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A B S T R A C T

Humans leverage compositionality to efficiently learn new concepts, understanding how familiar parts can
combine together to form novel objects. In contrast, popular computer vision models struggle to make the
same types of inferences, requiring more data and generalizing less flexibly than people do. Here, we study
these distinctively human abilities across a range of different types of visual composition, examining how
people classify and generate ‘‘alien figures’’ with rich relational structure. We also develop a Bayesian program
induction model which searches for the best programs for generating the candidate visual figures, utilizing a
large program space containing different compositional mechanisms and abstractions. In few shot classification
tasks, we find that people and the program induction model can make a range of meaningful compositional
generalizations, with the model providing a strong account of the experimental data as well as interpretable
parameters that reveal human assumptions about the factors invariant to category membership (here, to
rotation and changing part attachment). In few shot generation tasks, both people and the models are able to
construct compelling novel examples, with people behaving in additional structured ways beyond the model
capabilities, e.g. making choices that complete a set or reconfigure existing parts in new ways. To capture these
additional behavioral patterns, we develop an alternative model based on neuro-symbolic program induction:
this model also composes new concepts from existing parts yet, distinctively, it utilizes neural network modules
to capture residual statistical structure. Together, our behavioral and computational findings show how people
and models can produce a variety of compositional behavior when classifying and generating visual objects.
0. Introduction

Compositional generalization, the reuse and recombination of pre-
existing knowledge to handle novel cases, is a cornerstone of human
intelligence. Generalization in natural language is a quintessential ex-
ample: people can understand and generate infinitely many sentences
from a finite number of words (Chomsky, 1957, 1965, quoting Wilhelm
von Humbolt). Generalization in visual cognition can be characterized
similarly: people can understand a potentially infinite number of scenes
through combinations of objects, or learning about new objects as
combinations of familiar parts and relations (e.g., Biederman, 1987).
For example, people who are familiar with a coffee maker, toaster
oven and griddle can grasp the concept behind the 3-in-1 composite
object in Fig. 1A upon seeing just a single example, and associate
that new concept with a new label such as ‘‘breakfast machine’’.1 By
recognizing the object’s familiar components and reasoning about how
these components are compositionally related, people can formulate
hypotheses that accurately generalize to future encounters with other
breakfast machines.
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E-mail addresses: yanlizhou@nyu.edu (Y. Zhou), reuben.feinman@nyu.edu (R. Feinman), brenden@nyu.edu (B.M. Lake).

1 Example from Vicarious Research Blog.

From early in development, children can make meaningful general-
izations from one or few positive examples of a new concept (Smith,
Jones, Landau, Gershkoff-Stowe, & Samuelson, 2002; Xu & Tenen-
baum, 2007). In contrast to people, neural network systems, while
advancing in their few-shot learning abilities (Hospedales, Antoniou,
Micaelli, & Storkey, 2022; Lake, Salakhutdinov, & Tenenbaum, 2019),
typically require more data and more task-specific training (Lake, Ull-
man, Tenenbaum, & Gershman, 2017). Recent multi-modal models that
combine images and text, such as text-to-image generative models, can
make impressive compositional generalizations in some cases (‘‘a ted-
dybear on a skateboard in times square’’) and then fail in other related
cases (‘‘a red cube on top of a blue cube’’) (Ramesh, Dhariwal, Nichol,
Chu, & Chen, 2022). For instance, a strong image captioning system (Li,
Li, Xiong, & Hoi, 2022) describes the breakfast machine in Fig. 1A as a
‘‘toaster oven with toast on the bottom and breakfast fried egg’’, identifying
some of the key parts while misunderstanding the larger compositional
whole. In fact, although influential earlier work in computer vision
developed compositional part-based models (Felzenszwalb, Girshick,
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Fig. 1. Visual concept learning requires combining familiar parts in a diverse range of ways. (A) Humans can learn the concept of breakfast machine with a single example
by recognizing familiar components and reasoning about their relations. Leading computer vision models tend to struggle with this concept. (B) Real-world visual concepts are
defined by different types of compositions: 1. A bicycle is a well-defined collection of parts in a consistent configuration; 2. vehicles allow a set of stereotyped parts to be combined
more freely; 3. To be a sun shield, an upright orientation is required; 4. A pair of 𝑥 stipulates a repetition of wearable elements. The rightmost column contains examples of
experimental stimuli that are analogous to these concepts.
McAllester, & Ramanan, 2010; Tu, Chen, Yuille, & Zhu, 2005), recent
benchmarks suggest today’s vision-language neural networks exhibit
limited compositional understanding (Hsieh, Zhang, Ma, Kembhavi, &
Krishna, 2023; Zixian Ma et al., 2023; Tristan Thrush et al., 2022;
Yuksekgonul, Bianchi, Kalluri, Jurafsky, & Zou, 2023). Understanding
human compositional visual concept learning in computational terms is
therefore a natural step to building machine learning models that can
harness compositionality more like people do.

To study how people learn and represent visual concepts in compu-
tational terms requires us to first recognize the qualitatively different
types of composition present in our visual world (see examples in
Fig. 1B). A concept like bicycle stipulates a fixed configuration of parts
and their relations (e.g. bikes have handlebars, a seat, and two wheels
in a consistent configuration), whereas a concept like vehicle allows
category members to have freer combinations of parts and relations
(varying numbers of wheels, motors, etc. are acceptable). A concept
like sun shield requires selectivity of object orientation, in order to
fulfill a given conceptual constraint. Finally, a concept like a pair of x
requires an additional degree of compositional abstraction, allowing a
variety of parts to fill a role as long as they are duplicated. Forming
a comprehensive understanding of the different visual composition
types poses a learning challenge that requires manipulating parts and
relations at various levels of abstraction.

In this work, we take on the challenge of studying how people learn
concepts that utilize a diversity of part-based compositions, as present
in real-world visual concepts, and developing a unifying computational
model that can capture these different types of compositional general-
ization. To achieve this, our strategy for building computational models
brings together three ingredients that have been influential in previous
research on few-shot concept learning. The first ingredient is Bayesian
modeling, which allows for the incorporation of prior knowledge and
for reasoning over generative hypotheses (Tenenbaum, 1999; Tenen-
baum, Kemp, Griffiths, & Goodman, 2011; Xu & Tenenbaum, 2007).
2

The second ingredient is a structured description language, relating to
the types of grammars and formal languages used for modeling compo-
sitionality in natural languages (Chierchia & McConnell-Ginet, 1990),
or to computer programming and formal logic that are perfectly system-
atic in how expressions combine. Structured description languages have
been fruitful for modeling a wide range of visual concepts, including
geometric forms (Amalric et al., 2017; Sablé-Meyer, Fagot, Caparos,
van Kerkoerle, Amalric, & Dehaene, 2021), recursive structures (Lake &
Piantadosi, 2020; Stuhlmuller, Tenenbaum, & Goodman, 2010), visual
scenes (Bramley & Xu, 2023; Liu, Chaudhuri, Kim, Huang, Mitra, &
Funkhouser, 2014; Wu, Burda, Salakhutdinov, & Grosse, 2017), com-
puter graphics (Ellis et al., 2021), hand-drawn characters and images
(Ellis, Ritchie, Solar-lezama, & Tenenbaum, 2018; Lake, Salakhutdi-
nov, & Tenenbaum, 2015) and abstract sequences (Overlan, Jacobs,
& Piantadosi, 2017). The third ingredient is the utilization of pow-
erful neural network modeling components, as instantiated through
hybrid neuro-symbolic modeling (Ellis et al., 2021; Feinman & Lake,
2021; Hewitt, Le, & Tenenbaum, 2020; Kulkarni, Kohli, Tenenbaum, &
Mansinghka, 2015). This modeling approach uses both neural networks
and symbolic representation to amortize, accelerate and improve upon
more purely symbolic or neural models.

