eighty-seven characters were randomly selected from the evaluation

set of Omniglot (Section 2.2.1). In the dataset, each character was drawn by twenty

different people for a total of 3,740 images.

4.6.2 Models

Several computational models predicted the latent structure behind each of 3,740 raw

images. The range of models tested is described below.

∙ Hierarchical Bayesian Program Learning (HBPL). Structural predictions
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in HBPL (Chapter 3) were made by taking the most likely setting of the latent

variables, as found through the approximate inference algorithm described in

Section 3.4. For a single image of a new character 𝐼(𝑚), the model can approx-

imate the posterior probability over latent structures at the type level 𝜓 and

the token level 𝜃(𝑚) as

𝑃 (𝜓, 𝜃(𝑚)|𝐼(𝑚)) ≈
𝐾∑︁
𝑖=1

𝑤𝑖𝛿(𝜃
(𝑚) − 𝜃(𝑚)[𝑖])𝛿(𝜓 − 𝜓[𝑖]). (4.3)

This equation was introduced as Equation 3.6 and uses the 𝐾 high-probability

parses 𝜓[1], 𝜃(𝑚)[1], ..., 𝜓[𝐾], 𝜃(𝑚)[𝐾] found through the search algorithm. The most

likely setting of the latent variables, in terms of the highest 𝑤𝑖 (Equation 3.7),

was used as the model’s prediction for the underlying latent structure. Examples

of predictions by HBPL are shown in Figure 4-18.

∙ Worst parse (HBPL-worst-parse). This model tested the sensitivity of the

posterior probability score as a measure of parse quality. Rather than selecting

the best of the𝐾 parses, as in the predictions by HBPL, this version of the model

which we call HBPL-worst-parse selects the worst of the 𝐾 “good” parses. This

is not the same as finding a structure that minimizes the posterior probability

of the image – a structure that would look nothing like the image. Instead, this

model simply selects the worst of the 𝐾 “good parses” found by the inference

algorithm (Section 3.4).

∙ No transfer learning and random dynamics (HBPL-NT-type-dyn-

random). This model tested HBPL after lesioning the type-level transfer

learning from the background set, including the library of learned primitives,

relations, and start position preferences. See Section 3.6.2 for details. Thus, the

parses are driven primarily by bottom-up image analysis rather than through

a top-down influence from the prior. The model assigns equal probability to

a parse regardless of stroke order and direction. Examples of predictions by

HBPL-NT-type-dyn-random are shown in Figure 4-18.
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∙ No transfer learning and structured dynamics (HBPL-NT-type-dyn-

opt). This model borrows the predictions from HBPL-NT-type-dyn-random

and transforms them to have optimal dynamics, as defined by the full HBPL

prior and described in Section 4.5. Thus, while the fundamental partition of

a character into strokes is fixed and learned without type-level transfer, the

stroke order, directions, and relations were re-optimized given the prior for the

full HBPL model.

4.6.3 Comparing predictions to ground truth

For each of the 3,740 raw images considered in this task, there is a sequence of

ground truth strokes and a sequence of predicted strokes from the models. A few

examples of the ground truth strokes and the predicted strokes are shown in Figure

4-18. The tools developed in Chapter 2 Section 2.2.3 for analyzing structure in human

production data were borrowed and adapted for the purpose of measuring the quality

of the model predictions in this task. However, these tools can only compare two

parses that use the same number of strokes, and thus these experiments are restricted

to cases where the model predicted the correct number of strokes.2

First, we specify a distance score between two sequences of strokes that is invariant

to the direction and order of the underlying strokes (see Figure 2-2). The predictions

with regard to stroke direction and stroke order are also of interest, and this invariant

distance score allows these factors to be measured separately. Consider a sequence of

ground truth strokes 𝑄1, . . . , 𝑄𝑘 and a sequence of predicted strokes 𝑅1, . . . , 𝑅𝑘. Each

stroke trajectory is a sequence of positions 𝑄𝑖 = [𝑄𝑖1, . . . , 𝑄𝑖𝑛] with arbitrary length

where 𝑄𝑖𝑗 ∈ R2. As described in Section 2.2.3, the distance between two parses can

be computed as

min
𝜋

1

𝑘

𝑘∑︁
𝑖=1

min [𝑑𝑡𝑤(𝑄𝑖, 𝑅𝜋(𝑖)), 𝑑𝑡𝑤(𝑄𝑖, 𝐹 (𝑅𝜋(𝑖)))], (4.4)

2Small strokes in the human data (with less than five time points and covering less than 5 pixel
distance from start to end) were removed from the analysis
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where 𝜋(·), a bijective function from the set {1, ..., 𝑘} to {1, ..., 𝑘}, is a permutation

on the stroke indices 1, ..., 𝑘. The outer minimization over permutations controls

which strokes are matched across two different parses, allowing for strokes to match

when they are drawn in different orders. The inner minimization allows the dis-

tance between two strokes to be invariant to stroke direction, where the flip function

𝐹 (𝑄𝑖) = [𝑄𝑖𝑛, ..., 𝑄𝑖1] reverses the stroke direction. The distance 𝑑𝑡𝑤(·, ·) between

two trajectories is calculated by Dynamic Time Warping (DTW; Sakoe & Chiba,

1978), which computes an optimal alignment between points in the two trajectories

and returns the mean Euclidean distance across all pairs of aligned pairs. Thus, the

overall score in Equation 4.4 measures the average point-wise distance across two

aligned drawings.

4.6.4 Results

The number of parts

How accurate are the predictions for the number of strokes used to produce an im-

age? HBPL was the most accurate at 47.9% percent correct. The two variants of

HBPL-NT-type, which do not make different predictions about the number of strokes,

achieved 42.8% correct. HBPL-worst-parse got 40.5% correct. As a baseline, a pro-

cedure that always picked two strokes, which is the most common number of strokes

in this set, would achieve only 29.4% correct.

The shape of the parts

The results of predicting the shape of the stroke decompositions are summarized in

Figure 4-19. First, the model predictions were restricted to only the subset of images

where it predicted the correct number of strokes. Second, for each type of characters,

the average distance (Equation 4.4) between the predicted and ground truth parses

was computed across all of qualifying exemplars. Averaging across characters, the

mean distance between model predictions and ground truth parses was 8.1 for HBPL

(𝑛 = 168). The predictions of the other models were significantly less accurate, where
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HBPL

HBPL−NT−type−dyn−random

HBPL−NT−type−dyn−opt

HBPL−worst−parse

Figure 4-19: Average distance between ground truth parses and predicted parses.
Lower numbers indicate more accurate predictions. Four computational models were
compared. Error bars are standard error.

the two variants of HBPL-NT-type had a mean distance of 11.3 (𝑡(329) = 4.93, 𝑝 <

.001) and HBPL-worst-parse had a mean distance of 13.2 (𝑡(328) = 7.74, 𝑝 < .001).

The direction of the parts

Are the models able to predict the direction of the strokes? For each prediction, the

chosen value of the inner minimization in Eq. 4.4 indicates whether each stroke, or

that stroke in reverse direction (𝐹 (·)), is a better match to the corresponding stroke

in the ground truth parse. Thus, the percent of strokes that do not need to be flipped

(𝐹 (·) was not used) provides a measure of how accurate the models are a predicting

stroke direction. As with part shape, accuracy was averaged across examples of a

character and then across characters. HBPL was the most accurate at 71.4% correct,

HBPL-NT-type-dyn-opt was 70% correct, HBPL-worst-parse was 66.5% correct, and

HBPL-NT-type-dyn-random was 52.3% correct.

To evaluate the significance of these results, we simulated a null distribution by

sampling 1000 random datasets where the direction of each stroke was chosen uni-

formly at random. Of the 1000 samples, the largest average value was 54% correct,

showing that all models except HBPL-NT-type-dyn-random were significantly above

chance (𝑝 < .001).
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The order of the parts

Are the models able to predict the exact order of the strokes? For each prediction, the

chosen permutation 𝜋(·) from the outer minimization in Equation 4.4 defines a relative

ordering of the strokes. The percent of parses for which the optimal permutation

function is just the identity function, meaning no stroke permutation is necessary,

provides a measure of how accurate the model is at predicting stroke order. As

with the other statistics, accuracy was averaged across examples of a character and

then across characters. HBPL was 47.8% correct, HBPL-NT-type-dyn-opt was 48.1%

correct, HBPL-worst-parse was 43.5% correct, and HBPL-NT-type-dyn-random was

33.9% correct.

To evaluate the significance of these results, we simulated a null distribution by

sampling 1000 random datasets where the stroke order was permuted uniformly at

random. Of the 1000 samples, the largest average value was 37% correct, showing

that all models except HBPL-NT-type-dyn-random were significantly above chance

(p<.001).

4.6.5 Discussion

HBPL was more accurate than the other models at predicting the number of parts,

the shape of the parts, and the direction of parts. HBPL and HBPL-NT-type-dyn-opt

achieved a similar level of accuracy in predicting the optimal order of the parts.

These results show a number of model principles at work. Since this task in-

vestigated the ability of the models to predict how an image was produced from

a composition of strokes, it is a direct test of compositional and causal models –

where other models would not make explicit predictions about these factors. As

for learning-to-learn, prior knowledge at the type-level helped the model make more

accurate predictions about the underlying part decomposition that produced an im-

age, as reflected in the quantitative measurements of parsing accuracy. Furthermore,

learning-to-learn leads to more accurate predictions of the direction and order of the

parts.
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4.7 General Discussion

This chapter covered two types of one-shot learning tasks: one-shot classification and

one-shot exemplar generation. The HBPL framework was able to perform a one-shot

classification at a human level performance, where deep learning models and several

lesioned models fell short. HBPL was also able to generate compelling new examples

of a handwritten character from just one image, and only about 6% of judges in

a visual Turing test could reliably distinguish the behavior of humans versus the

behavior of the model. A lesion analysis showed that learning-to-learn at the token

level was important for these two tasks, but there was no detectable difference when

learning-to-learn at the type level was removed. This was confirmed with a follow-up

direct model comparison.

The next two tasks tested how the computational models fair at making latent

causal predictions about the dynamics that underly a character. In a visual Turing

test, judges were allowed to view the dynamics of the process of generating new exam-

ples. While their ability to discriminate human versus machine generated characters

improved, only 20% of judges performed significantly better than chance. The ability

of the models to predict human parses was also tested directly, where HBPL was able

to predict dynamic structure such as stroke decompositions as well as stroke direction

and stroke order. This task also highlighted the need for learning-to-learn at all levels

of the model hierarchy. Through a comparison with alternative modeling approaches

and lesioned models, we found that compositionality, causality, and learning-to-learn

were needed in each of the tasks studied in this chapter.
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Chapter 5

Generating new concepts

Chapter 4 compared humans and machines on the task of generating new examples

of a class, yet the human generative capacity seems to go beyond this. People can

also generate new concepts. For instance, an architect can design a new style of

house, a cook can design a new type of salad, and an entrepreneur can design a new

type of business. Whether it is art, music, cuisine, or business, this creative capacity

has produced some of the most treasured products of human cognition. In contrast,

computers are better known for their consistency than their creativity. Although

computers are often used to aid the process of design, they are far more useful for

implementing rather than generating the new ideas.

What types of algorithms can create new concepts, and how can we understand

this human ability in computational terms? Despite the seemingly mysterious origins

of this computational capacity, in some cases, a close examination of this human

ability can be revealing as to its underlying mechanisms. For instance, although the

Segway was an innovative new vehicle, its essential structure is a recycling of existing

parts from related concepts, such as electric scooters, motor cycles, unicycles, etc.

Other types of creative generation may not be so different. Ward (1994) investigated

the ability people have to imagine creatures living on a planet very different from

earth, and the creatures people produced are reminiscent of the recombination process

described for the Segway. There was a strong tendency to produce creatures that

differed from creatures on Earth in just a small number of ways. Many of the alien
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creatures borrowed sensory organs from Earth creatures. The features of these alien

creatures tended to show correlations typical of their Earth counterparts: feathers

co-occurred with beaks and scales co-occurred with gills, etc. Even when asked to be

wildly imaginative, people found it difficult to leave their conceptual schemas behind.

In some cases, the alien creatures were almost exact copies of Earth creatures. In

other cases, the creatures were seemingly synthesized through a recombination of

parts from existing creatures.

Could a generative model of concepts, where the re-use of parts between previous

and new concepts is encouraged, explain aspects of how people generate new con-

cepts? There has also been progress on developing computational models that can

generate new categories of objects. Jern and Kemp (2013) studied the design of sim-

ple types of artificial categories based on related categories. Participants were shown

two new categories, where each category was strongly correlated across the same two

dimensions in all of their examples. When asked to design a new category based on

the existing ones, people effectively propagated this correlation to the new category,

and this ability was captured by a simple hierarchical Bayesian model. While this ex-

periment showed that hierarchical Bayesian models may be a promising way to model

how people generate new concepts, the actual stimuli used in the experiment were

very simple, lacking the compositional structure present in many kinds of natural

concepts.

This chapter investigates a more challenging concept generation task, where the

objects were far more complex and decompose naturally into parts. The Omniglot

dataset of simple visual concepts is used as a testbed for comparing humans and

computational models on the task of generating new concepts. Two tasks are inves-

tigated, where the new concepts are designed without constraints or in the style of

related concepts. While resembling Ward (1994)’s animal production task in some

ways, handwritten characters provide a tractable domain for comparing humans and

machines directly.
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alphabet

object types

object tokens

raw data

Figure 5-1: The hierarchy behind Hierarchical Bayesian Program Learning. This
chapter introduces the top arrow.

