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Abstract

The ability to ask questions during learning is a key aspect of
human cognition. While recent research has suggested com-
mon principles underlying human and machine “active learn-
ing,” the existing literature has focused on relatively simple
types of queries. In this paper, we study how humans construct
rich and sophisticated natural language queries to search for in-
formation in a large yet computationally tractable hypothesis
space. In Experiment 1, participants were allowed to ask any
question they liked in natural language. In Experiment 2, par-
ticipants were asked to evaluate questions that they did not gen-
erate themselves. While people rarely asked the most informa-
tive questions in Experiment 1, they strongly preferred more
informative questions in Experiment 2, as predicted by an ideal
Bayesian analysis. Our results show that rigorous information-
based accounts of human question asking are more widely ap-
plicable than previously studied, explaining preferences across
a diverse set of natural language questions.
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Cognitive science and machine learning have both ex-
plored the ability of learners to ask questions in order to gain
information. In an active learning setting, a learning ma-
chine is able to query an oracle in order to obtain information
that is expected to improve performance. This is often con-
trasted with passive learning where examples are presented
without the advantage of active control. Machine learning re-
search has shown that active learning can speed acquisition
for a variety of learning tasks (Cohn, Atals, & Ladner, 1994;
MacKay, 1992; Settles, 2009). Interestingly, humans seem
to benefit from active learning in similar ways (Castro et al.,
2008; Markant & Gureckis, 2015).

Although these studies have revealed common computa-
tional principles between human and machine active learning,
they have largely sidestepped a hallmark human ability: the
capacity for asking rich, sophisticated, and even clever ques-
tions using language. Active learning algorithms and most
psychological studies emphasize relatively simple types of
stereotyped, non-linguistic queries (essentially “What is the
category label of document X?”, Angluin, 1988; Markant &
Gureckis, 2015). In contrast, people can ask far richer ques-
tions which more directly target the critical parameters in a
learning task. For example, when learning about categories
of animals, a child not only can point at examples and re-
quest a category label (e.g., “What is that object over there?”)
but can also ask about characteristic features (e.g., “Do all
dogs have tails?”), typical examples (e.g., “What does a lemur
look like?”), related categories (e.g., “How do alligators and
crocodiles differ?”), and other types of questions which con-
strain the space of possible concepts (Graesser, Langston, &
Bagget, 1993; Mills, Legare, Grant, & Landrum, 2011).

Despite this observation, little is known about how humans
generate and evaluate natural language questions, particularly

from a computational perspective. For example, how do peo-
ple search an infinite space of possible questions? How do
people evaluate different types of questions within a common
currency? In the present paper, we begin to try to answer
these questions by comparing the preference people have for
asking certain natural language questions to different ways of
valuing questions according to an ideal Bayesian analysis.

Studying question asking in the Battleship game

We examine question asking in a simple active learning
task called the Battleship game due to its superficial sim-
ilarity to a single-player version of the popular children’s
game (Gureckis & Markant, 2009; Markant & Gureckis,
2012, 2014). The goal of the game is to determine the loca-
tion and size of 3 non-overlapping ships on a 6x6 grid (Fig-
ure 1). The ships are horizontal or vertical and can be between
2 and 4 tiles long. During the standard game, a participant
sequentially clicks on tiles to reveal either the color of the
underlying ship part or an empty water part (sampling phase,
Figure 1). An efficient active learner seeks out tiles that are
expected to reduce uncertainty about the ship locations and
avoids tiles that would provide redundant information (e.g.,
when the hidden color can be inferred from the already re-
vealed tiles). At a certain point, the sampling is stopped and
participants are asked to fill in the remaining tiles with the
appropriate color, based on their best guess (painting phase,
Figure 1). The score they receive is a combination of the
number of observations made in the sampling phase and the
number of correctly painted tiles.