Previous empirical studies and modeling efforts, while providing
guidance through the above ingredients, have largely been restricted
to special cases of visual compositionality, in contrast to the broader
scope we aim for here. For instance, Xu and Tenenbaum (2007)’s work
on Bayesian word learning helps to explain how children can make
inferences from just a few examples, but their model operates over
a hypothesis space that treats objects as unified wholes rather than
compositions of parts. The class of handwritten characters considered
in Feinman and Lake (2021) and Lake et al. (2015) is inherently
compositional, but individual characters are highly constrained in how
parts and configuration are allowed to vary (as in the 1st row of
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Fig. 1B). The sequential patterns studied in Lake, Linzen, and Baroni
(2019) and Overlan et al. (2017) and recursive structures in Lake and
Piantadosi (2020) and Stuhlmuller et al. (2010) are special case studies
more akin to the 4th row of Fig. 1B. The free combinations of parts
arranged in grid-like scenes in Orbán, Fiser, Aslin, and Lengyel (2008)
are most analogous to the 2nd row of Fig. 1B. Each of these case studies
also considered only relatively simple types of spatial relations. Our
goals differ in that we would like to account for multiple types of visual
compositional generalization within a single experimental paradigm
and computational framework.

With these aims in mind, here we introduce and study a domain
of visual concepts that is hierarchical, compositional, and relational,
which we call ‘‘alien figures’’. This class of stimuli is capable of repre-
senting various composition types ranging from fixed spatial relations
like bicycles to abstract patterns like pairs of x (examples in Fig. 1B,
right column). Using alien figures as stimuli, we first conduct behav-
ioral experiments on few-shot concept learning, asking participants to
classify novel visual figures after observing just a few positive examples
of a new class. For human concept learning, the ability to classify
novel examples comes with other abilities too, including the second
ability we focus on in this article: generating new examples. Generative
paradigms are especially rich in terms of eliciting complex human
behavior (Jern & Kemp, 2013; Lake et al., 2015; Ward, 1994), and
thus in a second experiment, we ask participants to generate novel
examples based on a few examples of a novel concept. We test a
variety of composition types in both categorization and generation
experiments (Experiment 1 & 2) and document a suite of behavioral
patterns. For instance, we observe a strong assumption for invariance
of object orientation and part attachments that persists throughout
different tasks, and a distinct inductive bias we termed as ‘‘complete-
the-pattern’’, which is characterized by an overwhelming preference for
selecting a specific orientation or part for generation if a pattern can
be completed. The descriptions of all inductive biases are provided in
later sections.

To develop a unifying computational model that can account for
the inferences people make when presented with different compo-
sition types, we utilize the Bayesian program induction framework
for searching for the best casual generative process for explaining a
given set of visual exemplars (Lake & Piantadosi, 2020; Lake et al.,
2015; Overlan et al., 2017; Stuhlmuller et al., 2010). Specifically, a
hypothesis regarding the meaning of a visual concept is operational-
ized as a probabilistic program that, when run, produces a set of
category exemplars as output. To construct the (potentially infinite)
set of possible visual concepts, we design a probabilistic grammar
that produces an unbounded set of visual concepts from a small set
of primitive operations (Goodman, Tenenbaum, Feldman, & Griffiths,
2008; Piantadosi, 2011; Piantadosi & Jacobs, 2016). This grammar
defines a domain specific language for expressing compositional visual
concepts, and the probabilistic nature of the grammar allows for ex-
pressing prior expectations about which types of concepts are more
likely. Crucially, the geometric properties of our shape primitives create
spatial arrangements between object parts beyond simplistic relations
such as above, below, left-of, and right-of. The domain specific language
also supports variable abstraction and manipulation (Marcus, 2003), as
utilized for representing concepts defined through abstract rules such
as repeated part structure (Fig. 1B last row). Together the space of
programs encompasses a range of compositions and abstractions we are
interested in studying.

Under the Bayesian program induction framework, learning a new
visual concept amounts to a search for the best programs for explaining
the examples (here, the alien figures) under a Bayesian score. We find
that our Bayesian program induction model provides a strong account
of experimental data in both the categorization and generation tasks,
outperforming alternative models that lack key capacities to represent
relations and compositionality. Furthermore, the fitted model param-
3

eters are psychologically meaningful, each representing the strength
for generalization preferences such as orientation invariance, providing
insight into a number of people’s inductive biases for these few-shot
learning tasks.

Finally, despite its explanatory power, we find that the Bayesian
program induction model is not a perfect account of the human be-
havior. Upon inspection, human behavior can deviate from the model
in ways that defy simple symbolic description or specification. Moti-
vated to account for these additional behaviors, we also conduct an
additional simulation-only experiment (Experiment 3) utilizing a more
data-driven, neuro-symbolic approach (ingredient 3) to model building
structured probabilistic models (ingredients 1 and 2), following recent
work on generative neuro-symbolic (GNS) modeling (Feinman & Lake,
2021). Like the Bayesian program inductive model, this approach
posits human concepts as probabilistic programs for generating new
examples; however, GNS uses powerful neural network estimators,
in conjunction with a tailored meta-learning scheme, to capture the
statistical structure underlying human generalization that might evade
a fully-symbolic probabilistic model. As a result, GNS can provide a
more comprehensive behavioral account while offering much of the
same structure and interpretability.

1. Experiment 1: Few-shot categorization of compositional visual
concepts

1.1. Behavioral experiments

In a series of few-shot categorization experiments, we aim to eval-
uate the flexibility of human compositional learning across a range of
concept types using a novel class of visual stimuli. Our task design,
which is described below, builds upon the design used in the seminal
work by Xu and Tenenbaum 2007.

1.1.1. Stimuli
The stimuli were described to participants as ‘‘alien figures’’, which

were programmatically generated by composing one to three shape
primitives (see examples in Fig. 2). A composition of two shape primi-
tives is considered valid when they are non-overlapping and connected
via two sides of identical length. The primitives themselves were con-
structed through an additional degree of compositionality, as they were
composed of four isosceles right triangles, which gives rise to non-
canonical forms that are not easily associated with common shape
categories to reduce potential priors. Note that participants in the
experiment saw the primitives as black-and-white outlines rather than
shapes filled with color. We left these primitives uncolored to motivate
closer observations of the stimulus shapes. As a visual aid in the exper-
iment, rolling one’s mouse over a primitive led all identical primitives
in the display to become highlighted. (In all figures in this article,
the shape primitive types are color-coded as a proxy for this roll-over
functionality that participants utilized.)

Trials are designed to span a wide range of compositionality types.
To form the set of training examples for each trial, we varied (1)
which primitives can appear, (2) how many primitives appear in each
exemplar (3) how the parts are composed and (4) if the configuration
has a fixed orientation (see Fig. 3A for examples of different trial
types). The set of possible primitives is provided so that the learning
task could focus on learning the ways the primitives combine rather
than on learning the primitives themselves. The training sets were also
designed such that usually multiple hypotheses were consistent with
the provided examples. The test examples for each trial were designed
to vary from the training examples in ways that utilize different kinds of
compositional generalization (e.g., novel rotation, novel configuration
of primitives, novel primitive, etc.).

1.1.2. The classification task
Participants took part in an online ‘‘alien figure categorization
game’’ in which they were the assistant to a professor who collected
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Fig. 2. Example trial for learning a novel visual concept. (A) In all experiments, the participant is first familiarized a set of exemplars from a novel visual concept. (B) In the
categorization task, the participant is then presented with a series of novel figures and judges whether each belongs to the same concept as the provided exemplars. (C) In the
generation task, the participant is instead given a digital interface that allows them to generate a novel example of the candidate concept.
Fig. 3. Examples of trial types tested in the experiments. (A) Sets of example alien figures given to participants to study on a given trial. (B) Simplified parse tree of the
most likely concept inferred by the Bayesian program induction model for each trial. The grammar over programs specifies primitive shapes and operations including the attach
function, which returns the set of all possible configurations of two parts, and the attach* function which returns a set containing the single specified configuration (1st allowable
attachment). We can see that the spatial arrangement among components cannot be described with simple relations such as left-of, right-of, above or under. In all of these examples,
we omit a rotation function that was applied to all produced configurations as none requires a specific rotation.
samples of alien figures on a newly discovered planet. Their job in the
game was to help the professor categorize a series of unnamed alien
figures based on a small set of named examples.