5.1 Hierarchical Bayesian Program Learning

This chapter introduces the task of generating a new concept from a set of related

concepts, such as generating a new character that appears to belong to a particular

alphabet. This task requires learning an abstract representation for an alphabet,

and this section describes how the Hierarchical Bayesian Program Learning (HBPL)

approach can be extended to learn a representation of this form.

The hierarchy of levels in the HBPL model is shown in Figure 5-1. The generative

process begins with a prior on alphabets. Once an alphabet is sampled, new object

types can be sampled, which can go on to generate object tokens and then raw data.

The process of generating characters from an alphabet (first arrow) is an extension

of the previous model and is described below. The process of generating tokens from

types and raw data from tokens was described in Chapter 3 Section 3.2.

The new generative process is illustrated in Figure 5-2, and it can be compared to

the simpler variant of HBPL illustrated in Figure 3-1 from Chapter 3. By adding the

alphabet level as an additional layer in the hierarchy, the model exerts a pressure to

re-use major structural components among a set of related characters. As illustrated

in the figures, one of the main differences is that all of the generated parts (strokes) are

explicitly stored (level ii Figure 5-2), and there is a pressure to re-use parts that have

already been created as an alternative to generating entirely new parts. Thus, while it

was entirely possible for the flat model in Chapter 3 to generate the three characters

shown in Figures 3-1 and 5-2, where entire strokes are shared across characters, this
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connected at 

relation

connected at 
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stored part 1 stored part 2

iii) sub-parts

iv) parts

...

v) object types

vii) raw data

ii) alphabet

i) primitives

vi) object tokens

stored part 3

Figure 5-2: The generative process for producing multiple characters from a particular
alphabet. New parts (strokes) are generated by choosing primitive actions from a
library (i) and combining these sub-parts (iii) to make parts (iv). Objects belonging
to an alphabet are created by re-combining parts to define simple programs (v). These
programs can be run multiple times to create different tokens, which are exemplars
of the underlying concept (vi). Exemplars are rendered as binary images (vii).

is far more likely if the characters belong to the same alphabet where the prior favors

re-using existing strokes.

5.1.1 Generating at set of related concepts

The full generative process is now described in the pseudocode for Algorithm 6 and

7. The definition of an alphabet is shown in Algorithm 6. This program does not

sample any concrete variables. Rather, it serves to define the transformation that ties

the various programs within an alphabet together, using a tool from statistics and
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machine learning called the Dirichlet Process (𝐷𝑃 ) (Ferguson, 1973; Sethuramant,

1994). The 𝐷𝑃 takes a concentration parameter 𝛼 and a base distribution/procedure

𝑃 (·) as inputs. It returns a new distribution P-mem(·), which serves to transform

the original and induce dependencies between previously independent samples. For

instance, samples 𝑑𝐽+1|𝑑1, . . . , 𝑑𝐽 ∼ P-mem(·) are of the form

𝑑𝐽+1|𝑑1, . . . , 𝑑𝐽 ∼
𝐽∑︁
𝑗=1

𝛿(𝑑𝐽+1 − 𝑑𝑗)
𝐽 + 𝛼

+
𝛼𝑃 (𝑑𝐽+1)

𝐽 + 𝛼
, (5.1)

where 𝛿(·) is a delta function and the distribution as a whole encourages the re-use of

previous values for a variable. It is also related to a distribution on partitions known

as the Chinese Restaurant Process (CRP), a metaphor where a new customer 𝐽 + 1

comes into a restaurant where 𝐽 customers are already seated around a set of tables.

All customers at a given table share the same value of 𝑑𝑗. The new customer joins

a previous table 𝑙 with probability equal to 𝑚𝑙/(𝐽 + 𝛼), where 𝑚𝑙 are the number of

customers at that table. The new customer can also sit at a new table with probability

𝛼/(𝐽 + 𝛼) where a new value for 𝑑𝐽+1 is sampled from the base distribution 𝑃 (·).

Algorithm 6 takes the procedures for sampling from various conditional probability

distributions 𝑃 (·), such as the procedure for sampling the number of strokes 𝑃 (𝜅) or

entire strokes GenerateStroke(𝑖, 𝑛𝑖) (Algorithm 2), and passes them through the

higher-order procedure 𝐷𝑃 (𝛼, ·) to return new procedures P-mem(·). The new “mem-

oized” (N. D. Goodman, Mansinghka, Roy, Bonawitz, & Tenenbaum, 2008; O’Donnell,

2011) procedures define a set of probability distributions with the CRP clustering

property, used for learning the number of strokes 𝜅, the number of sub-strokes 𝑛𝑖, the

strokes 𝑆𝑖, and the relation types 𝜉𝑖 that are characteristic of a particular alphabet.
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Algorithm 6 Generate a new alphabet of characters

procedure GenerateAlphabet

P-mem(𝜅)← 𝐷𝑃 (𝛼, 𝑃 (𝜅))

for 𝜅 = 1 ... 10 do

P-mem(𝑛𝑖|𝜅)← 𝐷𝑃 (𝛼, 𝑃 (𝑛𝑖|𝜅))

end for

for 𝑖 = 1 ... 10 do

for 𝑛𝑖 = 1 ... 10 do

P-mem(𝑆𝑖|𝑛𝑖)← 𝐷𝑃 (𝛼,GenerateStroke(𝑖, 𝑛𝑖))

end for

end for

P-mem(𝜉𝑖)← 𝐷𝑃 (𝛼, 𝑃 (𝜉𝑖))

𝐴← {P-mem(𝜅);∀𝜅 : P-mem(𝑛𝑖|𝜅);∀𝑖, 𝑛𝑖 : P-mem(𝑆𝑖|𝑛𝑖)}
return @GenerateType(A)

end procedure

Algorithm 7 Generate a new character type

procedure GenerateType(A)

𝜅← P-mem(𝜅) ◁ Sample the number of strokes

for 𝑖 = 1 ... 𝜅 do

𝑛𝑖 ← P-mem(𝑛𝑖|𝜅) ◁ Sample the number of sub-strokes

𝑆𝑖 ← P-mem(𝑆𝑖|𝑛𝑖) ◁ Sample a stroke with 𝑛𝑖 substrokes

𝜉𝑖 ← P-mem(𝜉𝑖) ◁ Sample the type of a stroke’s relation

𝑅𝑖 ← 𝑃 (𝑅𝑖|𝜉𝑖, 𝑆1, ..., 𝑆𝑖−1) ◁ Sample the details of the relation

end for

𝜓 ← {𝜅,𝑅, 𝑆}
return @GenerateToken(𝜓) ◁ Return the handle to a stochastic program

end procedure
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The alphabet variable 𝐴 is a collection of these new procedures, and it is passed to

Algorithm 7 to tie the generation of new character types together, meaning that in-

dividual characters are no longer generated independently from each other. Otherwise

Algorithm 7 is analogous to Chapter 3 Algorithm 1. The procedure GenerateToken(𝜓)

remains unchanged from the definition in Chapter 3 Algorithm 3. As a replacement

for Equation 3.1, the joint probability distribution on 𝐽 character types 𝜓(1), . . . , 𝜓(𝐽),

with 𝑀 character tokens of each type 𝜃(1,1), . . . , 𝜃(1,𝑀), . . . , 𝜃(𝐽,1), . . . , 𝜃(𝐽,𝑀), and bi-

nary images 𝐼(𝑗,𝑚) is given as follows,

𝑃 (𝜓(1), . . . , 𝜓(𝐽), 𝜃(1,·), . . . , 𝜃(𝐽,·), 𝐼(1,·), . . . , 𝐼(𝐽,·)) =

𝐽∏︁
𝑗=1

𝑃 (𝜓(𝑗)|𝜓(1), . . . , 𝜓(𝑗−1))
𝑀∏︁
𝑚=1

𝑃 (𝐼(𝑗,𝑚)|𝜃(𝑗,𝑚))𝑃 (𝜃(𝑗,𝑚)|𝜓(𝑗)). (5.2)

where 𝜃(𝑗,·) is shorthand for all 𝑀 examples of type 𝑗, or {𝜃(𝑗,1), . . . , 𝜃(𝑗,𝑀)}.

5.1.2 Global constraints

Standard HBPL, as specified in Chapter 3, defines a complete generative model for

new types of characters through a series of simple conditional probability distribu-

tions (CPD), each of which sample various structural components of a program. As

described in Section 3.3, these CPDs were fit to the relevant local empirical statis-

tics. But this does not guarantee that samples from the prior will match the global

statistics of the training data, especially if there are additional underlying correlations

that the model does not capture in the prior on programs. The more creative tasks

in this chapter test these holistic properties more directly than previous tasks. This

section described two global properties that the model does not capture well and how

to modify the model to better match these statistics.

Type-level footprint

This section defines a “type-level footprint” which is a projection of the type level

variables 𝜓 into the image canvas, which is useful for defining features that operate
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Figure 5-3: Computing the stroke overlap statistic. Original image (a) and the type-
level footprint of its parse (b). Image footprints of the two strokes (c). Overlap image
(d).

at the type-level. A footprint is defined by setting the token-level variables 𝜃(𝑚) to

their most likely values

argmax
𝜃(𝑚)

𝑃 (𝜃(𝑚)|𝜓) (5.3)

where the noise variables 𝜖(𝑚) and 𝜎
(𝑚)
𝑏 , which have uniform distributions, are set to

their smallest allowed values. The global constraints are then computed on the full

motor program 𝜃(𝑚) that is the output of Equation 5.3.

Stroke overlap

The first global property is the amount of overlap between different strokes in a

character (Figure 5-4). Beyond the relations that define start position, strokes are

sampled independently in the prior, leading to the possibility that new strokes can

overlap in unnatural ways with previous strokes. The measure of overlap is defined

by looking at the probability of each pixel being turned on, called a probability map,

when the strokes are rendered separately (Figure 5-3-c). The probability maps are

added together, and the “over-determined” pixels, defined as having a value greater

than 1, signal stroke overlap as shown in Figure 5-3-d. The overlap statistic is com-

puted as follows; the total amount of over-determination summed across all pixels is

divided by the total amount of ink across all strokes. For example, the character in

Figure 5-3 has a value of 0.04.
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Figure 5-4: Distribution on stroke overlap and coverage, comparing characters in
the background set (empirical) with programs sampled from the prior (theoretical).
Gamma distribution fits are shown.

The empirical distribution on stroke overlap, as computed from the drawings in the

background set, is shown in Figure 5-4-left. The theoretical distribution is computed

by sampling from 𝑃 (𝜓) as defined in Section 3.1. The model produces characters

which too much stroke overlap, and Section 5.1.2 describes how the model can be

adapted accordingly.

Stroke coverage

The second statistic measures how much space the character covers in the image

canvas based on its type-level footprint. The area of the bounding box of the footprint

is computed, and the coverage statistic is the ratio of the area of the bounding box

over the area of the image canvas. For instance, the motor program in Figure 5-3 has

a value of 0.2.

The empirical (from background set) and theoretical distributions are compared

in Figure 5-4-right. Evidently, most real characters take up less than half the image

canvas. On the other hand, the model can occasionally draw large and intricate

characters that go outside the image canvas, resulting in very large coverage values.
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Matching the statistics

The empirical and theoretical histograms were fit with Gamma distributions, as shown

in Figure 5-4. Also, since many characters have an overlap of zero, the overlap

distribution was mixture model of a Gamma distribution for values over 0.02 and a

uniform distribution between 0 and 0.02.

Let 𝑓1(𝜓) be a function that computes stroke overlap for a character 𝜓 and returns

its density under the fit empirical distribution (Figure 5-4). Likewise, let 𝑓2(𝜓) return

the density under the empirical coverage distribution. Let 𝑔1(·) and 𝑔2(·) be the

analogous functions for the theoretical distributions. A new probability distribution

over character types 𝑃 (𝜓) can be defined by taking the original distribution 𝑃 (𝜓)

from Section 3.1 and re-weighting it by

𝑃 (𝜓) ∝ 𝑓1(𝜓)𝑓2(𝜓)

𝑔1(𝜓)𝑔2(𝜓)
𝑃 (𝜓). (5.4)

Samples from 𝑃 (𝜓) will have global statistics that approximately match the empirical

distributions 𝑓1(·) and 𝑓2(·). Samples can be produced using importance sampling by

sampling from 𝑃 (𝜓) and re-weighting the samples by the ratio in Equation 5.4. For

the more sophisticated HBPL alphabet model, as described in Section 5.1, the prob-

ability of new character types can be defined analogously to better capture coverage

and overlap

𝑃 (𝜓(𝑗)|𝜓(1), . . . , 𝜓(𝑗−1)) ∝ 𝑓1(𝜓
(𝑗))𝑓2(𝜓

(𝑗))

𝑔1(𝜓(𝑗))𝑔2(𝜓(𝑗))
𝑃 (𝜓(𝑗)|𝜓(1), . . . , 𝜓(𝑗−1)). (5.5)

5.1.3 Inference

The problem of generating an example of a new concept (𝐼(𝐽+1,1)) from a set of related

concepts with just one example each (𝐼(1,1), . . . , 𝐼(𝐽,1)), which is shown in Figure 5-5,

can be formulated as probabilistic inference where the relevant posterior predictive

quantity is

𝐼(𝐽+1,1) ∼ 𝑃 (𝐼(𝐽+1,1)|𝐼(1,1), . . . , 𝐼(𝐽,1)). (5.6)
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This is a difficult distribution to sample from. It contains all of the complexity of the

inference problem for one-shot learning (Section 3.4), as well as substantial additional

complexity due to the added statistical dependency between the parses of characters,

although this is largely ignored in our approximate sampling procedure. We make

another simplification by using the re-weighted distribution 𝑃 (𝜓) (Equation 5.4) for

forward sampling of new characters while using the original 𝑃 (𝜓) for inference.1

This inference procedure is described in more detail below, but the gist of the

procedure is described here first. The algorithm finds a motor program for each

image 𝐼(1,1), . . . , 𝐼(𝐽,1) in the alphabet separately using the inference techniques in

Chapter 3. The statistics across sets of variables in these programs are analyzed,

including counts of the number of strokes, number of sub-strokes given a number of

strokes, types of relations, etc. The strokes found in each program are also saved

and stored, with a separate bag for the first stroke, second stroke, etc. across all of

the programs. Given pressure from the Dirichlet Process priors, similar strokes can

also merge their type-level parameters. To sample a new character 𝐼(𝐽+1,1), rather

than sampling its variables from the general prior, the number of strokes, sub-strokes,

relations, and strokes themselves can be re-used from the empirical statistics of the

alphabet.