The task is well suited for the present study because the
underlying hypothesis space of possible ship configurations
is relatively large (1.6 million possible game boards) but is
easy to explain to participants prior to the start of the task.
In addition, the game is interesting and fun for participants
while being amenable to an ideal observer analysis (see be-
low). The major innovation of the present paper is that we
set up situations where participants can ask any question they
want in natural language (e.g., “Are the ships touching?” or
“What is the total area of the ships?”’). This allowed us to
study rich, natural language question asking in the context of
a well understood active learning task.

Models of question evaluation

At times we notice somebody ask a question that strikes us
as especially clever. But why do some questions seem bet-
ter than others? Here we describe a set of models which
provide an objective “yardstick” for evaluating the quality of
participant’s questions with respect to the goals of the task.
In a given trial, a player must learn a hidden configuration
corresponding to a single hypothesis 4 in the space of possi-
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Figure 1: With the goal to locate all three ships (blue, red, purple)
on the grid, a participant uncovers tile by tile. At a certain point,
this sampling phase is stopped and the participant guesses the color
of the remaining tiles. For each correctly painted tile one point is
awarded.

ble configurations H. We model her prior belief distribution
over the hypothesis space, p(h), as uniform over ship sizes.
The prior is specified by first sampling the size of each ship
from a uniform distribution and second sampling uniformly a
configuration from the space of possible configurations given
those sizes. The player can make a query x (turning over a
tile or asking a natural language question) and receives the
response d (the answer). The player can then update her pos-
terior probability distribution over the hypothesis space by
applying Bayes’ rule,

p(d|h;x)p(h)
Lwen p(d|W:x)p(h')

The semi-colon notation indicates that x is a parameter rather
than a random variable. The posterior p(h|d;x) becomes
the next step’s prior p(h|D;X), with X representing all past
queries and D representing all past responses,

p(hld;x) = (1)

p(d|h;x)p(h|D;X)
Lwen p(d[l:x)p(H|D:X)

p(hld, Dix, X) = 2

The likelihood function p(d|h;x) is 1 if d is a valid response
to the question x (and zero otherwise). The normalizing con-
stant, n, depends on the type of question asked. For ex-
ample when asking for the coordinates of any one of the
tiles that contain a blue ship n is defined by the number of
blue ship tiles in the true configuration. However, for most
queries that we collected n = 1. The posterior predictive
value of a new query x resulting in the answer d is defined
as p(d|D:x,X) = Yy pld|h;x)p(h|D:X).

Expected Information Gain (EIG). According to EIG, the
value of a query x is the expected reduction in uncertainty
about the true hypothesis, averaged across all possible an-

swers A, of the query:
EIG(x) = Y. p(dID:x.X) [1[p(h|DsX)] ~ I1p(hld, Dix. X ]|
deAy

where I[-] is the Shannon entropy. EIG is closely related
to machine learning approaches to active learning (Settles,
2009) and has a long history of study as a model of human
information gathering (Oaksford & Chater, 1994).

Expected Savings (ES). According to ES, a query x is val-
ued according to the expected reduction of errors in the paint-
ing task (Figure 1) averaged across all possible answers A, of
the query

ES(x)= ¥ p(d|Dsx,X)[ECIp(hlD:X)]
deAy

Here EC[p(h|v)] are the Expected Costs when coloring tiles
in the painting task according to belief distribution p(h|v),
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where the belief that tile i has color / is given by p(I|v;i) =
Y wen p(I|h;0) p(h|v). The choice to actually paint the tile in
that color is here given by p(I|v;i) again because we assume a
probability matching choice function. Cp;; = 0 and G55 = 1
indicate the costs associated with painting a tile correctly or
incorrectly, respectively.

Experiment 1 — Question Generation

There is an infinite number of questions that can be asked in
any situation. However, most of them would have little or no
information value while others would be highly informative.
Our first experiment explored how people generate free-form,
natural language questions in a modified version of the Battle-
ship game. Our ultimate goal is to relate open-ended natural
language questions to models of information utility.