During each trial, participants were first familiarized with 4 differ-
ent shape primitives. They were also informed that all relevant figures
within the trial were built from these 4 primitives and no other primi-
tives were possible. Next, participants were given a small set of example
4

figures that shared a common name (see Fig. 2A for an example trial).
To minimize the effect of memory demands on learning, a display of
the examples and primitives remained on screen throughout the trial.
After an untimed observation period, participants entered a test stage
in which they categorized a series of 9–13 unnamed alien figures (see
Fig. 2B for an example test item). Specifically, participants chose ‘yes’
or ‘no’ for each test image to indicate whether it belongs to the same
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named category as the example images. We constructed each test set
to cover a wide range of both possible and impossible extensions of
potential concepts related to the training examples.

We conducted two separate experiments with identical task pro-
cedures. The two experiments differed only in terms of the training
and test sets in each trial. In Experiment 1a, for every participant we
tested 11 trials with each trial containing 1 to 3 training examples,
followed by judgments on a set of 9 to 13 test examples. Experiment
1b consisted of 10 trials and considered concept types that were more
complex compared to those used in Experiment 1a. To study the effect
of the exemplar set size on learning, participants in Experiment 1b
were randomly separated into two conditions, based on whether they
saw 3 or 6 exemplars of each concept. Trial orders were randomized
for each participant. For each trial, we pre-generated 5 random sets
of candidate primitives, and the primitive assignment was randomly
sampled from the 5 for each participant. In all subsequent analyses, we
combined data collected from both experiments into what we refer to
as the categorization dataset, as both experiments shared an identical
setup.

1.1.3. Participants
For both experiments, participants (total 𝑁 = 100) were recruited

via Amazon’s Mechanical Turk. In Experiment 1a, 40 participants took
part and in Experiment 1b, 30 participants took part in each condition.
We implemented an attention check on every trial by asking partici-
pants to indicate whether one of the exemplars belongs to the concept.
Responses from participants that failed one or more attention checks
during either experiment were excluded. In the end, generalization
judgments from 32, 25, and 20 participants were used in our reported
analyses of Experiment 1a, the 3-exemplar condition of Experiment 1b,
and the 6-exemplar condition of Experiment 1b, respectively. Partici-
pants took 47.2 min on average to finish the task, and were paid $5.00
at the completion of the experiment.

1.2. Computational models

We explore several types of computational models, with the aim
of characterizing human categorization judgments in the alien figure
task in computational terms. This section introduces the Bayesian
program induction model with strong compositional abilities, as well
as alternative models that we hypothesize lack key aspects of com-
positionality necessary for capturing human behavior. The generative
neuro-symbolic model is considered in Experiment 3.

1.2.1. Bayesian program induction
We develop a Bayesian program induction model that considers

explicit, structural hypotheses as explanations for sets of visual ex-
emplars. Specifically, the hypotheses are alien concepts represented
as probabilistic programs, which are generative models that produce
distributions of examples. Inspired by previous probabilistic language
of thought models in cognitive science (Goodman et al., 2008; Pi-
antadosi, 2011; Piantadosi, Tenenbaum, & Goodman, 2016), we form
a compositional hypothesis space using a probabilistic grammar. The
grammar defines a set of primitive visual parts and primitive functions,
and together these primitives can be structurally combined to build up
programs of various levels of complexity (see Fig. 3 for examples of
programs and output). The production rules of the grammar specify the
infinite space of possible concepts; each sample from the probabilistic
grammar corresponds to a potentially different visual concept.

The goal of the learner is to infer the most probable programs
under a Bayesian score—that is, the programs most consistent with
the observed set of example alien figures and the prior beliefs over
programs. Specifically, given a set of examples 𝑋 = {𝑥1,… , 𝑥𝑘}, the
learner aims to find the best programs ℎ according to the posterior
probability,

𝑃 (ℎ|𝑋) ∝ 𝑃 (ℎ)𝑃 (𝑋|ℎ). (1)

We define the prior probability of a concept 𝑃 (ℎ) and the likelihood of
a concept given observation 𝑃 (ℎ|𝑋) in the following sections.
5

1.2.2. Prior over programs
Following Goodman et al. (2008), the prior is operationalized

through a probabilistic context-free grammar (PCFG) that we denote
as 𝐺 (see Appendix Fig. 14 for the full set of grammatical rules). To
generate a concept, our grammar 𝐺 begins with expanding the START
symbol into downstream nodes according to applicable rewrite rules.
These nodes are subsequently rewritten until no further expansions
are possible. The output of each program is the set of all possible
alien figures under the concept. In the example (rotate* (attach*
p2 p4, 1), 180), the inner most expression is first evaluated and
eturns the 1st allowable configuration of the specific two primitives
2 and 𝑝4. All possible configurations of any two parts defined in the

study were fully enumerated and stored, such that each configuration
ID corresponds to a specific configuration. The inner part then gets
passed on to the outside expression that generates a rotated copy at
180◦. This program has only a single element in its output set, as it
corresponds to a generative process that fully specifies the types of
parts, their configuration, and overall rotation. Figure orientation is
based on four discrete possibilities, and two identical configurations at
different rotations are considered distinct alien figures.

The grammar also supports 𝜆-expressions: together with mapping
and set operations, the grammar can produce abstract concepts like
(map (lambda x (attach x x)) S) which outputs the set of all
possible configurations of two identical components sampled from the
set 𝑆. Other function primitives in the grammar support hypotheses
that do not fully specify a composition process, but rather identify one
or more defining parts. For example, (has p) returns the set of all
possible alien figures with 𝑝 as a part.

Formally, each node in 𝐺 is either a nonterminal 𝐴 or a terminal,
both are a return type of some primitive function defined in 𝐺. A non-
terminal 𝐴 is expanded into downstream nonterminals until a terminal
is reached, at which point no further expansion will take place. The
grammar 𝐺 also defines a set of rules on how its primitives can be
combined. Each rule in 𝐺 has an associated probability, and together
these probabilities are formalized with parameters 𝜃 which quantify the
distribution of expansions for the nonterminals. Therefore, the prior
distribution is defined by modeling each non-terminal 𝐴 ∈ 𝐺 as a
multinomial, parameterized by 𝜃𝐴, the set of expansion probabilities
associated with all possible options of 𝐴 → 𝐵, such that ∑

𝐵 𝜃𝐴→𝐵 =
1. As a result, the prior probability of a hypothesis ℎ is simply the
product of all production probabilities 𝜃𝐴→𝐵 associated with all relevant
expansions 𝐴 → 𝐵 in ℎ:

𝑃 (ℎ; 𝜃) =
∏

𝐴→𝐵∈ℎ
𝜃𝐴→𝐵 . (2)

This formulation operationalizes a psychological preference for sim-
plicity (Chater & Vitányi, 2003) as shorter programs require fewer
multiplications of expansion probabilities. Different from the prior
in Goodman et al. (2008), which marginalizes over all possible produc-
tion probabilities 𝜃𝐴→𝐵 , the current model infers these parameters di-
rectly from participants’ behavioral responses with a procedure detailed
in Appendix C.

1.2.3. Likelihood
The likelihood of 𝑋 assuming hypothesis ℎ is true is defined as

𝑃 (𝑋|ℎ) =
𝑘
∏

𝑖=1
𝑃 (𝑥𝑖|ℎ) =

𝑘
∏

𝑖=1
1(𝑥𝑖 ∈ ℎ) ⋅ 1

|ℎ|
, (3)

where 1(⋅) is the indicator function indicating whether the 𝑖th exemplar
𝑋𝑖 is a valid token of ℎ, and |ℎ| is the size of the given hypothesis ℎ,
represented by the number of all possible tokens under ℎ. For example,
the left-most concept depicted in Fig. 3 is a program that produces
the set of all possible tokens in which each token is a validly attached
configuration of the two participating shape primitives. The size of this
concept is then equal to the set size of all unique output tokens of
the program. A likelihood function that is inversely proportional to the
concept size reflects the psychologically important size principle, which

assigns more weight to more specific hypotheses (Tenenbaum, 1999).
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1.2.4. Categorization decisions and approximate Bayesian inference
To generate a model prediction for each test item 𝑦 after making a

set of observations, we calculate the probability that the label 𝑙𝑦 ∈ {0, 1}
of 𝑦 is consistent with the set of observed examples 𝑋 as

𝑃 (𝑙𝑦 = 1|𝑋) =
∑

ℎ∈
𝑃 (𝑙𝑦 = 1|ℎ)𝑃 (ℎ|𝑋)

=
∑

ℎ∈
(𝛼 ⋅ 1(𝑦 ∈ ℎ) + (1 − 𝛼) ⋅ 𝛽)𝑃 (ℎ|𝑋)

≈
∑

ℎ∈̂

(𝛼 ⋅ 1(𝑦 ∈ ℎ) + (1 − 𝛼) ⋅ 𝛽)𝑃 (ℎ|𝑋)

(4)

where  is the hypothesis space under the grammar 𝐺. We also
implement two likelihood free parameters 𝛼 and 𝛽. To account for
possible response noise in our collected generalization judgments, we
fit a lapse rate (1−𝛼), which determines the probability that a response
was made at random. In the case of a lapse trial, we also represent a
baseline preference for answering Yes (𝑙𝑦 = 1) with parameter 𝛽.