There are several steps to producing a sample from Equation 5.6. The first goal

is to produce a sample from the type-level motor programs for each image in the

alphabet

𝑃 (𝜓(1), . . . , 𝜓(𝐽)|𝐼(1,1), . . . , 𝐼(𝐽,1)). (5.7)

Given this sample, we can sample a new type of character using Algorithm 7 and the

1The weight terms could be included during inference, at the additional expense of evaluating
these weight functions for every considered setting of the type-level variables 𝜓. There are reasons
to believe that including this term would only make a minimal difference. For instance, the coverage
statistic has almost exactly the same value for all parses of a given image. Also, computational
experiments suggest that for fitting an image with five parses, only in about 5% of cases does the
rank order of those parses change when the model score is computed exactly with 𝑃 (𝜓) rather than
𝑃 (𝜓).
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CRP Equation 5.1 for each P-mem(·),

𝜓(𝐽+1)|𝐼(1,1), . . . , 𝐼(𝐽,1) ∼ 𝑃 (𝜓(𝐽+1)|𝜓(1), . . . , 𝜓(𝐽)). (5.8)

Finally, to produce a sample from Equation 5.6, we then sample from a series of

conditionals to produce a new character

𝐼(𝐽+1,1)|𝐼(1,1), . . . , 𝐼(𝐽,1) ∼ 𝑃 (𝐼(𝐽+1,1)|𝜃(𝐽+1,1))𝑃 (𝜃(𝐽+1,1)|𝜓(𝐽+1)). (5.9)

Samples from Equation 5.7 are approximated as

𝑃 (𝜓(1), . . . , 𝜓(𝐽)|𝐼(1,1), . . . , 𝐼(𝐽,1))

=
∫︀
𝑃 (𝜓(1), . . . , 𝜓(𝐽)|𝜃(1,1), . . . , 𝜃(𝐽,1))𝑃 (𝜃(1,1), . . . , 𝜃(𝐽,1)|𝐼(1,1), . . . , 𝐼(𝐽,1)) d(𝜃(1,1), . . . , 𝜃(𝐽,1))

≈ 𝑃 (𝜓(1), . . . , 𝜓(𝐽)|𝜃(1,1)[*], . . . , 𝜃(𝐽,1)[*])

where

𝜓(𝑗)[*], 𝜃(𝑗,𝑚)[*] ← argmax
𝜓(𝑗),𝜃(𝑗,𝑚)

𝑃 (𝜓(𝑗), 𝜃(𝑗,𝑚)|𝐼(𝑗,𝑚)) (5.10)

is the approximate maximization computed using the inference techniques in Chapter

3 Section 3.4. Thus, the motor programs for each character are fit independently, and

then the model samples shared type-level parameters 𝜓 conditioned on the token-

level variables 𝜃. This procedure will underestimate the amount of type-level variable

sharing across characters, but it may good enough for the purposes of generating new

types of characters in the style of previous ones. A more accurate inference technique

would be needed for related tasks such as classification at the alphabet level.

It is relatively straightforward to sample from

𝑃 (𝜓(1), . . . , 𝜓(𝐽)|𝜃(1,1)[*], . . . , 𝜃(𝐽,1)[*]) (5.11)

due to its many conditional independences. In fact, the number of strokes 𝜅, number

of sub-strokes 𝑛𝑖, and relation types 𝜉𝑖 are all uniquely determined by the token-level
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and require no additional computation to sample. However, it is possible that similar

strokes will cluster at the type-level, and samples from the joint distribution on stroke

types are produced using an MCMC algorithm. The sampler is initialized by placing

each unique stroke 𝑆𝑖 at its own table (for a total of 𝐿 tables), using the Chinese

Restaurant Process metaphor. Initially, there is no sharing. During each iteration

of MCMC, the type-level sub-stroke shape 𝑥𝑖 and scale 𝑦𝑖 variables at each table

are updated using Metropolis Hastings moves with Gaussian proposals. The discrete

sub-stroke ids 𝑧𝑖 at each table are also re-sampled using Gibbs sampling. Finally,

the table assignments of token-level strokes to type-level strokes is sampled using

Gibbs sampling. The last sample after 200 iterations was then used for the purpose

of sampling all of the new character types 𝜓(𝐽+1) (Equation 5.8).

5.2 Generating new concepts from related concepts

This experiment compared people and several computational models side-by-side on

the task of generating new concepts from a set of related concepts. Ten handwritten

characters served as examples of a higher-level concept, and the task was produce new

examples that might belong to the same set (Figures 5-5 and 5-6). Ten alphabets

with ten characters each were selected as the examples from the evaluation set in

Omniglot (Section 2.2.1), and thus the alphabets and characters were entirely new to

the computational models.

5.2.1 People

Thirty-six participants on Amazon Mechanical Turk (AMT; Section 4.1) created ten

novel characters, one for each of the ten different alphabets used in this experiment.

They drew one for each alphabet to emphasize the stylistic component of the task.

Each alphabet was shown as a display with ten example characters, like those at the

top of Figure 5-5, and they were asked to design a new character that appears to

belong to the same alphabet.

Participants were given only three seconds to draw their new characters, after
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Alphabet 1 Alphabet 2 Alphabet 3

Figure 5-5: Visual Turing test for generating new concepts from related concepts.
Each pair of grids (A and B) were generated from the alphabet above it, either
by people or the HBPL computational model. Which grids were generated by the
machine? Answers by column moving left to right: A,B;A,B;B,B.

which the pen freezes, and they have the opportunity to either accept their drawing

or redo it. As in the previous experiments that used stimuli produced by people,

the drawing trajectories were smoothed (Section 4.3) and then re-rendered using the

image model from HBPL (Section 3.2.2). This served to remove low-level differences

between the human and machine drawings. Participants were paid $1.25 for a task

that took about 6 minutes on average with 3.6 minutes of drawing time.

5.2.2 Models

Four different computational models were applied to this task of generating new

characters in the style of other characters. The models saw exactly the same raw

images as people did, and the algorithms produced a new character in the style of

the raw images. The process of producing new characters is described below and

shown in Figure 5-7. Each trial of the visual Turing test, as shown in Figure 4.3 and

described in Section 5.2.3, showed four new characters at a time in a grid format.

∙ Hierarchical Bayesian Program Learning (HBPL). The extension of

HBPL with an additional level of hierarchy to model an alphabet was described
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Figure 5-6: Generating new characters from related characters with HBPL. Each
larger grid is based on the set of 10 examples above it.
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in Section 5.1. Given just a single image of 𝐽 new characters, 𝐼(1,1), . . . , 𝐼(𝐽,1),

new character types are sampled from

𝑃 (𝜓(𝐽+1)|𝐼(1,1), . . . , 𝐼(𝐽,1)) (5.12)

using the approximation described in Section 5.1.3. Importance sampling was

used to sample 36 new characters for each alphabet from 𝑃 (𝜓(𝐽+1)|𝜓(1), . . . , 𝜓(𝐽))

using a base of 1000 samples. Given the new type 𝜓(𝐽+1), a token of that type

can be sampled from 𝑃 (𝜃(𝐽+1,1)|𝜓(𝐽+1)). Finally, rather than directly sampling

a stochastic image 𝑃 (𝐼(𝐽+1,1)|𝜃(𝐽+1,1)) which results in noisy images, the binary

image was rendered using the most likely value for each pixel

argmax
𝐼(𝐽+1,1)

𝑃 (𝐼(𝐽+1,1)|𝜃(𝐽+1,1)). (5.13)

Examples of all 36 new characters for six of the alphabets are shown in Figure

5-6.

Sampled characters were also selected for uniqueness, in that the model was not

allowed to re-use the same set of strokes twice. The concentration parameter

𝛼 was set to 0.001 so that new characters were generated almost entirely from

re-used variables. Also, since the human participants were instructed not to

copy the example characters, HBPL was not allowed to re-use all of the inferred

strokes from any of the example characters. Finally, the character was centered

such that its center of mass in trajectory space was in the center of the image

canvas.

∙ Copy exemplar. This computational model was a test of the validity of the

visual Turing test as a measure of novelty in this generation task. Rather than

producing entirely new characters, this model simply produced new examples

of the example characters, exactly as in Chapter 4 Section 4.3. An example

grid of model productions is shown in Figure 5-7. Thus, this computational

model produces minor variations of example concepts, but it does not produce
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any concepts that are fundamentally new. It was ensured that in each grid of

four “new” characters, no two characters used the same example character as a

reference, removing one possible salient cue that could reveal the model.

This models serves to test that the visual Turing test judges are in fact paying

attention to the novelty of the new concepts. Also, since it is essentially the

model used in Chapter 4 Section 4.3, it serves to test whether the new modeling

techniques developed in this chapter are necessary for this more creative task.

∙ No Transfer Learning at the Type Level (HBPL-NT-type). This model

tested HBPL after lesioning the type-level transfer learning from the background

set, including the library of learned primitives, relations, and start position

preferences. See Section 3.6.2 for details. However, in this task, “no transfer” is

a misnomer because it learns from the example characters and transfers their

parts and parameters in the same way the full HBPL model does. But the

new characters may appear different due to the weaker underlying prior. Some

characters generated from this model are shown in Figure 5-7.

∙ Permuting the alphabet labels (HBPL-perm). This computational model

was another test of the validity of the visual Turing test as a measure of cap-

turing the style of a set of concepts. This model used exactly the same images

produced from the HBPL model, except that it permutes the alphabet labels

so each grid of model predictions is assigned to the wrong alphabet.

An example grid of model productions is shown in Figure 5-7. This model tests

whether judges in the visual Turing test are using the style of the generated

characters as a cue for determining which productions are human and which

are machine.

5.2.3 Visual Turing test

One hundred and twenty participants on AMT were run in four conditions. Twenty

of those participants were run two days later and assigned only to the HBPL-perm
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copy-exemplarHBPL HBPL-permHBPL-NT-type

example characters

Figure 5-7: Illustration of the four different computational models (bottom) generat-
ing new concepts given a set of related concepts (top).

group. Participants were told they would see a series of displays with ten “example

characters” from a foreign alphabet, and that people were asked to design a new

character that appears to belong to the same alphabet. The same task was also given

to a computer program that simulates how people design new characters.

Participants were also notified that people have the following constraints: they

were asked not to directly copy characters, they were only given three seconds to

draw each character, and they drew with their computer mice. Participants saw 90

displays like those in Figure 5-5 where they were asked to indicate which grid of four

images they thought was drawn by the computer program. They were told the other

grid of four images was drawn by four different people. The displays were divided

into nine blocks of ten displays, where each block had one display from each alphabet

and accuracy was displayed at the end of the block.

The experiment was run in two phases. The first phase of 100 participants assigned

them to conditions uniformly at random. There were only 11 that reported data for

the HBPL-perm condition, so 20 more people were run in that condition two days

later. The average accuracy in the two phases of this condition was not significantly

different, although it was close (accuracy difference of 9%; 𝑡(29) = 2.0, 𝑝 = 0.0502).

Three participants were not analyzed, since two reported technical difficulties and

another failed the guessing check (Section 4.1). Participants were paid $1.50 for an

experiment that lasted about 12.2 minutes on average, and 6 of those minutes were
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Figure 5-8: Percent correct for human judges in a visual Turing test. Lower values
indicate better model performance. Four different computational models were tested.
Error bars are standard error.
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Figure 5-9: Percent of human judges significantly better than chance in a visual
Turing test. Lower values indicate better model performance.

spent on the trials.

5.2.4 Results

How do the characters generated by people and the computational models compare

on a visual Turing test? The behavioral results are summarized in Figures 5-8 and 5-

9. The visual Turing tests were summarized by the average percent correct for judges

discriminating human versus machine performance, where lower values indicates the

model behavior is a better match to the human behavior (Figure 5-8). Chance perfor-

mance is 50%, suggesting it was difficult for judges to find reliable signals for teasing

apart the human and machine behavior.
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Judges who were assigned to discriminate grids of four generated characters from

people versus HBPL were 49% correct on average, which is not significantly different

from chance (𝑡(34) = 0.45, 𝑝 > .05). After analyzing the judges individually, only

8 of 35 judges were significantly above chance (Figure 5-9; see Section 4.3.4 for this

definition). Thus, while characters generated by HBPL passed the visual Turing

test, characters generated by the model without learning-to-learn and the exemplar-

based model did not. Judges comparing people versus HBPL-NT-type were 69%

correct on average (18/25 above chance), which was significantly better than chance

(𝑡(24) = 4.99, 𝑝 < .001) and significantly easier to discriminate than HBPL (𝑡(58) =

4.82, 𝑝 < .001).