Participants. Forty participants recruited on Amazon Me-
chanical Turk, with restriction to the United States pool, were
paid a base of $2 with a performance based bonus of up to
$3.60. Participants were awarded a bonus of $0.20 for each
generated question that was in line with the task rules, en-
couraging a minimum level of question quality without pro-
viding monetary incentives for especially rich and creative
questions. !

Method. Before eliciting the natural language questions, a
number of safeguards were implemented to help the partici-
pants understand the task. These included detailed tutorial-
like instructions that explained the task and comprehension
quizzes to verify understanding. In addition, key task infor-
mation remained visible throughout the whole experiment.

IWe decided against paying people based on question quality.
For example, participants would have to reason about what we, the
experimenters, expect to be good questions.

—EC[p(md,D;x,x)ﬂ .

)],



In a warm-up phase participants played five rounds of the
standard Battleship game (i.e., turning over tiles to find the
ships) to ensure understanding of the basic game play. Then,
in the main phase, participants were given the opportunity to
ask free-form questions in 18 trials. We defined 18 different
“contexts” which refer to partially revealed game boards (see
Figure 2A).

At the beginning of a trial, we introduced participants to
a partly revealed game board by letting them click on a pre-
determined sequence of tiles (which are the past queries X
and answers D in Equation 2). We chose this format of tile-
uncovering moves, resembling the warm-up phase, to give
the impression that a human was playing a game that was
paused in an unfinished state. Subsequently, as a comprehen-
sion check, participants were asked to indicate the possible
colors of each covered tile (e.g., whether the tile could be
hiding a piece of the red ship). The task would only continue
after all tiles were indicated correctly (or a maximum of six
guesses were made).

Next, participants were given the following prompt: “If
you had a special opportunity to ask any question about the
grid, ships, or tiles - what would you ask?” (represented as x
in Equation 2). A text box recorded participants’ responses.
The only two restrictions were that combinations of questions
were not allowed (i.e., putting two questions together with
“and” or “or”) and questions had to be answerable with a sin-
gle piece of information (e.g., a word, a number, true/false, or
a single coordinate). Thus, participants could not ask for the
entire latent configuration at once, although their creativity
was otherwise uninhibited. Due to practical limitations par-
ticipants asked only one question per trial, no feedback was
provided and there was no painting phase. We emphasized
to participants that they should ask questions as though they
were playing the game they already had experience with in
the earlier part of the experiment.

Question asking contexts. To produce a variety of different
types of partial knowledge states or “contexts” from which
people could ask questions, we varied the number of uncov-
ered tiles (6 or 12), the number of partly revealed ships (O to
3), and the number of fully revealed ships (0 to 2). These fac-
tors were varied independently while excluding impossible
combinations leading to a total of 18 contexts/trials.

Results

We recorded 720 questions (18 trials x 40 participants).
Questions that did not conform with the rules or that were am-
biguous were discarded (13%) along with (3%) which were
dropped due to implementation difficulties. The remaining
605 questions (84%) were categorized by type (see Table 1).

Question content. As a first stage of our analysis, we man-
ually coded commonalities in the meaning of questions in-
dependent of the specific wording used. For example, the
questions “How many squares long is the blue ship?” and
“How many tiles is the blue ship?” have the same meaning

Table 1: The natural language questions obtained in Exp. 1 were
formalized as functions that could be understood by our model. The
table shows a comprehensive list. Column N reports the number of
questions people generated of that type. Questions are organized
into broad classes (headers) that reference different aspects of the
game.

N Location/standard queries

24 What color is at [row][column]?

24 Is there a ship at [row][column]?

31 Isthere a [color_incl_water] tile at [row][column]?

Region queries
4 Is there any ship in row [row]?
9  Is there any part of the [color] ship in row [row]?
5 How many tiles in row [row] are occupied by ships?
1 Are there any ships in the bottom half of the grid?
10 Is there any ship in column [column]?
10 Is there any part of the [color] ship in column [column]?
3 Are all parts of the [color] ship in column [column]?
2 How many tiles in column [column] are occupied by ships?
1 Is any part of the [color] ship in the left half of the grid?