Exactly computing the posterior predictive quantity in Eq. (4), re-
quires iterating through all hypotheses in the hypothesis space defined
by 𝐺. Since our grammar 𝐺 defines an infinite space  of hypothesized
of expressions, we approximate the infinite hypothesis space with a
finite set of hypotheses. We construct this finite hypothesis space
̂ ∼  as follow: we first fix all grammar production probabilities
to their default uniform values, and then for each trial 𝑡 and its
set of observed exemplars 𝑋𝑡, we estimate a posterior distribution
over hypotheses using a Markov chain Monte Carlo (MCMC) inference
procedure implemented in the LOTlib3 software package (Piantadosi,
2014). Specifically, we run 3 MCMC chains of 100,000 steps of a tree-
regeneration Markov chain Monte Carlo (MCMC) procedure (Goodman
et al., 2008) on each set of exemplars. We then store the top 200 unique
hypotheses for each set of exemplars, forming a set that encompasses
a large number of hypotheses that are high-probability at some point
throughout the experiment. Across all trial types, we obtain a finite
space of 5254 unique hypotheses ̂, and ̂ is used in all subsequent
data analyses. Finally, we re-normalize the posterior scores for each
ℎ ∈ ̂ to form a proper posterior distribution 𝑃 (ℎ ∈ ̂|𝑋𝑡) ∝ 𝑃 (ℎ|𝑋𝑡)
or each trial 𝑡.

After obtaining a viable hypothesis space ̂, we would like to find
he set of grammar production probabilities that most likely generated
he observed human categorization judgments. That is, given the set of
abels 𝐿 participants extend to the set of test items 𝑌 , we are interested
n finding the set of grammar parameters 𝜃, and likelihood parameters
, 𝛽 such that the (log) likelihood of the behavioral data 𝑃 (𝐿|𝑋, 𝑌 ; ̂)
s maximized. We also include two temperature parameters that each
ontrols the strength of the prior in Eq. (2) and the likelihood in
q. (3). Together, we optimize for argmax�⃗� 𝑃 (𝐿|𝑋, 𝑌 ; ̂, �⃗�), where

⃗ = {𝜃, 𝛼, 𝛽, 𝑇𝑝, 𝑇𝑙}. Details of the fitting procedure are described in
ppendix C.

.3. Alternative models

We compare the full Bayesian program induction model with two
esioned versions, each with parts of the grammar ablated. We also
ompare with variants of an exemplar model (Nosofsky, 1986) which,
hile successful in modeling human categorization behavior, are not
xplicitly compositional.

.3.1. Bayesian - No defining part
In this lesioned model (Bayesian no-DP), the nonterminal 𝐷𝑃 (Defin-

ng Part) in Fig. 14 and its downstream options are completely turned
ff, which in turn eliminates all hypotheses that contained one or more
efining parts. This means that any concept of the type a dax is any
lien figure that has part 𝑝 in it or a blicket is anything made up of
nly part 𝑝1 or part 𝑝2 become unavailable as possible hypotheses in
his version of the Bayesian model. This inability to use defining parts
akes it challenging to grasp concepts like vehicles in Fig. 1, which can

e defined by objects that have (at least one) wheel(s).
6

.3.2. Bayesian - No variable binding
In this lesioned model (Bayesian no-Var), the ability to bind vari-

bles is turned off by disabling the nonterminal 𝑉 𝐴𝑅 (VARiable) in
Fig. 14. All hypotheses that maps a set of parts to a function are
unavailable in this model, making any fully abstract pattern difficult to
represent. This inability to use variable binding makes it challenging to
grasp concepts like a pair of 𝑥 in Fig. 1 which requires a set of variable
parts to be duplicated.

1.3.3. Exemplar models
We evaluate variants of the Generalized Context Model (GCM)

(Nosofsky, 1986) for modeling categorization judgments. The proba-
bility of extending a category label 𝑙𝑦 to a new stimulus 𝑦 is based on
its similarity to the training examples 𝑋:

𝑃 (𝑙𝑦 = 1|𝑋) ∝
𝑘
∑

𝑖
exp(−

𝑚
∑

𝑗
𝑤𝑗 ⋅ 𝑑𝑗 (𝑦, 𝑥𝑖))

where 𝑑𝑗 are a set of distance functions (possibly operating over differ-
ent sets of features) and 𝑤𝑗 are the corresponding weight parameters.
Following Overlan et al. (2017), we convert the raw similarity measures
into pseudo probability scores in the range of [0, 1] by normalizing
against the maximum similarity over all test items of the trial 𝑡.

Pixel-GCM. Based on the raw pixel images of the alien figures,
we use a deep convolutional neural net (CNN) to extract features of
our visual stimuli. A pre-trained 50-layer ResNet (He et al. 2015) is
used to encode all images into vectorized representations. There is
only one distance function and weight, based on the cosine distance
between two feature vectors. Outfitted with the CNN encoder, this
version of the GCM model can directly process the same visual stimuli
that were presented to participants. As a result, this model utilizes
image-based (as opposed to symbolic structure-based) representations
to make categorization judgments.

String-GCM. Based on string representations of the alien figures, we
use a weighted Levenshtein distance to measure the similarity between
exemplars. This version of the GCM model assumes a direct corre-
spondence between each image input and its symbolic representation.
For every image, its string format is a concatenation of 3 substrings
that separately encode (1) shape primitive types, (2) attachment con-
figurations, and (3) overall orientation. For example, an alien figure
consisting of two primitives 𝑝1 and 𝑝2 connected according to their
1st allowable configuration and rotated to 180◦ can represented in the
string format as ‘‘(𝑝1𝑝2) + 1 + 180’’. We fit different weight parameters
𝑤1, 𝑤2, and 𝑤3 for each type of substring, and thus the overall distance
∑𝑚

𝑗 𝑤𝑗 ⋅ 𝑑𝑗 (𝑦, 𝑥𝑖) is a weighted average of the Levenshtein distances
between each pair of corresponding substrings.

1.4. Results

Fig. 4 shows human categorization judgments and model predic-
tions on a set of example trial types tested in Experiment 1. The full
set of results can be found in Appendix Fig. 17, which summarizes
the relationship between human categorization decisions and model
predictions for every trial type and model. Overall, we find that the
full Bayesian model provides a strong account of human categorization
decisions, achieving a mean correlation of 𝑟 = 0.901 across all trial
types studied in both experiments. We observe that the Bayesian model
consistently assigns high probabilities to the test item that human
participants found most likely, and produces graded predictions that
tracked people’s willingness to extend the concept.