How did judges take the creativity of the characters into account in their eval-

uations? Judges comparing people versus the copy exemplar control model were

68% correct on average (13/26), which was also significantly better than chance

(𝑡(25) = 4.89, 𝑝 < .001) and significantly easier to discriminate than HBPL (𝑡(59) =

4.64, 𝑝 < .001). Thus, the novelty of the characters seemed to be an important cue,

and this was reflected in their self-reported strategies.

How did judges take the higher-level concept of an alphabet into account? In-

terestingly, judges assigned to discriminate people versus the HBPL characters with

permuted alphabet labels (HBPL-perm) were only 49% correct on average (6/31 above

chance), which was a nearly identical level of performance as the HBPL model with

correct alphabet labels.

How can a model that ignores alphabet style pass this visual Turing test? Does

HBPL fail to capture a clear notion of alphabet style, despite the evidence in Figure

5-6, or do judges in the visual Turing test miss this important cue? To investigate

this question, we analyzed the survey question that asked participants about strategy,

selecting the set of participants who mentioned similarity to the example characters

as a cue. It was evident that although some subjects noted a stylistic cue in their self-

report (9/31), they were split on the direction: four participants thought the computer

tended to be more different than the examples (e.g. “I figure people would be more

similar to the examples” and “I thought the computer would be less accurate in regard
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Figure 5-10: Accuracy over time in the visual Turing tests. Error bars show standard
error.

to what looked like the alphabet.”), and five participants thought the humans tended

to be more different than the examples (e.g., “I thought the computer program...

would more closely resemble the actual letters”). Moreover, their accuracy on the

task reflected how they interpreted the cue, where judges who mentioned the cue in

the right direction were 65.5% correct on average and judges who mentioned the cue

in the wrong direction were 42.8% correct on average (𝑡(7) = 7.22, 𝑝 < .001).

Plotting accuracy over time (Figure 5-10) reveals that there is a dramatic im-

provement in performance for detecting HBPL-NT-type over the first few blocks,

when compared with the other conditions that have a more subtle improvement. A 4

(condition) x 9 (block) analysis of variance confirms there was main effect of condition

(𝐹 (3, 1017) = 63.7, 𝑝 < .001), a main effect of block (𝐹 (8, 1017) = 7.3, 𝑝 < .001),

and a significant interaction effect (𝐹 (24, 1017) = 1.95, 𝑝 < .01). The difference

in learning curves across conditions is similar to the results in Section 4.3.4, where

the condition with the largest improvement in performance has the most stochastic

generated data. This supports the hypothesis that there is an initial conflict be-

tween people’s naive notion of an overly-consistent computer program and the initial
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rounds of blocked feedback (Section 7.7). While there were obvious differences be-

tween HBPL-NT-type and the human generated characters, which could quickly be

learned, there were apparently no such cues when comparing HBPL and the human

generated characters.

5.2.5 Discussion

Which principles of HBPL – compositionality, causality, and learning-to-learn – are

responsible for the success of the model? Compositionality was not explicitly le-

sioned in a condition of this experiment, but it is hard to imagine how a non-

compositional model could be successful on this task. Causality was not tested,

and future work should compare against deep learning approaches such as the HD

model (Salakhutdinov et al., 2013). Finally, learning-to-learn at the type level was

shown to be critical in this task.

It is noteworthy that the permuted version of the HBPL results (HBPL-perm)

achieved an equal level of performance as the original model, even though the model

showed no stylistic consistency with the example characters. The survey data sug-

gested that some people pick up on the stylistic signal, but they are not given enough

information to decide whether people or the model are ignoring the example charac-

ters. In fact, since capturing alphabet style is one of the core features of the task,

it is as if one of the agents – human or machine – is ignoring an aspect of the in-

structions. Thus, it is not surprising that judges did not have strong intuitions about

which direction that signal should point. The next experiment is a follow-up to to

more directly test for stylistic consistency.

5.3 Generating new concepts from related concepts:

Capturing style

As discussed in the previous experiment, HBPL passed a visual Turing test that judges

the quality of new concepts generated in the style of an alphabet. But a model that
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ignored alphabet style was also able to pass the test. This raises several questions:

How strongly is alphabet style reflected in the human drawings, and how strongly is

alphabet style reflected in the machine drawings? This experiment attempts to answer

these questions with a direct test of style strength using an alphabet classification

task.

5.3.1 Method

This experiment compared the HBPL and HBPL-perm models head-to-head in an

alphabet classification task. Participants were shown a sequence of 90 trials showing

displays from the 10 different alphabets. Using the generated character stimuli from

the previous experiment (Experiment 5.2), a trial consisted of a display of ten example

characters from a foreign alphabet, with two grids of four characters each shown

below. Participants were asked which grid of characters is more likely to belong to

this alphabet, as opposed to another alphabet? No feedback was given across the

trials.

Fifty participants on AMT were run in two conditions. The first condition (the

human condition) evaluated the stylistic consistency of people. Thus, one grid of char-

acters was generated by people observing examples of this alphabet, and the other

grid of characters was generated by people observing examples of another alpha-

bet. Likewise, the second condition (the machine condition ) evaluated the stylistic

consistency of the computational model. One grid was generated by HBPL based

on examples of this alphabet, and another grid was generated by HBPL based on

examples of another alphabet (the HBPL-perm model).

Participants were paid $1.50 for an experiment that lasted about 11.3 minutes

on average, with 6.1 of those minutes spent on the trials. One participant was not

analyzed for failing the check for guessing (Section 4.1).
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Figure 5-11: Percent correct for human participants in an alphabet classification task,
using test characters generated by either humans or HBPL. Error bars show standard
error.

5.3.2 Results and discussion

The alphabet classification results are summarized in Figure 5-11. Participants in

the “human condition” placed the human generated characters into the right category

61% of the time, which was significantly better than chance (𝑡(19) = 5.4, 𝑝 < .001).

Interestingly, participants in the “machine condition” placed the machine generated

characters into the correct category 61% of the time as well, which was significantly

better than chance (𝑡(28) = 6.1, 𝑝 < .001). There was no significant difference

between the groups.

While HBPL captures some aspects of coherent alphabet style, it is not over-

whelming strong. The grids of four generated characters were only classified correctly

by alphabet in about 61% of cases. Interestingly, the strength of alphabet style was

similar in the human generated characters, which were classified at the same level of

performance.

5.4 Free generation of new concepts

People can generate new concepts without constraints. This section investigates a

more creative and unconstrained generation task, and example trials of a visual Turing

test are shown in Figure 5-12.
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Figure 5-12: Visual Turing test for generating new concepts without constraints, com-
paring people with HBPL-alphabet. Which grid in each pair (A or B) was generated
by the machine? Answers by column moving left to right: B,A;A,B

5.4.1 People

Twenty one people on AMT participated in a character production experiment. They

were asked to invent ten plausible new characters. As in the experiment in Section

5.2, they were given only three seconds to produce each character, although they

could redo their drawings several times until they were satisfied. During the instruc-

tions screen, participants were shown forty characters from the Omniglot dataset as

inspiration, but these were not shown during the drawing process. Participants were

also informed that their drawings should not resemble characters or symbols that they

already know, nor should they resemble the characters from the instructions screen.

They were also reminded that their ten characters should be visually distinct from

each other. Participants were paid $1.25 for a task that took 5.5 minutes on average.

Drawings from one participant were not used due to quality issues. The drawings

were re-rendered to the match the computational models as in Section 5.2.

5.4.2 Models

Four computational models were compared against human performance on this free

generation task. Samples from the models are shown in Figure 5-13.

∙ Hierarchical Bayesian Program Learning (HBPL). The most straightfor-
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ward way to operationalize this task is to sample from the prior on handwritten

characters. Compared to the complex computations required in previous tasks,

this is a series of relatively simple sampling operations described by the condi-

tional probabilities distributions

𝑃 (𝜓)𝑃 (𝜃(𝑚)|𝜓)𝑃 (𝐼(𝑚)|𝜃(𝑚)) (5.14)

where sampling from 𝑃 (𝜓) was described in Section 3.1 and Section 5.1.2. Sam-

ples were produced using importance sampling to make 200 new characters from

a base of 4000 samples from 𝑃 (𝜓). Sampling from 𝑃 (𝜃(𝑚)|𝜓) was described in

Section 3.2. The centering and rendering of an image 𝐼𝜃(𝑚) was the same as

described in Section 5.2.2.

∙ Re-use of inferred strokes (HBPL-alphabet). Another way to opera-

tionalize this task within the HBPL framework involves a more explicit re-use

of parts from previously learned characters. Rather than sampling strokes from

the general bigram model on sub-strokes (Section 3.1), strokes can be re-used

from previous characters in an alphabet using the techniques developed in Sec-

tion 5.1. This additional form of “transfer learning” was implemented by taking

the entire set of 100 character images in the previous experiment (Section 5.2)

and learning a single “alphabet model” that covers all of them. Global con-

straints were incorporated with importance sampling as well. The concentra-

tion parameter 𝛼 was set to 0.001 so that new characters were generated almost

entirely from re-used variables.

∙ No Transfer Learning at the Type Level (HBPL-NT-type). This model

sampled from the prior on characters in a variant of HBPL with no type-level

transfer learning (Section 3.6.2).

∙ One spline. This model sampled from the prior on characters for the non-

compositional one spline model (Section 3.6.4).
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Figure 5-13: Illustration of the four different computational models generating new
concepts.
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5.4.3 Visual Turing test

We recruited 125 participants on AMT as judges in a visual Turing test. Participants

were assigned to one of the four conditions, where characters generated by people

were compared to one of the models listed above. The instructions described that

people were asked to design new characters, and so was a computer program that

simulates how people design new characters.

Participants were also notified that people have the following constraints: they

were asked not to draw characters that resemble any letters or symbols they already

know, they were only given three seconds to draw each character, and they drew with

their computer mice. Participants saw 50 displays like those in Figure 5-12 where

they were asked to indicate which grid of characters was produced by the computer

as opposed to four different people. The displays were divided into five blocks where

accuracy was shown after every ten trials.

The experiment was run in two phases six days apart. The first phase of 75

participants included three conditions: HBPL, HBPL-NT-type, and one-spline. The

second phase of 50 participants included two conditions: HBPL-alphabet and HBPL-

NT-type, where the HBPL-NT-type condition was repeated so the two populations

of judges could be compared. The mean accuracies in the replicated condition were

a percentage point apart and not significantly different, so all the data was collapsed

into a single experiment. Participants were paid $1.35 for an experiment that lasted

about 7.2 minutes on average, and an average of 2.5 of those minutes were spent on

the trials. One participant was not analyzed after reporting technical difficulties.

5.4.4 Results

How do humans and machines compare on creatively designing new characters? The

results are summarized in Figures 5-15 and 5-16. Judges assigned to discriminate

grids of four characters produced by people versus HBPL were 57% correct on average,

and 11 of 32 judges were significantly better than chance (definition in Section 4.3.4).

Results for the other conditions are as follows: people vs. HBPL-alphabet was 51%
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Figure 5-14: Accuracy over time in the visual Turing tests. Error bars show standard
error.

correct (2/25 judges significantly above chance), people vs. HBPL-NT-type was 64%

correct (22/45), and people vs. one-spline was 68% correct (15/22).

The group average was significantly better than chance in all conditions (𝑝 < 0.05),

except for HBPL-alphabet. HBPL-alphabet was significantly harder to detect than

HBPL-NT-type (𝑡(68) = 3.25, 𝑝 < 0.05) and one-spline (𝑡(45) = 3.07, 𝑝 < .01). The

comparison with HBPL revealed no significance difference (𝑡(55) = 1.68, 𝑝 = 0.1).

The learning curves are shown in Figure 5-14. While performance in the one-spline

and HBPL conditions seem to improve across blocks, the performance on the HBPL-

alphabet visual Turing test does not seem to improve, although an analysis of variance

with condition and block as factors did not detect a significant interaction.

5.4.5 Discussion

The HBPL-alphabet model was more successful than the standard HBPL model at

generating compelling new characters without constraints. This suggests that the

generated characters were more compelling when structural re-use occurs at the stroke

level rather than the sub-stroke level. One possible explanation is that the bigram

model over sub-strokes is not quite rich enough, a deficiency remedied by choosing a
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Figure 5-15: Percent correct for human judges in a visual Turing test. Lower values
indicate better model performance. Four different computational models were tested.
Error bars are standard error.
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Figure 5-16: Percent of human judges significantly better than chance in a visual
Turing test. Lower values indicate better model performance.

more explicit form of re-use at the stroke level.

What principles – compositionality, causality, and learning-to-learn – are respon-

sible for the success on this task? Compositionality played a role since the non-

compositional one spline model failed to generate compelling new characters. Causal-

ity was not explicitly tested, and future work should compare with the non-causal

Hierarchical Deep approach (Salakhutdinov et al., 2013). Finally, learning-to-learn

proved to be important since the lesioned HBPL-NT-type model was easier to detect

in the visual Turing test tasks.
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5.5 General discussion

Chapter 4 studied the generation of new examples of an existing category, but people

can also generate new concepts. This chapter studied this human capacity. Previous

work has shown how a hierarchical Bayesian model can capture aspects of how people

generate new categories (Jern & Kemp, 2013), but these categories were very simple

and only contained a few dimensions of variation.