Ship size queries

185 How many tiles is the [color] ship?

71  Is the [color] ship [size] tiles long?
Is the [color] ship [size] or more tiles long?
How many ships are [size] tiles long?
Are any ships [size] tiles long?
Are all ships [size] tiles long?
Are all ships the same size?
Do the [color1] ship and the [color2] ship have the same size?
Is the [color1] ship longer than the [color2] ship?
How many tiles are occupied by ships?
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Ship orientation queries

Is the [color] ship horizontal?

How many ships are horizontal?

Are there more horizontal ships than vertical ships?
Are all ships horizontal?

Are all ships vertical?

Are the [color1] ship and the [color2] ship parallel?

PR~ WO

Adjacency queries

Do the [color1] ship and the [color2] ship touch?
Are any of the ships touching?

Does the [color] ship touch any other ship?
Does the [color] ship touch both other ships?

—
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Demonstration queries

What is the location of one [color] tile?

At what location is the top left part of the [color] ship?

At what location is the bottom right part of the [color] ship?

N —
oo

for our purposes and were formalized as shipsize(blue), where
shipsize is a function with parameter value blue. Since the
function shipsize also works with red and purple as parameter
values, it represents a cluster of analogous questions. Within
these functional clusters we then considered the frequency by
which such questions were generated across the 18 contexts
to get a sense of participant’s question asking approach (first
column in Table 1).

At a broader level, there are natural groups of question
types (Table 1). While this partitioning is far from the only
possible scheme, it helps to reveal qualitative differences be-
tween questions. An important distinction contrasts loca-
tion/standard queries with rich queries. Location queries
ask for the color of a single tile and are the only question
type afforded by the “standard” Battleship task (Gureckis &
Markant, 2009; Markant & Gureckis, 2012, 2014). Rich
queries incorporate all other queries in Table 1 and reference
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Figure 2: Three selected trials exemplifying (A) the partly revealed configuration, (B) the qualities of the questions (as measured by the
Bayesian Expected Information Gain model) that participants generated in Experiment 1 (red = simple queries, blue = rich queries), (C) the
six questions that were sampled from those obtained in Experiment 1 and presented in Experiment 2, (D) the values that participants (y-axis)
and the Bayesian Expected Savings (ES) model (x-axis) assigned to these questions (higher score means better question).

more abstract properties of the game. Of the rich queries,
demonstration queries ask for an example given a reference
label. In the case of battleship, demonstration queries ask for
an example tile of a ship, whereas most other rich queries ask
about a part of feature of gameboard configuration. Demon-
stration queries can be especially helpful in active learn-
ing settings where the set of positive examples is relatively
small (Cakmak & Thomaz, 2012; Hendrickson, Navarro, &
Perfors, in press), as is the case in Battleship. Examples of
high value demonstration queries are shown as the first two
questions of Trial 4 and Trial 11 in Figure 2C.

Question frequencies. Among all 605 questions, only 13%
were of the location/standard query type. In other words, be-
ing freed from the constraints of typical active learning stud-
ies, our participants creatively invented a vast array of ques-
tions. Only 47 questions (8%) were demonstration queries
despite the fact that these can be especially useful (see below).
In sum there were 139 unique questions that were repeated
with different frequencies. The most popular questions was
“How many tiles is the red ship?” (n = 66), followed by the
same question asking about the purple (n = 64) or blue ship
(n = 55). When grouping the questions, almost half of all
generated questions (n = 289) addressed the size of one or
several ships (Table 1). Another large group of questions tar-
geted the orientation of the ships (n = 116).

Question quality. A more interesting analysis concerns the
overall quality of these questions (as objectively assessed by

the models described above).> One intriguing hypothesis is
that there should be a positive relationship between the fre-
quency by which a question is generated in a given context
and the objective quality of the question. We used the EIG
model to evaluate all 605 questions in their respective con-
texts. However, counter to our hypothesis, the objectively
best questions were generated rarely (see Figure 2B for three
example trials). The worst questions were also not generated
often, while the most generated questions were in the inter-
mediate range. Indeed, for all 18 contexts, each frequency
distribution has a high peak and this peak is always below the
maximum end of the distribution.