The alternative models do not perform as well. For the lesioned
models, the Bayesian no-DP has an average correlation of 𝑟 = 0.810
and the Bayesian no-Var model has an average correlation of 𝑟 =
0.835 (Appendix Fig. 17). As to be expected, the reductions in cor-
relations between human judgments and model predictions for these
two models are mainly driven by a subset of trial types that test
for concepts that specifically require the notion of defining parts or
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Fig. 4. Categorization results. Human behavioral data and model predictions on 6 of the trial types tested in the categorization experiments. The set of training examples is
shown at the top of each panel, with the set of 4 candidate shape primitives shown on the right; Test items are categorized into different types of novelty, with examples shown
at the bottom. The correlations between human judgments and model predictions per model per trial are indicated in each panel. (A)&(B) Identity test items are identical to one
of the examples; Novel rotation items are rotated copies of one of the exemplars; More part(s) items are more complex compositions of the observed primitives; Other primitive
are items reflecting novel single shape primitives; Other items are conceptually inconsistent with training examples. (C) Novel attachment items are new configurations of parts in
examples; Part test items are parts that appeared in one of the examples; Novel primitive items contain unseen parts. (D) Let 𝐴 be the defining primitive (here, green). A 2-part
items are two-primitive configurations that contain 𝐴, No A 2-part do not contain 𝐴; A 3-part items are three-primitive configurations that contain 𝐴, No A 3-part do not contain
𝐴. (E) Higher (level) items are configurations with one of the training examples as a subpart; Other 2-part & other 3-part are 2-part and 3-part items that do not reflect suggested
abstract patterns. (F) Broader items are samples from a wider concept for which the set of possible extensions is a superset of the concept of interest; Subpart items are the subpart
common to all exemplars shown without attachment to some other primitive; Fewer items have fewer number of parts than the exemplars. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
variable binding. For example, the set of exemplars Fig. 4D share an
obvious defining part (shown in green) and the Bayesian no-DP model
struggles to provide good predictions for all test items. On another
trial where there is a subpart common to all exemplars along with
some variable part (Fig. 4F), the Bayesian no-Var model is able to
identify the common subpart but fails to assign higher probabilities to
items that also contain a variable part than items that reflect only the
subpart.

The two GCM variants also do not perform at the level of the full
Bayesian model. The pixel-GCM has an average correlation of 𝑟 = 0.577
and the string-GCM has 𝑟 = 0.813. In the case of the pixel-GCM, the
model responds strongly to the identity matches, but unlike people, it
does not clearly distinguish between the other types of generalization
7

(Fig. 4). The pre-trained CNN seemingly fails to perceive the stimuli in
terms of their underlying parts and relations, at least without further
fine-tuning. The string-GCM is a reasonably good account of the trial
types with example figures sharing common parts, but struggles with
additional configuration constraints (e.g., Fig. 4C). This is unsurprising
since the string format precisely encodes which shape primitives are
present in each alien figure, but has a less flexible representation of
spatial relations. The string-GCM also struggles with more abstract rules
that extend to unseen primitives or contain configurations of primitives
not previously observed (e.g., Fig. 4D&E). Both variants of GCM do
not demonstrate any sensitivity to the size principle, in contrast to the
Bayesian model which can operationalize sampling assumptions in its
likelihood function (Fig. 4A&B).
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1.4.1. Fitted parameter values and inductive biases
The Bayesian model’s probabilistic grammar is designed such that

its free parameters (probabilities associated with nonterminal sym-
bols) represent psychologically meaningful choices. For example, when
sampling a visual concept from the grammar-based prior (see Fig. 14
for full specification), the nonterminal 𝐴𝑇𝑇𝐴𝐶𝐻_𝑆𝑃 expands in two
possible ways (governed by a weighted coin flip): with probability
𝑝𝑅𝐼 the concept will be orientation invariant, i.e. the set of possi-
ble tokens contains all rotations of a particular configuration; with
probability 1 − 𝑝𝑅𝐼 the concept will be orientation selectivity, i.e. the
set of possible tokens contains only one particular orientation. The
maximum-a-posteriori (MAP) values of the 8 fitted grammar param-
eters are reported in Fig. 18. Fitted values of the set of grammar
parameters reveal a suite of inductive biases people brought to bear
when performing this visual concept learning task. For instance, the
probability of a rotation invariant concept is near ceiling for the catego-
rization task (𝑝𝑅𝐼 = 0.999), suggesting that our participants had a very
trong preference for orientation invariance when judging unnamed
lien figures (e.g., Fig. 4A). The orientation invariance bias persists
ven when an increased number of independent exemplars repeatedly
how the same orientation, strongly suggestive of orientation selectivity
e.g., Fig. 4B). People may have been influenced by their experience
ith named objects in the real world, which are usually orientation

nvariant. Participants are also biased towards concepts that do not
equire fixed configurations of parts, as evident by the similarly high
alue of the parameter 𝑝𝐴𝐼 . This is exemplified by their willingness to
eneralize to novel configurations, even when all examples share the
ame configuration (e.g., Fig. 4C).

.5. Experiment 1 discussion

In Experiment 1, we investigate how people can learn compositional
isual concepts from just a few examples and then categorize novel
xamples. The visual concepts instantiate different qualitative ways
arts can combine, including parts with fixed attachment either with
Fig. 4A) or without rotation of the whole figure (Fig. 4C), as well as
oncepts with a defining part (Fig. 4B) or defining multi-part motif
Fig. 4D) with otherwise variable structure. The Bayesian program
nduction is able to best match human categorization judgments in
omparison to alternative models, demonstrating how a single compu-
ational approach can account for a variety of part-based compositional
eneralization.

We observe that, even with a very limited number of examples,
articipants consistently made meaningful generalizations guided by a
et of strong assumptions about visual concepts, such as the preference
or rotation and attachment invariance. To better understand the types
f inductive biases at work, we follow up with an experiment focusing
n generating new examples. Participants are asked to generate novel
xamples of a class of alien figures, after studying a few examples
rom that class. Our aim is to use generation as a powerful additional
indow (Lake et al., 2015; Ward, 1994) into what participants consid-
red as representative for each learned category. Moreover, a complete
omputational model of concept learning must account for behaviors,
ike generation, that go beyond classification tasks (Markman & Ross,
003).

. Experiment 2: Few-shot generation of compositional visual con-
epts

.1. Behavioral experiments

The few-shot generation task is a modification of the previous
ategorization experiments, in which the participants studied a set of
xemplars and then generated a novel figure belonging to that concept.
he details are described in the following sections.
8

2.1.1. The generation task
The stimuli were identical to the ones that appeared in the catego-

rization experiments. We combined the trial types tested in Experiments
1a and 1b, and formed a set of 31 trials in total which we tested in a sin-
gle experiment with the generation interface. The order of the 31 trial
types was shuffled, and each participant saw a primitive assignment
randomly sampled from the 5 possible sets of primitives per trial.

An example trial is shown in Fig. 2 A&C. Similar to the previous
experiments, participants took part in an ‘‘alien figure generation
game’’. In the current task, upon observing a small number of named
exemplars, their job as a research assistant was to help generate
possible alien figures that belong to the same category as the observed
exemplars.

The familiarization procedure was identical to the categorization
task. After studying the set of exemplars for each trial, participants
entered a test stage in which they used a generation interface to
construct an alien figure with the same name. The interface allowed
participants to select and drag primitive pieces onto a dynamic digital
canvas. The primitive pieces can be freely rotated and connected to
other pieces via any of the available sides (attachments that led to
overlapping pieces were disallowed). Participants could also fuse pieces
together and rotate the fused product as a whole, as well as un-fuse
attached pieces and remove any unwanted parts from the canvas. Once
they are satisfied with the current composition, participants submitted
the final alien figure generation as it existed on the canvas.

2.1.2. Participants
The participants (𝑁 = 135) were evaluated online and recruited

through Amazon’s Mechanical Turk. To encourage novel generations
(defined as generations that are not exact copies of one of the shown
examples), we randomly assigned participants into two groups, each
receiving one of two versions of the instructions that differed in the em-
phasis on the expected novelty of the generations. In the strong novelty
condition, the participants were explicitly instructed to generate alien
figures that did not occur in the training set. In contrast, in the weak
novelty condition, the participants were not instructed regarding this
constraint one way or the other. Out of all participants, 61 participants
received the strong novelty instruction and 74 participants received the
weak novelty version. We found that 63.6% of the generated tokens
from the first group were novel and 64.8% were novel for the second.
A two-sided Mann–Whitney U test does not find a significant difference
in terms of the percentage of novel generations per individual between
the two groups (𝑈 = 2110.0, 𝑝 = 0.308), and we pooled the data from
he two instruction groups in all subsequent analyses.

All participants finished the task within an hour and were paid
5.00 at the completion of the experiment. As an attention check, par-
icipants completed a set of quiz questions about the generation game
nterface. Participants were given five chances to answer the quiz ques-
ions correctly, although 5 people were unable to and thus excluded.