Inspired by Ward (1994)’s study of how people designed new alien creatures, where

parts from existing creatures seemed to be combined in new ways, we developed a hi-

erarchical extension of the Hierarchical Bayesian Program Learning model in Chapter

3 that is capable of generating a new concept from a set of related concepts. Given one

image of ten new characters in an alphabet, the model can generate compelling new

characters, particularly by re-combining the inferred parts of the previous characters

with strong structural constraints (Section 5.2). Furthermore, a follow-up experiment

found that people and the computational models capture stylistic strength to a similar

degree, measured by how much the new categories look like the old ones (Section 5.3).

A similar approach based on the re-use of learned parts can also generate compelling

new characters in a free generation task (Section 5.4).

An interesting future direction is to develop this model for the purpose of alphabet

classification. This task would involve a training set of a few characters per alphabet

for several alphabets, and the goal would be to classify a new character into one of

these alphabet categories. Pilot results suggest that this task can be difficult for

humans, resulting in low performance, and it would require the development of new

inference techniques to test the approach developed here.

These models are only a first step in exploring the computational underpinnings

of how people creatively create new concepts. For instance, Boden (1998, 1999) dis-

tinguishes between combinatorial creativity, the synthesis of new ideas from pieces of

old ones, and transformational creativity, which involves transforming the underlying

conceptual space. This second type of creativity can lead to new concepts that were

not even possible in the old conceptual space. If the tasks studied in this chapter are
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creative, they clearly fall under the umbrella of combinatorial creativity. The models

developed here may have little to currently say about how a jazz musician or a painter

can undergo a stylistic transformation, producing new concepts that are coherent but

would not have been possible before.
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Chapter 6

One-shot learning of generative

speech concepts

This chapter investigates the problem of learning new spoken words, an essential in-

gredient in the process of language development. By one estimate, children learn an

average of ten new words per day from the age of one to the end of high school (Bloom,

2000). For learning to proceed at such an astounding rate, children must be learning

new words from very little data – perhaps even through one-shot learning. Previous

computational work has focused on the problem of learning the meaning of words from

a few examples; for instance, upon hearing the word “elephant” paired with an exem-

plar, the child must decide which objects belong to the set of “elephants” and which

do not (e.g., Xu & Tenenbaum, 2007). Related computational work has investigated

other factors that contribute to learning word meaning, including learning-to-learn

which features are important (Colunga & Smith, 2005; Kemp et al., 2007) and cross-

situational word learning (L. Smith & Yu, 2008; Frank, Goodman, & Tenenbaum,

2009). But by any account, the acquisition of meaning is only possible because the

child can also learn the spoken word as a category, mapping all instances (and exclud-

ing non-instances) of a word like “elephant” to the same phonological representation,

regardless of speaker identity and other sources of acoustic variability. This is the

focus of the current paper. Previous work has shown that children can do one-shot

spoken word learning (Carey & Bartlett, 1978). When children (ages 3-4) were asked
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Figure 6-1: Reprint of Figure 1-2. Hierarchical Bayesian modeling as applied to
handwritten characters and speech (this chapter). Color coding highlights the re-
use of primitive structure (motor actions or phonemes) across different objects. The
speech primitives are shown as spectrograms, where the x-axis is time, the y-axis is
frequency, and the shading is amplitude.

to bring over a “chromium” colored object, they seemed to flag the sound as a new

word; some even later produced their own approximation of the word “chromium.”

Furthermore, acquiring new spoken words remains an important problem well into

adulthood whether it is learning a second language, a new name, or a new vocabulary

word.

The goal of this chapter is to compare people and computational models side-by-

side on a set of one-shot learning tasks. Since the tasks must contain novel words

for both people and algorithms, we tested English speakers on their ability to learn

Japanese words. This language pairing also offers an interesting test case for learning-

to-learn (Section 1.6) through the transfer of phonetic structure, since the Japanese

analogs to English phonemes fall roughly within a subset of English phonemes (Ohata,

2004).

The one-shot learning of new spoken words is a promising domain for compu-

tational models based on compositionality, causality, and learning-to-learn (Section

1.6). Compositional generative models are well-suited for the problem of spoken word

acquisition, as they are commonly used in Automatic Speech Recognition (ASR)

through the application of hidden Markov models (HMM) (Juang & Rabiner, 1991).
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In this framework, words are synthesized through a composition of primitive elements

such as phonemes that are learned through previous experience. Thus, the process of

decomposing a new spoken word is also a product of learning-to-learn new words.

Causality has also been suggested as a key principle, relating to classic analysis-

by-synthesis theories of speech recognition (Halle & Stevens, 1962; Liberman et al.,

1967). These theories refer to the the explicit modeling of the articulatory process,

requiring speech data augmented with articulatory measurements from the speaker’s

vocal tract. This is not the approach taken in this chapter. While it would be

interesting to pursue a more explicit approach to synthesis, we have chosen a more

abstract level for this initial study, akin to the more traditional hidden Markov model

approach in speech recognition. Thus, this chapter is a case study in one-shot learning

of spoken words using a model based on compositionality and learning-to-learn, but

not causality in the sense it was used in previous chapters.

This chapter uses a model that is a small extension of a model from Lee and

Glass (2012), which utilizes completely unsupervised learning to acquire a sequence

of “phone-like” units (Fig. 6-1b) from raw speech. The model is also presented in

Lee (2014). We test the model on one-shot learning – a task that has received little

attention in ASR. Compared to the standard supervised training procedures in ASR,

this more closely resembles the problem faced by an infant learning the speech sounds

of their native language from raw speech, without any segmentation or phonetic labels.

Once the units are learned, they can be combined together in new ways to define a

generative model for a new word (Fig. 6-1b-iii). We compare people and the model

on both the one-shot classification and one-shot generation of new Japanese words.

6.1 Model

Modern ASR systems usually consist of three components: 1) the language model,

which specifies the distribution of word sequences, 2) the pronunciation lexicon, which

bridges the gap between the written form and the spoken form, and 3) the acoustic

model, which captures the acoustic realization of each phonetic unit in the feature
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space (Juang & Rabiner, 1991). The acoustic model is the only relevant component

for this paper, and we represent it as a Hierarchical Hidden Markov model (HHMM)

with two levels of compositional structure (Fine, Singer, & Tishby, 1998). At the top

level, the phonetic units in a language (primitives in Fig. 6-1b-i) are the states of a

Hidden Markov Model (HMM), where the state transition probabilities correspond

to the bigram statistics of the units. At the lower level, each phonetic unit is further

modeled as a 3-state HMM (Fig. 6-1b-ii), where the 3 sub-units (or sub-states)

correspond to the beginning, middle, and end of a phonetic unit (Jelinek, 1976).

These 3-state HMMs can be concatenated recursively to form a larger HMM that

represents a word (Fig. 6-1b-iii).

The HHMM model induces the set of phone-like acoustic units directly from the

raw unsegmented speech data in a completely unsupervised manner, like an infant

trying to learn the speech units of his or her native language. This contrasts with

the standard supervised training procedure in ASR, requiring a parallel corpus of raw

speech with word or phone transcripts. Similarly, existing cognitive models of unsu-

pervised phoneme acquisition typically require known phonetic boundaries, where the

speech sounds are represented in a low-dimensional space such as the first and second

formant (Vallabha, McClelland, Pons, Werker, & Amano, 2007; Lake, Vallabha, &

McClelland, 2009; N. H. Feldman, Griffiths, Goldwater, & Morgan, 2013).

The HHMM model only receives raw unsegmented speech data, and as illustrated

in Fig. 6-2, it must solve a joint inference problem that involves dividing the raw

speech 𝑥 into segments (vertical red lines in Fig. 6-2), identifying segments that should

be clustered together with inferred labels 𝑧𝑠 (color coded horizontal bars), and, most

importantly, learning a set of phone-like acoustic units 𝜃𝑖 for that language, where

the inferred labels 𝑧𝑠 assign segments to acoustic units. Some of the other learned

HHMM parameters are shown in Fig. 6-2, including the probability 𝜋𝑖 of using any

unit 𝑖 as the initial state and the probability 𝜑𝑖,𝑗 of transitioning from the 𝑖𝑡ℎ to the 𝑗𝑡ℎ

acoustic unit. As is standard for acoustic models in ASR, each phone-like acoustic

unit 1 ≤ 𝑖 ≤ 𝐾 is modeled as a 3-state HMM with parameters 𝜃𝑖. The emission

distribution of each sub-state is modeled by a 16-component Gaussian Mixture Model
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(GMM). These 3-state HMMs then generate the observed speech features 𝑥𝑠,1 . . . 𝑥𝑠,𝑑𝑠

in each variable length segment, which are the standard Mel-Frequency Cepstral

Coefficients (MFCCs) (Davis & Mermelstein, 1980).1 The duration of each segment

𝑑𝑠 is determined by the number of steps needed to traverse from the beginning to the

end of the 3-state HMM that the segment is assigned to.

The full generative model for a stream of raw speech can be written as follows. For

ease of explanation, we assume that the number of segments 𝑁 is known. However,

during learning, its value is unknown and can be learned by the inference method

described below. The generative model is

𝜋 ∼ 𝐷𝑖𝑟(𝜂)

𝛽 ∼ 𝐷𝑖𝑟(𝛾)

𝜑𝑖 ∼ 𝐷𝑖𝑟(𝛼𝛽) 𝑖 = 1, . . . , 𝐾 (6.1)

𝜃𝑖 ∼ 𝐻

𝑧1 ∼ 𝜋

𝑧𝑠 ∼ 𝜑𝑧𝑠−1 𝑠 = 2, . . . , 𝑁

𝑥𝑠,1, . . . 𝑥𝑠,𝑑𝑠 ∼ 𝜃𝑧𝑠 ,

where 𝜂, 𝛾, and 𝛼 are fixed hyper-parameters and variables 𝜋, 𝛽, and 𝜑𝑖 are all 𝐾-dim

vectors with Dirichlet priors. The variable 𝛽 can be viewed as the overall probability

of observing each acoustic unit in the data, and it ties all the priors on transition

probability vectors 𝜑𝑖 together. We impose a generic prior 𝐻 on 𝜃𝑖, where the details

can be found in Sec. 5 and Sec. 6 of Lee and Glass (2012).

Inference has two main stages. First, the set of acoustic units is learned from a

corpus by performing inference in the full generative model described above. Second,

the learned model (𝜋, 𝛽, 𝜑, 𝜃) is fixed, and then individual word representations can

be inferred as described in Experiment 1. Here we describe how the acoustic units

1Speech data are converted to 25 ms 13-dimensional MFCCs and their first and second order
time derivatives at a 10 ms analysis rate.
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Figure 6-2: The model jointly segments the speech, clusters the segments (𝑧𝑠), discov-
ers a set of units (𝜃𝑖), and learns the transition probability between the units (𝜑𝑖,𝑗).
Note that only speech data (𝑥) was given to the model; the text a cat, a kite and the
pronunciation are only for illustration.

are learned using Gibbs sampling. To sample from the posterior on units 𝑧𝑠 for

the corpus, we need to integrate over the unknown segmentation, which includes the

number of segments 𝑁 and their locations. We employ the message-passing algorithm

described in Johnson and Willsky (2013) to achieve this.2 Once the samples of 𝑧𝑠 are

obtained, the conditional posterior distribution of 𝜑𝑖, 𝛽 and 𝜋 can be derived based

on the counts of 𝑧𝑠. Also, we can then block-sample the state and Gaussian mixture

assignment for each feature vector within a speech segment given the associated 3-

state HMM. With the state and mixture assignment of each feature vector, we can

update the parameters of the unit HMMs 𝜃𝑖. Finally, we ran the Gibbs sampler for

10,000 iterations to learn the models reported in Experiment 1 and 2.

This model is an extension of the unsupervised acoustic unit discovery model

presented in Lee and Glass (2012). However, unlike Lee and Glass (2012), which only

captures the unigram distribution of the acoustic units, this model also learns bigram

transition probabilities between units through a hierarchical Bayesian prior. We fixed

the number of units, or states, at 𝐾 = 100; however, we can easily extend the model

2We slightly modify the algorithm by ignoring the duration distribution of the hidden semi-
Markov model.
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to be non-parametric by imposing a hierarchical Dirichlet process prior on the states

representing the phonetic units.

6.2 One-shot classification

Human subjects and several algorithms tried to classify novel Japanese words from

just one example. Evaluation consisted of a set of tasks, where each task used 20 new

Japanese words matched for word length in Japanese characters. Tasks required that

the human or algorithm listen to 20 words (training) and then match a new word

(test), spoken by a different talker, to one of the 20. Each task had 20 test trials,

with one for each word. Since generalizing to speakers of different genders can be

challenging in ASR, we had two conditions, where one required generalizing across

genders while the other did not.

6.2.1 Stimuli

Japanese speech was extracted from the Japanese News Article Sentences (JNAS)

corpus of speakers reading news articles (Itou et al., 1999). There were ten same-

gender tasks, five with male talkers (word lengths 3 to 7) and five with female talkers

(same word lengths). There were also ten different-gender tasks with word lengths

from 3 to 12.

6.2.2 Humans

In this paper, all participants were recruited via Amazon’s Mechanical Turk from

adults in the USA. Analyses were restricted to native English speakers that do not

know any Japanese. Before the experiment, participants passed an instructions quiz

(Crump et al., 2013), and there was a practice trial with English words for clarity.

Fifty-nine participants classified new Japanese words in a sequence of displays

designed to minimize memory demands. Pressing a button played a sound clip, so

words could be heard more than once. Participants were assigned to one of two
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conditions with same (5 trials) or different (10 trials) gender generalizations. To en-

sure that learning was indeed one-shot, participants never heard the same word twice

and completed only one randomly selected test trial from each task. Responses were

not accepted until all buttons had been tried. Corrective feedback was shown after

each response. Eight participants were removed for technical difficulties, knowing

Japanese, or selecting a language other than English as their native language.