Interestingly, location/standard queries were generally in-
ferior to richer queries. The mean EIG for location/standard
queries was 0.77 compared to 1.26 for the rich queries,
demonstrating the effectiveness of the more sophisticated
queries (red vs. blue in Figure 2B).

Context specificity. A good question in a certain context
is not necessarily a good question in a different context. To
estimate the context sensitivity of the generated questions,
we permuted the configurations each question was associated
with across all 605 questions and evaluated the EIG for each
new configuration-question pair. The average EIG across
questions in the original data set was larger than in all 100
permutation sets, p < 0.01. Thus, people produced a range of
questions that were both rich and context sensitive.

2Since both models make similar predictions for this section, we
only report results for the EIG model here and save the model com-
parison for the analysis in Experiment 2.



Experiment 2 — Question Evaluation

In Experiment 2 we look more closely at how people evalu-
ate natural language questions by having participants select
what they viewed as the best question from a set taken from
Experiment 1. In addition, we provide participants with the
answer to that question.

Participants. 41 participants on Amazon Mechanical Turk
were paid $6 with a potential performance-based bonus of up
to $3.60. The higher payment compared to Exp. 1 was due to
a longer experiment duration.

Method. The materials and procedure were nearly identi-
cal to Exp. 1, except that participants, rather than generating
free-from rich questions from scratch, chose from a list of
natural language questions asked by participants in Exp. 1.
They received the answer to that question and could utilize
this information in a subsequent painting phase.

Participants viewed the same 18 board configurations (con-
texts) along with a selection of six natural language ques-
tions which were sub-sampled from the full list of human-
generated questions from the corresponding context in Exp. 1.
They were asked to rank the questions for quality by position-
ing them from best to worst in a sortable list. After ranking
they were provided with the answer to the top-ranked ques-
tion and then had to do the painting task.

The reduction was necessary, as the intention of this ex-
periment was to study question evaluation without the burden
of having to consider a large number of possible questions.
For sub-sampling, we used a simple algorithmic procedure
designed to include the most frequently generated questions,
the highest quality questions (according to EIG), and some
questions that were neither frequent nor high quality.>

To ensure people read each question they ranked, they were
asked to classify each question by the form of its possible
answers (either a color, a coordinate on the grid, a number,
or yes/no, which span all possible answers to the questions in
Table 1). Only after a correct classification they were able to
continue, in case of a wrong classification they had to wait for
5 seconds.

In contrast to Experiment 1, the bonus was tied to the per-
formance in the painting phase. For each correctly painted
tile, we awarded a potential bonus of $0.10. The bonus was
only paid for a single trial, selected by lottery at the end of
the experiment. This allowed us to award a higher bonus per
tile and also kept people motivated up to the very last trial.

Results

In each trial, participants ranked six rich questions by qual-
ity. Subsequently, they received the answer to the top-ranked
question. In our analysis, a higher rank score represents a
better question (i.e., 6 for the highest position and 1 for the

3The free-from questions for each context in Experiment 1 were
placed in a 2D space with EIG and generation frequency as dimen-
sions. We then sampled 1000 six question subsets and took the sam-
ple with the largest average pairwise distance between questions in
the subset.
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Figure 3: (A) Human rank scores (Experiment 2) and Bayesian Ex-
pected Savings (ES) model scores for the six questions per trial. Er-
ror bars show 1 se. (B) Human choice frequencies of the six ques-
tions ranked by ES, collapsed across all trials. Rank ties were re-
solved such that the choice counts were split between the ranks.

lowest) and we will treat the top-ranked question as the “cho-
sen” question.