We observed two distinct types of strategies that participants
dopted across trials: one strategy involved consistently copying one
f the provided exemplars, whereas the other strategy involved con-
istently generating a novel alien figure not present in the exemplar
et. We divided the participants into two groups according to their
dopted strategy, with one group containing 42 participants that only
opied, and another group containing 88 participants that produced
ovel generations. As we are interested in modeling generalization
ehaviors, generated alien figures from the second group of participants
ere used in our reported analyses.

.2. Bayesian program induction

The Bayesian program induction model (Section 1.2.1) can both
lassify and generate novel examples. For trial 𝑡, consider figures 𝑌𝑡
enerated by participants in response to the set of exemplars 𝑋 . To
𝑡
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generate each new example 𝑦 ∈ 𝑌𝑡, we can sample from the posterior
redictive distribution 𝑃 (𝑦|𝑋𝑡; 𝜃, 𝛼):

𝑃 (𝑦|𝑋𝑡; 𝜃, 𝛼) =
∑

ℎ∈𝐻
𝑃 (𝑦|ℎ; 𝛼)
⏟⏞⏞⏟⏞⏞⏟

𝑖

𝑃 (ℎ|𝑋𝑡; 𝜃) (5)

where the term (𝑖) on the right-hand-size of Eq. (5) is the likelihood of
a new example if ℎ is true. It has the form

(𝑦|ℎ; 𝛼) = 𝛼 ⋅ 1(𝑦 ∈ ℎ) ⋅ 1
|ℎ|

+ (1 − 𝛼) ⋅ 𝑃 0(𝑦),

where 1(⋅) indicates whether 𝑦 is a valid token of ℎ, and |ℎ| is the size
f the given hypothesis ℎ, the number of all possible tokens under ℎ.
e again included a lapse rate: the new example is noisily generated

y either sampling from all valid tokens of ℎ with probability 𝛼 or by
sampling from the null token distribution (see Appendix D) of tokens
𝑃 0(𝑥) with probability 1 − 𝛼.

Since both the categorization and generation experiments shared
he same set of trial types, we can use the same set of hypotheses
̂ to approximate the infinite hypothesis space  considered in the
eneration task. Once again, we re-normalize the posterior scores for
ach ℎ ∈ �̂� to form a proper posterior distribution and the response
istribution 𝑃 (𝑌𝑡|𝑋𝑡; 𝜃, 𝛼) becomes:

(𝑌𝑡|𝑋𝑡; 𝜃, 𝛼) =
∏

𝑦∈𝑌𝑡

𝑃 (𝑦|𝑋𝑡; 𝜃, 𝛼)

=
∏

𝑦∈𝑌𝑡

∑

ℎ∈̂

𝑃 (𝑦|ℎ; 𝛼)𝑃 (ℎ|𝑋𝑡; 𝜃)
(6)

To infer the set of un-observable model parameters using the human
generation data, we are interested in finding the set of parameter
values �⃗� that maximizes the (log) likelihood 𝑃 (𝑌 |𝑋; �⃗�) of all participant
generations 𝑌 , upon observing exemplars 𝑋. Again, we include two
emperature parameters that control the strengths of the prior and like-
ihood respectively, hence �⃗� = {𝜃, 𝛼, 𝑇𝑝, 𝑇𝑙}. The subsequent parameter

fitting procedure is identical to that of Experiment 1, and reported in
Appendix C.

Instead of refitting the set of grammar production probabilities,
we also evaluate performance of the Bayesian model with the set of
MAP values for 𝜃 directly transferred from Experiment 1. We expect
the Bayesian model with transferred parameter values to perform at
a comparable level to the Bayesian model refitted to the generation
dataset, if participants’ assumptions about the alien figure concepts
remain consistent across different tasks.

2.2.1. Alternative models
We again compare the full Bayesian program induction model with

two lesioned variants, Bayesian no-DP (Section 1.3.1) and Bayesian no-
Var (Section 1.3.2). We also compare to a variant, Bayesian Exp. 1 fit,
that copies over the parameter fits from the Experiment 1 categoriza-
tion task.

We also compare the Bayesian model with a generative variant of
the string-GCM (Section 1.3.3). We convert this exemplar model into
a generative model by enumerating all possible tokens (in the string
format), defining the probability of a generated exemplar 𝑦 as:

𝑃 (𝑦|𝑋𝑡) =

∑𝑘
𝑖 exp(−

∑𝑚
𝑗 𝑤𝑗 ⋅ 𝑑𝑗 (𝑦, 𝑥𝑖))

∑

𝑦∈𝑆
∑𝑘

𝑖 exp(−
∑𝑚

𝑗 𝑤𝑗 ⋅ 𝑑𝑗 (𝑦, 𝑥𝑖))
,

where the set of provided exemplars is 𝑋𝑡 and 𝑆 is the set of all possible
token strings.

2.3. Results

Table 1 provides a summary of how the full Bayesian program in-
duction model compares to alternatives. Using mean log-likelihood per
human generated token, the full Bayesian model shows the strongest
overall performance. The Bayesian model with parameters from Ex-
periment 1 is the next strongest performer, although the drop in
performance suggests differences between the categorization and gen-
9

eration tasks (which are discussed below). The next best models are
Table 1
Goodness of fit for predicting human generated examples. For each model,
the average log-likelihood per human generated token is reported in the first
column. Paired t-tests compare the full Bayesian model to each alternative
(with 1708 degrees of freedom). The resulting t-stats and p-values are shown.
Model log-likelihood t-statistic (p-value)

Bayesian −5.177 –
Bayesian (Exp. 1 fit) −5.404 −11.387 (0.000)
Bayesian no-DF −6.256 −8.780 (0.000)
Bayesian no-Var −5.760 −8.117 (0.000)
String-GCM −10.354 −49.369 (0.000)

the lesioned variants Bayesian no-DF and Bayesian no-Var. The lowest
performing model is the string-GCM model. Paired t-tests between the
full Bayesian model and each of the alternatives, with per-token log-
likelihood values as observations, confirm the differences (details in
Table 1).

Fig. 5 shows mean difference in log-likelihood per trial, 𝓁(𝜃)−𝓁(𝜃0)
for full model 𝜃 and alternative 𝜃0, such that positive values mean
the full Bayesian model is favored. To highlight several key trials,
Fig. 6 shows human generations alongside Bayesian model samples.
The string-GCM consistently produces the poorest log-likelihoods across
all trial types. All variants of the Bayesian model, with their built-in
notions of invariance, show preference to produce samples that gener-
alize outside of observed orientations (Fig. 6A&B) and part attachments
(Fig. 6C). Consistent with findings from Experiment 1, the two lesioned
Bayesian models mainly deviate from the full version on a subset of
the trials that require having defining parts or variable manipulations.
Again, when all exemplars in Fig. 6D share the green defining part, the
Bayesian no-DF model struggles, and when there is an abstract pattern
fulfilled by variable parts (Fig. 6E) the Bayesian no-Var model struggles.
When there is both a defining common subpart and a variable part
across all observed examples (Fig. 6F), both lesioned models fall short
in comparison to the full model.

The refitted full Bayesian model not only outperforms alternative
models in terms of log-likelihoods, it is also can also generate com-
pelling new examples that resemble human generations. For example,
the most frequently generated examples in Fig. 6E correctly capture
the abstract pattern. The most frequent generations in Fig. 6F share the
common subpart with the provided set of exemplars. However, we also
notice a number of qualitative discrepancies between human genera-
tions and model produced samples. For example in Fig. 6C, participants
overwhelmingly prefer the token with a novel orientation, whereas the
model assigns equal probability to tokens reflecting the same compo-
sition at all orientations. In Fig. 6E, participants demonstrate a strong
preference for the novel (blue) primitive, whereas the Bayesian model
shows no such preference. We examine these phenomena more closely
in Section 2.3.1. Additionally, both humans and the Bayesian model
are able to identify the green defining part in Fig. 6D, as indicated by
the common green part in most human and model generated tokens.
However, when participants are asked to generate a new token with
the green defining part, they generate 2-part tokens at a frequency only
slightly lower than that of 3-part tokens. The Bayesian model, on the
other hand, produces mostly 3-part samples due to the uniform nature
of its likelihood function, as there are many more 3-part tokens than
2-part tokens within the same concept.