6.2.3 Hierarchical Bayesian models

Two HHMMs were trained for the classification task. One model was trained on a

10-hour subset of the Wall Street Journal corpus (WSJ) (Garofalo, Graff, Paul, &

Pallett, 1993) to simulate an English talker. The other model was trained on a 10-

hour subset of the JNAS corpus with all occurrences of the training and test words

excluded. The second model can be viewed as a Japanese speaking child learning

words from his/her parents; therefore, we allowed the talkers of the training and test

words to overlap those in the 10-hours of Japanese speech.

As in the human experiment, for every trial, the model selects one of the 20

training words that best matches the test word. The Bayesian classification rule is

approximated as

argmax
𝑐=1...20

𝑃 (𝑋(𝑡)|𝑋(𝑐)) = argmax
𝑐=1...20

∫︁
𝑍

𝑃 (𝑋(𝑡)|𝑍)𝑃 (𝑍|𝑋(𝑐)) 𝑑𝑍

≈ argmax
𝑐=1...20

𝐿∑︁
𝑙=1

𝑃 (𝑋(𝑡)|𝑍(𝑐)[𝑙])
𝑃 (𝑋(𝑐)|𝑍(𝑐)[𝑙])𝑃 (𝑍(𝑐)[𝑙])∑︀𝐿
𝑗=1 𝑃 (𝑋(𝑐)|𝑍(𝑐)[𝑗])𝑃 (𝑍(𝑐)[𝑗])

, (6.2)

where 𝑋(𝑡) and 𝑋(𝑐) are sequences of features that denote the test word and training

words respectively. Words are defined by a unique sequence of acoustic units, such

that 𝑍(𝑐) = {𝑧(𝑐)1 , . . . , 𝑧
(𝑐)
𝑠 } are the units the model uses to parse 𝑋(𝑐). Since it is

computationally expensive to compute the integral, we approximate it with just the

𝐿 = 10 most likely acoustic unit sequences 𝑍(𝑐)[1], . . . , 𝑍(𝑐)[𝐿] that the model generates

for 𝑋(𝑐) (Eq. 6.2). It is straightforward to apply the inferred model parameters 𝜋
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and 𝜑𝑖 to compute 𝑃 (𝑍(𝑐)[𝑙]). To compute 𝑃 (𝑋(𝑐)|𝑍(𝑐)[𝑙]), we form the concatenated

HMM for 𝑍(𝑐)[𝑙] and use the forward-backward algorithm to sum over all possible unit

boundaries and hidden sub-state labels.

Following the HBPL model in Chapter 3 Equation 3.16, we find marginally better

performance by using the classification rule in Eq. 6.3 instead of Eq. 6.2,

argmax
𝑐=1...20

𝑃 (𝑋(𝑡)|𝑋(𝑐)) = argmax
𝑐=1...20

𝑃 (𝑋(𝑡)|𝑋(𝑐))
𝑃 (𝑋(𝑐)|𝑋(𝑡))

𝑃 (𝑋(𝑐))
, (6.3)

where 𝑃 (𝑋(𝑡)|𝑋(𝑐)) and 𝑃 (𝑋(𝑐)|𝑋(𝑡)) are approximated as in Eq. 6.2, and, specifically,

𝑃 (𝑋(𝑐)|𝑋(𝑡)) is computed by swapping the roles of 𝑋(𝑐) and 𝑋(𝑡). Both sides of Eq.

6.3 are equivalent if inference is exact, but due to the approximations, we include

the similarity terms (conditional probabilities) in both directions. We also use the

approximation 𝑃 (𝑋(𝑐)) ≈∑︀𝐿
𝑙=1 𝑃 (𝑋(𝑐)|𝑍(𝑐)[𝑙])𝑃 (𝑍(𝑐)[𝑙]).

6.2.4 Lesioned models

To more directly study the role of the learned units, we included three kinds of lesioned

HHMMs. Two “unit-replacement” models, at the 25% or 50% levels, took the inferred

units 𝑍 and perturbed them by randomly replacing a subset with other units. After

the first unit was replaced, additional units were also replaced until 25% or 50% of the

speech frames 𝑥𝑖,𝑗 now belonged to a different unit. Both the English and Japanese

trained models were lesioned in these ways. An additional “one-unit” HHMM model

was trained on Japanese with only one acoustic unit, providing a rather limited notion

of compositionality.

6.2.5 Dynamic Time Warping

We compare against the classic Dynamic Time Warp (DTW) algorithm that measures

similarity between two sequences of speech features, requiring no learning (Sakoe &

Chiba, 1978). The DTW distance between two sequences is defined as the average

distance between features of the aligned sequences, after computing an optimal non-

linear alignment.
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6.2.6 Results and discussion

The one-shot classification results are shown in Table 6.1. Human subjects made fewer

than 3% errors. For the same gender task, the HHMM trained on Japanese achieved

an error rate of 7.5%, beating both the same model trained on English and DTW.

All models performed worse on the different gender task, which was expected given

the simple MFCC feature representation that was used. The gap between human

and machine performance is much larger for the HHMM trained on English than the

model trained on Japanese. This difference could be the product of many factors,

including differences in the languages, speakers, and recording conditions. While the

English-trained model may be more representative of the human participants, the

Japanese-trained model is more representative of everyday word learning scenarios,

like a child learning words spoken by a familiar figure.

The superior performance of the HHMM over DTW supports the hypothesis that

learning-to-learn and compositionality are an important facilitator of one-shot learn-

ing. The dismal performance of the lesioned HHMM models, which had 88% or

more errors, further suggests that learning-to-learn alone, without a rich notion of

compositionality, is not powerful enough to achieve good results.

Table 6.1: One-shot classification error rates

Learner Same gender Different gender
Humans 2.6% 2.9%
HHMM (Japanese) 7.5% 21.8%
HHMM (English) 16.8% 34.5%
DTW 19.8% 43%
Lesioned HHMM ≥ 88.5% ≥ 88.8%

6.3 One-shot generation

Humans generalize in many other ways beyond classification. Can English talkers

generate compelling new examples of Japanese words? Here we test human subjects

and several models on one-shot generation. Performance was measured by asking
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other humans (judges) to classify the generated examples into the intended class,

which is an indicator of exemplar quality. This test is not as strong as an “auditory

Turing test” (Chapters 4 and 5), but the HHMM cannot yet produce computerized

voices that are confusable with human voices.

6.3.1 Humans

Ten participants spoke Japanese words after listening to a recording from a male voice.

Each participant was assigned a different word length (3 to 12) and then completed

twenty trials of recording using a computer microphone. Participants could re-record

until they were satisfied with the quality. This procedure collected one sample per

stimulus used in the previous experiment’s different gender condition.

6.3.2 Hierarchical Bayesian models

All of the full and lesioned HHMM models from Experiment 1 listened to the same

new Japanese words as participants and then synthesized new examples. To generate

speech, the models first parsed each word into a sequence of acoustic units, 𝑍, and

generated MFCC features from the associated 3-state HMMs. While it is easy to

forward sample new features, we adopted the procedure used by most HMM-based

speech synthesis systems (Tokuda et al., 2013) and generated the mean vector of the

most weighted Gaussian mixture for each HMM state. Furthermore, HMM-based

synthesis systems have an explicit duration model for each acoustic unit in addition

to the transition probability (Yoshimura, Tokuda, Masuko, Kobayashi, & Kitamura,

1998). Since this information is missing from our model, we forced the generated

speech to have the same duration as the given Japanese word. More specifically, for

each inferred acoustic unit 𝑧𝑖 in 𝑍 = {𝑧1, . . . , 𝑧𝑠}, we count the number of frames

𝑑𝑖 in the given word sample that are mapped to 𝑧𝑖 and generate 𝑑𝑖 feature vectors

evenly from the 3 sub-states of 𝜃𝑧𝑖 . Finally, to improve the quality of the speech,

we extracted the fundamental frequency information from the given word sample by

using Speech Signal Processing Toolkit (SPTK) (2013). This was combined with the
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generated MFCCs and the features were then inverted to audio (Ellis, 2005).

6.3.3 Evaluation procedure

Using a within-subjects design, 30 participants classified a mix of synthesized ex-

amples from both people and the comparison models. The trials appeared as they

did in Experiment 1, where instead of an original Japanese recording, the top but-

ton played a synthesized test example instead. The 20 training clips played original

Japanese recordings, matched for word length within a trial as in Experiment 1.

Since the synthesized examples were based on male clips, only the female clips were

used as training examples. There was one practice trial (in English) followed by 50

trials with the synthesized example drawn uniformly from the set of all synthesized

samples across conditions. Since the example sounds vary in quality and some are

hardly speech-like, participants were warned that the sound quality varies, may be

very poor, or may sound machine generated. Also, the instructions and practice trial

were changed from Experiment 1 to include a degraded rather than a clear target

word clip. All clips were normalized for volume.

6.3.4 Results and discussion

Several participants commented that the task was too long or too difficult, and two

participants were removed for guessing.3 The results are shown in Fig. 6-3, where

a higher “score” (classification accuracy from the judges) suggests that generated

examples were more compelling. English speakers achieved an average score of 76.8%,

and the best HHMM was trained on Japanese and achieved a score of 57.6%. The one-

unit model set the baseline at 17%, and performance in the HHMM models decreased

towards this baseline as more units were randomly replaced. As with Experiment 1,

the Japanese training was superior to English training for the HHMM.

3Participants spent from 19 to 87 minutes on the task, and there was correlation between accuracy
and time (R=0.58, p<0.001). In a conservative attempt to eliminate guessing, two participants were
removed for listening to the “target word” fewer than twice on average per trial (6 times was the
experiment average). This made little difference to the pattern of results.
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The high performance from human participants suggests that even naive learners

can generate compelling new examples of a foreign word successfully, at least in the

case of Japanese where the phoneme structure is related. The full HHMMs did not

perform as well as humans. However, given the fact that the one-unit and unit-

replacement models only differed from the full HHMMs by their impoverished unit

structure, the better results achieved by the full HHMM models still highlight the

importance of learning-to-learn and compositionality in the one-shot generation task.
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Figure 6-3: Percent of synthesized examples that human judges classified into the cor-
rect spoken word category. Parentheses indicate the language the model was trained
on. Error bars are 95% binomial proportion confidence intervals based on the normal
approximation.

6.3.5 Replication

As mentioned, a number of participants commented on the task difficulty. Since

human and machine voices were intermixed, it is possible that some participants

gave up on trying to interpret any of the machine speech. We investigated this

possibility by running a related between subjects design without the degraded models.

Forty-five participants were assigned to one of three conditions: speech generated by

humans, by the HHMM trained on Japanese, or by the HHMM trained on English.

Three participants were removed for knowing some Japanese, and three more were

removed by the earlier guessing criterion. The results largely confirmed the previous

numbers. The human-generated speech scored 80.8% on average. The HHMM trained
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on Japanese and on English scored 60% and 27.3%. All pair-wise t-tests between these

groups were statistically significant (p<.001). The previous numbers were 76.8%,

57.6%, and 34.1%, respectively.

6.4 General Discussion

We compared humans and a HHMM model on one-shot learning of new Japanese

words, evaluating both classification and exemplar generation. Humans were very

accurate classifiers, and they produced acceptable examples of Japanese words even

with no experience speaking the language. These successes are consistent with the

rapid rate in which children acquire new vocabulary, and our model aimed to provide

insight into how this is possible. The HHMM trained on Japanese, when acquir-

ing new words in its “native” language, comes within 5% of human performance on

classification. The lower performance of the HHMM trained on English could have

resulted from many factors, and in the future, we plan to investigate whether the

trouble lies in generalizing across speakers, across data sets, or across languages. The

lesioned models and Dynamic Time Warp demonstrated inferior performance on the

classification and generation tasks, adding to previous evidence that compositionality

and learning-to-learn are important for one-shot learning (Chapters 4 and 5).

Far from the final word, we consider our investigation to be a first step towards

understanding how adults and children learn new phonological sequences from just

one exposure. Through a combination of lesion analyses and comparison models, the

principles of learning-to-learn and compositionality proved to be important ingredi-

ents in the model’s successes. However, there were many aspects of the human ability

that it did not capture, including differences in performance, the ability to generalize

gracefully across speakers and languages, and the ability to generate clean and varied

new instances of the categories. The ideas in this thesis may provide a guide for

building models that further close the gap between the human and machine ability.

The generative model was not as explicitly causal as the Hierarchical Bayesian Pro-

gram Learning models discussed in previous chapters. For the HHMM, production
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processes are only implicitly represented through the learned acoustic units. Perhaps

an even more successful modeling approach could be developed by more explicitly

modeling the causal process through analysis-by-synthesis. This possibility is further

discussed in Section 7.3.

6.5 Author contributions

This chapter was based on joint work with Chia-ying (Jackie) Lee, Joshua B. Tenen-

baum, and James R. Glass. It reprints content from the joint paper published as

Lake, Lee, Glass, and Tenenbaum (2014). In terms of author contributions, Jackie

coded and ran the modeling experiments, and I coded and ran the behavioral studies.

All authors contributed to the design of the experiments and the writing of the paper.

Some of the material in this chapter also appears as a chapter in Jackie’s thesis (Lee,

2014).
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Chapter 7

Conclusion

People can grasp the boundary of a new concept from just one or a handful of exam-

ples, successfully including and excluding new objects in ways that go far beyond the

data given. People can also use a new concept for many other tasks – action, expla-

nation, and imagination – that go beyond traditional forms of evaluation in machine

learning. Two largely separate traditions of work on concept learning have focused on

learning from sparse data (Section 1.3) and building rich conceptual representations

(Section 1.4), but there have been fewer attempts at grappling with the deeper puzzle:

How is that people can learn such rich representations from sparse data?