Figure 3A shows the high correlations between rank scores
and question qualities, as measured by the Expected Savings
(ES) model (average Pearson correlation r = 0.84). This is
remarkable given that the model scores come from a Bayesian
ideal-observer analysis without any free parameters.

People predominantly chose the best question (Figure 3B).
The best question was the most selected question in all tri-
als except 16 and 17, where the second-best question was fa-
vored slightly more often. Even more, the ES model scores
are well reflected in the choice distributions within each trial
(not shown), such that lower ES questions were selected less
often (average Pearson correlation r = 0.87).

The correlations with the EIG scores are somewhat lower
(r=0.70 and 0.75 for ranking and choice, respectively). The
different preferences of the models become clear with the
example of the question “How many tiles are occupied by
ships?” In many contexts this question has a high EIG value
because it allows the learner to rule out many hypothesized
configurations but a low ES value because such abstract in-
formation does often not help much with the painting task.
For a more careful comparison of which model provides the
best fit to the human rankings, the model utilities were trans-
formed into choice probabilities via a softmax function with
one free temperature parameter. For each model, the param-
eter was fit per participant to the choice data from Experi-
ment 2. We found that ES had a higher log-likelihood for 30
out of 41 participants (73%). In addition, we looked at the



log-likelihood differences between the two models and set an
arbitrary threshold to 1.6. We found an above-threshold dif-
ference in favor of ES for 26 participants (63%) but for zero
participants in favor of EIG. Previous work has suggested that
EIG provides a better account of human active learning than
ES (Markant & Gureckis, 2012), but this work only consid-
ered location/standard queries as opposed to the rich ques-
tions we considered here.

Discussion and Conclusions

While humans and machines seem to benefit from active
learning in similar ways, people ask far richer and more so-
phisticated types of questions. Previous experimental and
computational work has used Bayesian analysis to model how
people play 20 Questions with either pre-determined sets of
questions (Cohen & Lake, 2016) or a small number of hy-
potheses (Ruggeri & Feufel, 2015; Ruggeri, Lombrozo, Grif-
fiths, & Xu, 2015). However, people require no such restric-
tions. They can construct open-ended queries to resolve un-
certainty in massive and novel hypothesis spaces. In this pa-
per, we studied a probabilistic reasoning task which aimed
to capture as much complexity as possible while remain-
ing amenable to ideal Bayesian analysis. Most natural lan-
guage questions can be precisely interpreted as constraints on
the hypothesis space, allowing various measures of question
quality to be computed exactly.

We draw a number of conclusions from two experiments.
When freed from the typical constraints of active learning
studies, people generated natural language questions from a
rich space of possibilities spanning multiple qualitative types.
In every studied context, there were a number of rich queries
that were more informative than the best standard queries.
Furthermore, questions were highly context sensitive and
tuned to the particular partially observed game states that par-
ticipants saw (as opposed to heuristic selections ignoring the
current context). We found that the highest information ques-
tions were rarely generated spontaneously (Exp. 1), yet this
was not because people do not recognize the quality of the
questions (Exp. 2). Importantly, we were able to capture
people’s evaluations of natural, rich questions by a Bayesian
model with zero parameters. In our setting, people’s prefer-
ences are better described by the cost-sensitive measure Ex-
pected Savings rather than the cost-insensitive measure Ex-
pected Information Gain.

We also hope these findings will help inspire new, more
human-like active learning algorithms. Some queries resem-
ble the features that the generative model of a game board
configuration has ‘built-in’ (e.g., the size or the orientation of
a ship), relating to active learning algorithms that ask feature
relevance queries for the purpose of classification (Settles,
2011). Unlike these algorithms, however, our participants re-
ferred to features that are inductive in nature (e.g., about ships
touching each other, about one ship being larger than another,
or about ships having parallel orientation). These features
are interesting because they reference configural or emergent

features which are not explicit in the Bayesian model. By
querying these emergent properties, people must have either
synthesized new features or transferred structure from related
tasks. We hope this type of work will inform more human-
like question asking machines.
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