2.3.1. Inductive biases
In the generation experiment, we observe evidence for a set of

inductive biases that appear to guide participants’ generalizations,
especially in the tasks studied here that have a limited number of pro-
vided examples. After tuning free parameter values to the human data,
we examine whether the fitted Bayesian model is able to reproduce
generation patterns similar to those of human participants. Specifically,
for each trial and bias type, we identify the set of all alien figure

tokens that are consistent with the given inductive bias, and compare
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Fig. 5. Log of likelihood ratios per trial type. Mean per-token (log) likelihood ratio between the full Bayesian program induction model and each alternative model per trial
type averaged over different random assignments of part primitives. A bar in the positive direction suggests a better log-likelihood score predicted by the full Bayesian model as
opposed to the alternative model. Trial types corresponding to the examples in Fig. 6 are indicated.
the probability of generating bias tokens predicted by the Bayesian
model to the frequency of bias tokens in the behavioral data (Fig. 7).
We find that a fitted Bayesian model is successful in capturing some
of the human inductive biases, but lacks the mechanisms needed to
capture the more subtle statistical patterns of behavior uncovered in
the generation task.

I. Inductive biases accounted for by the Bayesian model. The two in-
ductive biases about invariance assumptions are well captured by the
Bayesian model, consistent with the findings in Experiment 1.

Orientation invariance is a preference for assigning rotated vari-
ants of the same figure to the same concept. This is illustrated in trial
Fig. 7A: three provided examples of the same token is suggestive of an
orientation selective concept (Xu & Tenenbaum, 2007), yet many par-
ticipants used a novel orientation. The fitted Bayesian model confirms
this preference for novel orientations, as evident by the high value of
the 𝑝𝑅𝐼 = 0.936 parameter (Fig. 18).

Attachment invariance is a preference for assigning all alien fig-
ures with the same parts to the same concept (regardless of attachment
relation). This is illustrated in trial Fig. 7B: two provided examples uti-
lize the same attachment, yet many participants used a new attachment.
The fitted Bayesian model confirms this preference, with the parameter
𝑝𝐴𝐼 = 0.584 (although notably, this preference is not as strong in the
categorization data).

Ii. Inductive biases not accounted for by the Bayesian model. Different
from the biases above, which had designated parameters in the model
that control invariance assumptions, there are a number of distinct
behavioral patterns that are beyond the model’s current capabilities.
10
Complete-the-pattern is a preference for generating an exemplar
that completes a set along a particular dimension. We observed two
variants of this preference when generating a new exemplar: observing
exemplars with 3 distinct rotations and choosing the 4th (and last)
rotation option (see example in Fig. 7C), or observing exemplars that
each use a different primitive and choosing the 4th (and last) primitive
option (see example in Fig. 7D). This bias is especially interesting due
to the violation of an extremely common Bayesian modeling assump-
tion: independent and identically distributed sampling of data points
(Eq. (3)). Thus, instead the Bayesian model assigns equal probability to
tokens regardless of which orientation is chosen in Fig. 7C and which
primitive is duplicated in Fig. 7D.

Reconfigure is a preference for using parts from existing figures to
compose more complex figures reconfigure the parts (Fig. 7E). This is
an alternative strategy to generate novel tokens that some participants
adopted when they are not completing a pattern as defined above.
Although the Bayesian model is able to produce more complex samples
utilizing familiar parts, they have much lower probabilities than the
novel tokens that contain only a single part.

Iii. Other inductive biases. This is a set of more subtle inductive biases
with lower occurrences in the human generations. Some are likely
shortcuts to ensure generations are distinct from all exemplars (but
not necessarily conceptually consistent); others are likely behavioral
artifacts of the experimental interface.

Rough pattern match is a partial sensitivity to abstract patterns
of parts, although with a characteristic swapping of variables (Fig. 7F).
For example, when all exemplars show a ‘‘𝑥-𝑥-𝐴‘‘ pattern, some



Cognition 244 (2024) 105711Y. Zhou et al.
Fig. 6. Generation results. For the same 6 trial types in Fig. 4, the most frequent human generations (with frequency in upper left) and most likely Bayesian model generations
(with log-likelihood in upper left) are compared. Below these individual examples, a bar graph categorizes the human/model samples by the type of novelty they represent (see
Fig. 4 for description of each type). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
participant-generated alien figures reflect an ‘‘𝐴-𝐴-𝑥’’ pattern instead.
The Bayesian model is unable to account for this type of response.

Preferential orientation is a preference for one choice of rotation
over another, without a clear inductive explanation (Fig. 7G). We
hypothesize this to be a possible artifact of the experimental interface,
as rotating a composed alien figure positioned at 0◦ in the game to
270◦ requires 1 double-click, but 3 double-clicks are needed for a 180◦

rotation. Hence, participants generally favor the option that involves
less manual work. The Bayesian model has no inherent preference for
one specific orientation over others.
11
Novelty by adding extra parts is a preference for adding primitives
to an existing exemplar to make a novel one. This is observed on highly
open-ended trials like Fig. 7H where there are other options to make
novel exemplars from a single part.

2.4. Experiment 2 discussion

Overall, we find that participants are able to make meaningful few-
shot inferences, and construct novel visual forms, spanning different
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Fig. 7. Inductive biases in compositional visual concept generation. Example trials that demonstrate various human inductive biases. The bar plot in each panel shows the
average probabilities predicted by the Bayesian model along with empirical frequencies for generations that follow the bias vs. violate the bias. Examples of human generated
tokens for each category are shown on the bottom of each panel along with the associated raw counts of occurrences in the data.
types of visual composition. By explicitly asking participants to gen-
erate their own examples, we elicit patterns of behavior that diverge
from what we observe in human categorization judgments using the
same sets of stimuli. For example, the complete-the-pattern bias in
Fig. 7C&D is unique to the generation task. In fact, behavioral data
from Experiment 1 show the opposite effect, as indicated by the drop
in generalization to logically consistent test items with novel primitives
(see a more detailed example in Appendix Fig. 19). These qualitative
behavioral differences also contribute to the distinct MAP values re-
ported in Appendix Fig. 18 when the Bayesian model is fitted separately
on the two sets of experimental data; they also help explain the decline
in model performance when Experiment 1 grammar parameters are
used to describe the human generations in Experiment 2.
12
In addition to the complete-the-pattern bias, the generative task
reveals a richer set of human inductive biases for learning composi-
tional visual concepts. We find that our Bayesian program induction
model generates compelling new examples that resemble human gen-
erations (Fig. 6) and accounts for some of the inductive biases with
a single re-write probability parameter in the PCFG prior. However,
other behaviors are beyond the model’s current capabilities, including
violations of the independence assumptions for how exemplars are
generated, unusual combinations of parts, and other abstractions not
considered. To better account for these additional behaviors, in the
next section, we introduce a hybrid neuro-symbolic program induction
model that combines the types of compositional representations used
in the Bayesian model with data-driven components for additional
modeling power.
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Fig. 8. Overview of GNS model. A neural encoder first reads each support example with a convolutional neural network (CNN) and aggregates the resulting vectors into a single,
fixed-sized embedding. This encoder embedding is then passed to a GNS decoder – expressed as probabilistic program GenerateToken – that generates new tokens one part at
a time, using an image canvas 𝐶 as memory. At each part iteration 𝑖, the current canvas 𝐶 and encoder embedding 𝑥 are first fed to subroutine GeneratePart which generates
the primitive ID 𝑐𝑖 of the next part. Next, 𝐶, 𝑥 and 𝑐𝑖 are passed to subroutine GenerateRelation which samples a relation specification 𝑟𝑖 for the part. Finally, a symbolic
renderer updates the canvas according to 𝑐𝑖 and 𝑟𝑖, and subroutine Terminate decides whether to terminate the token.
3. Experiment 3: Capturing additional behavioral structure with
generative neuro-symbolic modeling

Symbolic probabilistic models like ours provide an elegant and
interpretable account of human behavior; however, these models make
simplifying and rigid parametric assumptions, and as result, they often
leave portions of the data unexplained. For example, the Bayesian
program induction model assumes that all constituent tokens 𝑥𝑖 of
a hypothesis ℎ are sampled with equal probability (Eq. (3)). This
assumption appears at odds with humans, who at times exhibit a
preference for certain tokens over others within a particular grouping
(Fig. 7C&D). Although there may be an ad-hoc rule to explain each
behavioral nuance like this, engineering such primitives would involve
a considerable effort, and the complexity of the resulting model could
quickly grow out of hand. Alternatively, we could let the data speak for
itself by integrating more powerful data-driven modeling components.