This body of work shows how simple programs – or structured procedures for

generating new examples of a concept – can be learned from just one example of a

new concept. This framework for Hierarchical Bayesian Program Learning (HBPL)

departs from standard models of concept learning in machine learning and compu-

tational cognitive science, in that the focus is learning new concepts from just one

example and then explaining many conceptual abilities with a unified form of repre-

sentation. The model learns good programs by utilizing the principles of composi-

tionality, causality, and learning-to-learn. Individually, these ingredients have been

influential ideas in the literature on concept learning and conceptual representation

(Section 1.3 and 1.4). This work is an endeavor to bring them together in a unified

computational framework.
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7.1 Summary of main results

Chapter 2 introduces the case study of learning simple visual concepts – handwrit-

ten characters drawn from the world’s alphabets. It reviews a breadth of behavioral

and neuroimaging studies that suggest causality plays an important role in people’s

conceptual representations of these concepts, influencing processes such as visual per-

ception and category learning. To develop a testbed for these ideas, the chapter goes

on to introduce the Omniglot dataset (Section 2.2.1) consisting of over 1600 handwrit-

ten characters from 50 alphabets, making for a total of over 32,000 images. Unlike

standard benchmarks for character recognition that use thousands of examples to

learn a few concepts, the Omniglot challenge is to learn thousands of concepts from

just a few examples. Furthermore, each image in the dataset is paired with a recorded

pen trajectory explaining how this character was produced, providing essential causal

information for constructing the computational models introduced in later chapters.

The Omniglot dataset was also analyzed as a large scale category production

experiment. The experiment revealed striking consistency in the motor programs used

by people tasked with producing a new category example. There is basic structure

in the decomposition of objects into parts, including the shape of the parts, the

order of the parts, and the direction of the parts. There are also more general motor

constraints that govern the overall causal process. Chapter 2 also found that this type

of conceptual representation – a structured procedure for generating new examples of

a class – could be useful for explaining one-shot classification and one-shot generation

of new examples. Inspired by these findings, Chapter 3 develops the Hierarchical

Bayesian Program Learning (HBPL) framework that attempts to capture essential

aspects of this abstract causal structure and apply it to one-shot learning and other

conceptual abilities.

Chapter 4 studied the tasks of one-shot classification, one-shot exemplar genera-

tion, exemplar generation with dynamic predictions, and latent structure prediction,

where Figure 1-4 summarizes all these tasks and more. The results showed that HBPL

can perform one-shot classification at a human level for several within-alphabet classi-
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fication tasks, where the model received just one example of each type of handwritten

character. It can also generate compelling new examples of those characters, fooling

judges in a “visual Turing test” that other approaches could not pass. When judges

were allowed to view the dynamics of the process of generating new examples – not

just the product of the behavior – performance in the visual Turing test improved.

Still only 20% of judges performed significantly better than chance. A parsing pre-

diction task also showed that HBPL can predict non-trivial latent structure in the

casual processes that actually produce an image of a handwritten character. HBPL

also out-performed simpler versions of the model, highlighting the need for richly

structured prior knowledge that can be learned from experience with other concepts

in a domain.

Chapter 5 studied more creative tasks that involved generating new types of hand-

written characters, either in the style of existing characters or in a more unconstrained

generation task. These tasks required adding another level of hierarchy in the model,

where techniques from non-parametric Bayesian modeling were used to collect and

re-use entire strokes across characters in an alphabet. Other variables are adapted

as well including the number of strokes and the distribution on the types of rela-

tions. By modeling alphabet structure in this way, the model is capable of generating

compelling new characters in the style of a particular alphabet. When compared to

human produced characters under time pressure, judges in a visual Turing test were

no better than chance and less than 25% of individual judges were significantly better

than chance. The model is also able to freely generate compelling new characters.

The generated characters are higher quality when structural re-use is at the level of

strokes rather than at the level of sub-strokes, and judges in a visual Turing test were

no better than chance when re-use was at the level of complete parts.

7.2 Implications for models of concept learning

What are the key principles behind HBPL that allow it to capture the conceptual abil-

ities that it does? Figures 7-1 and 7-2 show how three ingredients – compositionality,
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causality, and learning-to-learn – contribute to performance on the six tasks presented

in Chapters 4 and 5. All three ingredients are needed to achieve the highest level of

performance across each of these conceptual abilities, except for two boxes in Figure

7-1 that have not yet been tested. The role of causality in the more creative generation

tasks could be probed by evaluating the Hierarchical Deep model (Salakhutdinov et

al., 2013), although this model does not always produce well-formed images (Figure

4-8). This leads to difficulties in evaluating the model with a visual Turing test, but

future work will seek to overcome these difficulties.

A powerful feature of learning-to-learn is that it can occur at multiple levels in

a hierarchical model. Figure 7-2 divides its influence into three sub-categories that

include transfer at the type level (Section 3.6.2), the token level (Section 3.6.3), and

through structured dynamics including stroke order, stroke directions, and general

motor biases. With these sub-divisions of learning-to-learn, it is revealed that each

component plays a role in at least two of the studied tasks. For one-shot classification

and one-shot exemplar generation, tasks that rely more of the variability of exemplars

from token to token, learning-to-learn is particularly important at the token level and

less so at the type level. For tasks that more directly test causal knowledge and

inferences about causal structure, learning-to-learn is important for making good

predictions about stroke order and stroke direction. Finally, learning-to-learn at the

type level is most important for the more creative tasks of generating new concepts,

due to its direct impact on the high-level structural components.

In contrast, standard models of category learning operate by a different set of

principles, and they learn simpler types of representations such as prototypes (Rosch,

1978), exemplars (Medin & Schaffer, 1978; Kruschke, 1992), and sets of rules (Nosofsky

et al., 1994). Other more recent approaches have studied concept learning as learn-

ing sets of clusters (J. R. Anderson, 1991; Love, Medin, & Gureckis, 2004; Griffiths,

Sanborn, Canini, & Navarro, 2008), interpolating between prototype and exemplar

models, but not learning a fundamentally different types of representational form. A

breadth of work has shown that these types of category learning models can provide

close quantitative fits in artificial category learning studies, and the same algorithms
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compositionality causality learning-to-learn

One-shot!
Classification ✓ ✓ ✓

One-shot exemplar 
generation ✓ ✓ ✓

Dynamic exemplar 
generation ✓ ✓ ✓

Predicting latent 
dynamic structure ✓ ✓ ✓

Generating new 
characters from an 

alphabet
✓ ? ✓

Free generation of 
characters ✓ ? ✓

Figure 7-1: The relationship between key model ingredients and task performance.
Check marks indicate the ingredient was necessary for achieving the highest level of
performance.

learning-to-learn!
at type level

learning-to-learn!
at token level

learning-to-learn !
dynamics

One-shot!
Classification ✕ ✓ ✕

One-shot exemplar 
generation ✕ ✓ ✕

Dynamic exemplar 
generation ✕ ✓ ✓

Predicting latent 
dynamic structure ✓ ✕ ✓

Generating new 
characters from an 

alphabet
✓ ✕ ✕

Free generation of 
characters ✓ ✕ ✕

Figure 7-2: The relationship between learning-to-learn at different levels of the model
hierarchy and task performance. Check marks indicate that the ingredient was nec-
essary for achieving the highest level of performance. Light gray cells are plausible
guesses that were not formally evaluated.
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can be directly applied to many different domains, unlike the approach in this thesis

which requires domain specific knowledge. But standard category learning models

do not learn representations that are compositional or causal – nor do they learn-to-

learn — nor do they attempt to explain one-shot learning or the rich ways people

use concepts besides classification. If these standard category learning models hope

to achieve human-level concept learning in any general sense, the challenge will be to

incorporate more domain specific background knowledge and acquire more sophisti-

cated types of conceptual representations that capture more functions.

All three principles – compositionality, causality, and learning-to-learn – may not

be needed to understand every conceptual task, unlike those studied in the previous

chapters. It is also possible that better alternative models, operating by different

principles, could be developed for that tasks covered in this thesis. Nonetheless, our

package of results suggests these three ingredients as a route towards building more

sophisticated and more general models of concept learning.

7.3 Causality and learning new spoken words

Speech was another case study investigated in this thesis, and Chapter 6 compared

people and computational models on the one-shot learning of new spoken words, a

critical component of language development in young children. A child must learn to

map all possible tokens of a new spoken word “xylophone” to the same phonological

representation, despite differences in speakers and other sources of acoustic variability.

The traditional machine learning approach in speech recognition involves synthesiz-

ing generative models of words as a series of latent states, often corresponding to

phonemes of a language, where the speech recognizer is trained on a large corpus of

speech. While this modeling approach is compositional, and it utilizes the idea of

learning-to-learn by either assuming or discovering the phonemes of a language, it

is not explicitly causal in the same sense as HBPL. It only implicitly represents the

process of generating words from the articulatory system. Given the analysis in the

chapters on Hierarchical Bayesian Program Learning, one hypothesis is that this ab-
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sence of causal structure may be reflected in its one-shot learning performance. The

Hierarchical Hidden Markov model we investigated performed reasonably on one-shot

classification, but it was worse than human performance in several ways. Further-

more, while it could generate compelling new examples of a new word, the speech

would not yet be confusable with human speech in an auditory Turing Test.

The principles explored in the thesis point the way towards building more suc-

cessful models of one-shot learning of spoken words. Causality is thought to play an

important role in conceptual representation (Chapter 1), just as analysis-by-synthesis

was developed as an early theory of speech recognition (Halle & Stevens, 1962; Neisser,

1966; Liberman et al., 1967) and continues to be an influential idea in the field (e.g.,

Galantucci, Fowler, & Turvey, 2006; King et al., 2007; Bawab, Raj, & Stern, 2008;

Kuhl, Ramirez, Bosseler, Lin, & Imada, 2014). We suspect that more successful one-

shot learning models could be developed by more explicitly modeling the articulatory

process behind the production of spoken words. Also, while the case study of speech

serves to show how far the principles of compositionality and learning-to-learn can go

on their own, computational models may have to more directly grapple with modeling

causal processes in order to capture the full range of human abilities with even these

simple types of concepts.

7.4 Cultural evolution, neural recycling, and other

forces in conceptual structure

Chapter 5 investigated the task of designing new character concepts, either from

related concepts within the same alphabet or freely without constraints. But the

computational models are far from capturing all aspects of how alphabets of characters

are generated. While causal at one level, in that characters are generated from strokes,

the model does not attempt to capture the actual causal process at other levels,

including the process of how writing systems develop in general.

This may be a reasonable aspect of the causal process to leave out, particularly
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since it is unclear whether people have any implicit or explicit knowledge of how

writing systems are constructed. In fact, it is still an active area of research to try to

better understand how writing systems develop. Changizi et al. (2006) studied a set

of visual features commonly found in characters, such as ‘T’ and ‘X’ junctions, and

found that the statistics of these features in many alphabets correspond quite closely

to the statistics of these features in natural visual environments. In contrast, these

statistics did not match well with the statistics of doodling, which are presumably

optimized more specifically for motor constraints. These results are suggestive of a

selective pressure in writing systems for certain visual statistics of the environment,

perhaps implemented through a process of cultural evolution. This phenomenon is

also predicted by Dehaene (2009)’s neural recycling hypothesis, which maintains that

letter recognition borrows neural resources from other types of visual abilities.

The structure of characters may arise from a confluence of many factors: visual

constraints, motor constraints, natural scene statistics, the re-use of neural resources,

and intentions of the writing system designer(s). In contrast, HBPL does not try to

model these processes separately or explicitly. Instead, it combines both visual and

motor constraints into its prior on primitive actions, as illustrated in Figure 3-8. For

instance, the preference for straight vertical and horizontal lines implicitly endows the

model with a type of visual “oblique effect” (Appelle, 1972), and these same actions

serve the dual purpose of implementing directional biases due to motor constraints.

The modeling in this thesis does not aim for a complete causal description of

letters. Such a description for even these simple concepts is far too complicated.

Nonetheless, the inductive bias of HBPL appears sufficient for many types of concep-

tual tasks. A challenge for all applications of this approach, characters and speech

included, is to find the right level of causal abstraction for modeling the generation

of category examples.
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7.5 Learning more sophisticated types of programs

The domain of simple visual concepts studied in this thesis provided a range of natural

concepts more complex that traditional stimuli used for artificial category learning,

yet they were simple enough to hope that a computational model – at some point in

a not too distant future – can see all of the structure in these concepts that people

do. It is fair to say that the computational models developed in this thesis fall short

of this goal. While these models may capture just enough structure to perform a

range of interesting tasks at a human level of performance, the learned programs are

still too simple in many ways. The set of stroke relations the model represents is far

too limited; the programs have no explicit knowledge of parallel lines, symmetry, or

repeating elements that may play a role in the full description of a concept. While

the models were able to capture many aspects of how strokes relate to one another by

modeling stroke connection and position, in terms of starting at the beginning, end,

or along previous strokes, it does not explicitly model where the stroke should end,

beyond the general shape provided by the spline model. This modeling choice was

made because people are more precise about where they start strokes compared to

where they end them (Babcock & Freyd, 1988). While the model is able to capture

this phenomenon, people certainly have a more explicit structural understanding of

stroke terminations than the model does.

The learned programs are limited in other ways. The model represents major

structural variability, such as how different people might draw the same character

with different strokes (Figure 2-2), as uncertainty in the posterior distribution over

motor programs. But each individual program implements only one way of drawing a

character, and thus it misses the ability to capture major structural changes, such as

drawing a “7” or a “Z” with or without a horizontal cross bar, within a single program.

A complete conceptual description would require the ability to add or subtract major

structural elements, or replace structural elements with different ones that produce

the same character in different ways. Furthermore, the current form of the model

does not model font, which could be another level of hierarchy that governs abstract
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properties of how exemplars are instantiated (McGraw, 1995; Rehling, 2001).

Crucially, these limitations seem to emphasize rather than detract from some of

the main contributions of this work. In order to capture all of the structure people see

in these relatively simple concepts, the generative programs would have to be even

more complex and even more program-like, perhaps requiring deeper abstractions,

recursion, or program induction with the representational power of combinatory logic

(Liang, Jordan, & Klein, 2010) or the lambda calculus (N. D. Goodman et al., 2008).

Moreover, the learned programs must also participate in many other types of concep-

tual abilities that were not covered in this thesis, such as planning (Barsalou, 1983),

explaining (Williams & Lombrozo, 2010), communicating (A. B. Markman & Makin,

1998), and creating complex concepts from simpler ones (Osherson & Smith, 1981;

Murphy, 1988). If such complicated programs are needed to learn and fully represent

these visual concepts – which were chosen for their relative simplicity in the realm of

natural concepts – it only further illustrates the gap between human-level concepts

and traditional forms of conceptual representation.

7.6 Deep neural networks and human concept learn-

ing

Deep learning models were compared side-by-side with other approaches to concept

learning, and this section returns to the discussion of deep learning that began in

Section 1.5. The neural network approach, construed broadly, has led to many influ-

ential models of category learning. It addition to developing new types of category

learning models (e.g., Schyns, 1991; Rehder & Murphy, 2003), the approach has been

used to implement forms of prototype models (Gluck & Bower, 1988), exemplar mod-

els (Kruschke, 1992), and clustering models (Love et al., 2004). While these models

generally receive input from a small set of pre-defined features, more recent “deep

learning” neural networks have found success learning more complex, layered inter-

nal representations from raw data. The recent success of deep learning has led to a
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resurgence of interest in neural networks in machine learning.

Several deep learning models were evaluated in this thesis, including Deep Boltz-

mann Machines (DBMs) (Salakhutdinov & Hinton, 2009), the Hierarchical Deep

architecture (HD; Salakhutdinov et al., 2013), and convolutional neural networks

(convnets; LeCun et al., 1998; Krizhevsky et al., 2012). Learning-to-learn is a crit-

ical feature of all three model architectures, where shared features are learned from

previous experience with related concepts. The HD model, in particular, also learns a

unsupervised hierarchy of concepts. While the DBM and HD models are generative,

they are not explicitly causal. Also, while the HD model is arguably compositional,

the convnet is neither compositional nor causal, although it is one of the leading ap-

proaches to discriminative object classification. On our one-shot classification task,

all of the models we tested had an error rate at least four times higher than HBPL.

Furthermore, on one-shot exemplar generation, the DBM and HD models did not

appear to produce the right type of variability, and it is unclear how to apply the

convnet to this task. The models have not yet been formally evaluated on the more

creative generation tasks in Chapter 5.

Chapter 1 suggested that the gap between human and machine concept learning is

largest in two respects: the amount of data machines need to successfully learn and the

limited set of tasks they are evaluated on. In contrast, the recent advances from deep

learning seem to have come from scaling up to larger data sets, as well as focusing on

more difficult types of classification problems – but less often attempting to tackle new

conceptual abilities. Our results suggest that progress on other conceptual abilities,

as well as progress on learning from smaller datasets, may not come automatically

from a narrow focus on building better object recognition systems.

Deep learning may still play a role in deepening our understanding of human-

level concept learning, beyond already closing the gap in terms of raw classification

performance on object classification. For instance, it could be possible to incorporate

the type of compositional and causal structure present in HBPL into the deep learning

approach. While the deep learning models were trained on just image data, HBPL

was also trained on a rich source of motor data, where each image was paired with
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causal information for how it was produced. Deep learning might perform better on

our tasks if this type of information could be more elegantly incorporated into the

approach. Therefore, we do not see our models as the final word on how humans learn

concepts, but rather, as a suggestion for the type of structure that best captures how

people learn rich concepts from sparse data.

7.7 Naive theories of artificial intelligence

How do people understand the operation of sophisticated computer programs that can

act on the world? The commonsense way in which children and adults understand

the world has been described in terms of intuitive theories, especially in core domains

such as naive physics, naive psychology, and naive biology (Wellman & Gelman,

1992). Furthermore, the development of these naive theories has been characterized

as a type of theory change, not unlike theory change in science (Carey, 1985, 2009).

What is the commonsense way in which people understand artificial intelligence (AI),

a naive AI, and is it best described as an intuitive theory?

It can be difficult to tell whether knowledge of a domain coheres into a full-fledged

theory (Wellman & Gelman, 1992), but the experiments in this thesis offer clues as

to what such a theory might look like. The judges in the visual Turing tests were

not blank slates; in fact, they were expected to tap into their intuitions about human

behavior. But judges also seemed to have non-trivial prior expectation about what a

complex computer program would do on a given task. Based on analyses of learning

curves and survey data, people expected computer programs to be more consistent

than people, anticipating that their drawings would be constructed “too perfectly” or

fail to generalize in interesting ways from the training examples.

For instance, in a one-shot exemplar generation task (Section 4.3), people easily

detected a computer program that was overly conservative and mechanical (affine

model; Figure 7-3-left solid line), even during the first block before any feedback was

given. In contrast, people began at chance performance overall for a model that was

more stochastic than people (HBPL-NT-token; Figure 7-3-left dotted line). But they
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Figure 7-3: Performance over time in detecting machines that were “consistent” (solid
lines) or “inconsistent” (dotted lines) with commonsense notions of artificial intel-
ligence. The left plot shows a visual Turing test for exemplar generation and the
right plot shows one for character generation. Error bars are standard error. Chance
performance was 50%.

were quick to learn. Performance improved dramatically after the first ten trials,

which is when the judges first learned of their aggregate performance. A similar

although less extreme set of learning curves was found for the task of creating new

characters based on previous characters (Section 5.2). A highly stochastic “theory

inconsistent” computational model (HBPL-NT-type) became easier to detect over

time compared to a “theory consistent” model that mimicked the previous characters

(copy-exemplar; Figure 7-3-right).

The judges in our visual Turing tests seemed open to revising, or perhaps entirely

replacing, their intuitive beliefs about AI when presented with inconsistent evidence.

But the underlying mechanism of this transition is still unclear. Is it a simple remap

of two category labels, or is there a deeper type of theory change underlying this

transition? Whether or not these commonsense notions are best described as theories,

and how they may change over time, will be the topic of future work.

If naive AI is best described as a theory, it could make for an interesting case study

in conceptual change (Carey, 1985, 2009). Classic examples of theory change in naive

physics, naive biology, and naive psychology take place on the time course of years

(Wellman & Gelman, 1992), making it difficult to observe this phenomenon directly
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in a laboratory setting. Furthermore, these domains draw on extensive training from

formal education. Few adults have formal training in probabilistic AI, and it could be

illuminating to further investigate how commonsense notions of a non-creative and

deterministic computer programs are revised after observing intelligently stochastic

machine behavior.

7.8 Beyond simple generative concepts

This thesis introduced several computational models applied to learning simple gener-

ative concepts in the domains of vision and speech. It also evaluated a broader set of

principles behind the models, including compositionality, causality, and learning-to-

learn. While the specific models require some modification to apply in other domains,

we hope that this approach will prove useful more broadly.

A closely related set of domains are other types of embodied, symbolic concepts

used to communicate a message to others. These domains include speech, gestures,

sign language, music, or dance, and in each case these concepts have a clear natural

decomposition into the primitive motor components used to generate the raw data,

much like handwritten characters. In each domain, people also have detailed causal

knowledge of how exemplars of a category are actually produced, if only implicitly

through the generative capacity to produce new exemplars with their own bodies.

Furthermore, the depth and fidelity of these abilities are likely to depend on past

experience with related concepts through a process of learning-to-learn. For these

reasons, these abilities are prime candidates for an abstract analysis-by-synthesis

approach similar to the one pursued in this thesis, aided by the ingredients of com-

positionality and learning-to-learn.

The general approach may also prove fruitful for conceptual domains where exem-

plars can be represented by rich structural descriptions of parts and relations, such as

learning new classes of vehicles like a Segway through a combination of familiar parts

like wheels, motors, and handlebars (Figure 1-1). In a related ways, new offices or liv-

ing rooms can be constructed from simple programs that combine primitive furniture

206



elements, such as chairs, tables, picture frames, computers, and windows. Finally,

the framework may also help to explain other classes of concepts that are elegantly

described as simple programs, such as trees, rivers, architecture, and urban layouts.

How do people learn such rich concepts from just one or a handful of examples?

We are still far from a complete answer to this question, but I hope this thesis

contributes some modest steps in that direction. By utilizing basic ingredients of

compositionality, causality, and learning-to-learn, the computational framework can

learn generative programs from just one example. The richness of this representation

allows it to generalize in a variety of human-like ways that fool most people in visual

Turing tests, pointing a way towards more human-like concept learning in machines.

207



208



Appendix A

Supporting information

A.1 Derivation of Bayesian classification score

Hierarchical Bayesian Program Learning performs one-shot classification by comput-

ing an approximation to the posterior predictive distribution of 𝑃 (𝐼(𝑇 )|𝐼(𝑐)) for a test

image 𝐼(𝑇 ) given a training image 𝐼(𝑐). The derivation for the approximation used to

compute the score (see Eq. 3.12 and Eq. 3.13 in Section 4.2)

𝑃 (𝐼(𝑇 )|𝐼(𝑐)) =
∫︀
𝑃 (𝐼(𝑇 ), 𝜃(𝑇 ), 𝜃(𝑐), 𝜓|𝐼(𝑐)) d(𝜓, 𝜃(𝑐), 𝜃(𝑇 ))

=
∫︀
𝑃 (𝐼(𝑇 )|𝜃(𝑇 ))𝑃 (𝜃(𝑇 ), 𝜃(𝑐), 𝜓|𝐼(𝑐)) d(𝜓, 𝜃(𝑐), 𝜃(𝑇 ))

=
∫︀
𝑃 (𝐼(𝑇 )|𝜃(𝑇 ))[

∫︀
𝑃 (𝜃(𝑇 )|𝜓)𝑃 (𝜃(𝑐), 𝜓|𝐼(𝑐)) d(𝜓, 𝜃(𝑐))] d𝜃(𝑇 )

≈
∫︀
𝑃 (𝐼(𝑇 )|𝜃(𝑇 ))[

∫︀
𝑃 (𝜃(𝑇 )|𝜓)𝑄(𝜃(𝑐), 𝜓, 𝐼(𝑐)) d(𝜓, 𝜃(𝑐))] d𝜃(𝑇 )

=
∫︀
𝑃 (𝐼(𝑇 )|𝜃(𝑇 ))[∑︀𝐾

𝑖=1
𝑤𝑖

𝑁

∑︀𝑁
𝑗=1 𝑃 (𝜃(𝑇 )|𝜓[𝑖𝑗])] d𝜃(𝑇 )

=
∑︀𝐾

𝑖=1𝑤𝑖
∫︀
𝑃 (𝐼(𝑇 )|𝜃(𝑇 )) 1

𝑁

∑︀𝑁
𝑗=1 𝑃 (𝜃(𝑇 )|𝜓[𝑖𝑗]) d𝜃(𝑇 )

≈ ∑︀𝐾
𝑖=1𝑤𝑖 max

𝜃(𝑇 )
𝑃 (𝐼(𝑇 )|𝜃(𝑇 )) 1

𝑁

∑︀𝑁
𝑗=1 𝑃 (𝜃(𝑇 )|𝜓[𝑖𝑗]).
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A.2 Judging real versus reversed dynamics

This experiment investigated humans intuitions about the natural dynamics of draw-

ing, including the start location, direction, and order of pen strokes. Similar issues

were investigated in the experiment in Section 4.5, but there the dynamics were ma-

nipulated for parses constructed by machines rather than people. This experiment

presents a more direct test that manipulated human motor trajectories.

A.2.1 Visual Turing test

Fifteen participants were recruited on AMT. The instructions explained that people

were shown a target image of a character and asked to draw a new example with

a computer mouse. On each of 40 trials, they saw two videos in sequence of the

same drawing being produced, where one video was the original video and another

video showed the drawing produced in the reverse direction. Participants were asked

to guess which was the real video, as opposed to the backward video, and they did

not receive any feedback (blocked or otherwise). Pen trajectories were rendered in

all black and there were pauses between strokes but not sub-strokes. Otherwise,

the video were rendered as in Section 4.5. Participants were payed $0.75 for their

participants which lasted an average of 17.7 minutes.

A.2.2 Results and discussion

Participants were accurate predictors of the underlying character dynamics, since

accuracy was 85% correct on average and significantly better than chance (𝑡(14) =

13.8, 𝑝 < .001). Based on the survey data, participants often had an explicit strategy

for what stroke directions people find natural. Representative strategies included

“Whichever drawing started the highest on the screen...,” “Top to down order and

then left to right order,” and “I picked the one that was most similar to how I would

do it.” Thus, people seem to have strong intuitions about directional constraints in

drawing, and any model that passes the dynamic Turing test would likely need to

capture these structured dynamics.
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