In pursuit of a more complete computational account with much
of the same structure and interpretability, we propose to model human
concepts of alien figures as neuro-symbolic probabilistic programs. This
paradigm, known as Generative Neuro-Symbolic (GNS) Modeling, was
shown to provide an effective framework for understanding another
type of compositional visual concept: handwritten letters from different
alphabets (Feinman & Lake, 2021). As in the fully-symbolic Bayesian
model, the aim of GNS is to infer the best causal generative process for
explaining the visual examples. Unlike symbolic models, GNS further
represents nonparametric statistical relationships between parts in a
token, and between tokens in an observation, providing a more flexible
model with fewer a priori assumptions. Moreover, a GNS model can
be estimated directly from training data, providing an effective data-
driven approach. An important component of our approach is that we
train GNS to mimic the Bayesian program induction model by using
the Bayesian model to generate some of its training data, while also
including real human data so that GNS can go further to capture
additional structure in human behavior.

3.1. Model description

A depiction of the proposed GNS model is given in Fig. 8. Similar to
a previous model of handwritten characters (Feinman & Lake, 2021),
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our GNS model of alien figures uses the control flow of a probabilistic
program, coupled with an external image memory, to represent the
causal process of generating new concepts. Through repeated calls
to subroutines GeneratePart and GenerateRelation the model
maintains a representation that is compositional, providing and appro-
priate inductive bias for compositional generalization. Each of these
modular subroutines is expressed as a neural network that generates
symbolic outputs conditioned on the current program state (Fig. 9).
New from prior work, we augment the GNS model with an image
encoder to account for the ways that people induce conceptual rep-
resentations from exemplars in the current behavioral experiment.
With this addition, we can use our GNS model as a proxy to the
Bayesian model’s posterior predictive distribution (Eq. (5)). Given a set
of support exemplars, the encoder first reads each exemplar using a
convolutional neural network (CNN) and then aggregates the individual
responses to form a single vector embedding of the set. This embedding
is passed to the decoder and used to condition a generative model for
new tokens. Both the encoder and the decoder use a coloring scheme
for alien figure images that associates each primitive from our primitive
bank with a unique RGB color.

3.1.1. Encoder
The support encoder (Fig. 8, left) consists of a convolutional neural

network (CNN) backbone and a transformer aggregator. The CNN first
reads each exemplar in the support set, represented as an 80 × 80
RGB image, and encodes the image to a 256-dimensional vector. The
sequence of CNN vectors is then fed to a transformer encoder, which
processes the variable-length sequence and outputs an aggregate vector
encoding of the set.

3.1.2. GNS decoder
Our GNS decoder (Fig. 8, right) generates new tokens by sampling a

sequence of symbolic primitives {𝜃, 𝑐1∶𝜅 , 𝑟1∶𝜅 , } which together specify
a unique instance of an alien figure concept with 𝜅 parts. Part assign-
ments 𝑐𝑖 convey the category of the 𝑖th part, chosen from a dictionary
of 9 basic primitive categories, and relations 𝑟𝑖 specify how the 𝑖th part
attaches to previously-generated parts, with 𝑟1 assigned to null. Each
attachment specification 𝑟𝑖 encompasses 3 unique sub-choices: an index
𝑗 of the previous part onto which the current part 𝑖 will attach, and



Cognition 244 (2024) 105711Y. Zhou et al.
Fig. 9. GNS Subroutines. (A) Subroutine GeneratePart first reads the image canvas with a CNN and concatenates the response with encoder embedding 𝑥. The combined
vector is then processed by a dense layer and passed to a softmax prediction head that yields a categorical distribution to sample the next primitive ID 𝑐𝑖. (B) Subroutine
GenerateRelation similarly reads the canvas with a CNN, this time concatenating with both the encoder embedding 𝑥 as well as primitive ID 𝑐𝑖 from GeneratePart. The
combined vector is processed by a dense layer and then passed to a relation prediction head that yields a probability distribution to sample the next relation 𝑟𝑖 (see Fig. 21) for
additional details.
a choice of polygon sides 𝑠𝑗 and 𝑠𝑖 for the previous and current part
that will touch at the point of attachment. Under this formulation, the
same final token can potentially be generated from multiple distinct
sequences. We therefore marginalize over all plausible sequences for
each token in all subsequent likelihood analyses (Appendix F.3).

The generative process to sample a new token conditioned on
support embedding 𝑥 proceeds as follows. We first initialize an empty
image canvas, 𝐶, that will maintain the state of the sample. Next, we
sample a global orientation 𝜃 for the token from the subroutine Gen-
erateOrientation. This is an additional neural network module
that is used only once at the start of the sample and it selects from 4
discrete orientation choices. From there, we iteratively sample the next
part and next relation from the subroutines GeneratePart and Gen-
erateRelation until a termination is reached. Each of these sample
steps conditions on the support, as well as the current partial-object,
by reading 𝑥 and 𝐶 as neural network inputs. This design enables the
model to capture complex correlations that permeate through multiple
parts of an object, or that connect a new object to support examples.
At the end of each iteration, we update our canvas 𝐶 with the latest
partial-object using a symbolic image renderer and pass the new canvas
to subroutine Terminate, a neural network that decides whether to
terminate the object or continue with another part.

The architectures of the neural networks for GeneratePart and
GenerateRelation are depicted in Fig. 9. In GeneratePart,
a CNN embeds the current image canvas to a vector and concate-
nates it with the encoder embedding. To pool the visual information
coming from the CNN and the non-visual encoder embedding 𝑥, a
fully-connected (dense) layer is used to process the combined vector. A
softmax layer then predicts a categorical distribution for the primitive
ID of the next part. In GenerateRelation, a CNN similarly encodes
the image canvas, this time concatenating the resulting vector with
both the encoder embedding as well as a discrete embedding of the
primitive ID chosen in the previous step. The concatenated vector is
then processed by a dense layer and fed to an attention-style prediction
head. Using this input and an attention-style weighting scheme, the
prediction head outputs a distribution over discrete choices for how and
where the new part will attach to previous ones in the canvas (Fig. 21).
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Fig. 10. Data distributions for meta-learning.

3.2. Training with meta-learning

The objective of few-shot generation is to generate new tokens of
a concept given a limited set of support exemplars. In the Bayesian
setting, this task is modeled as sampling from the posterior predictive
probability 𝑝(𝑦 ∣ 𝑋) of a new token 𝑦 given a support set 𝑋 = {𝑥1,… , 𝑥𝑛}
consisting of 𝑛 exemplars. Our GNS model provides a nonparametric
analogue to the posterior predictive that can be estimated directly from
training data, written 𝑝(𝑦 ∣ 𝑋) ≈ 𝑓𝜃(𝑦;𝑋), where 𝑓 represents the model
approximation parameterized by 𝜃. To train GNS effectively, we borrow
a paradigm from AI known as meta-learning (Hospedales et al., 2022).
Each input or ‘‘episode’’ provided to the model consists of (1) a set of
support tokens, a.k.a. exemplars, and (2) a set of query tokens for the
model to evaluate. Through these episodes the model learns-to-learn,
capturing overarching patterns that connect queries to support and
learning to quickly grasp new concepts from exemplars (see Fig. 11).

As with any statistical estimator that uses neural networks, our
GNS model calls for a sizeable training dataset to avoid overfitting
and ensure adequate generalization. The behavioral dataset from our
generation task consists of just 155 trials in total, an insufficient amount
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Fig. 11. Meta-learning episodes. Each episode consists of (1) a support set 𝑋 of 1–6 examples that demonstrate the concept, and (2) a query set of additional tokens for
evaluation 𝑦1 , 𝑦2 ,… . The GNS model is trained to maximize the conditional log-likelihood of each query token given the support examples.
of data by itself. To fill in the gap, we use our symbolic Bayesian
model to bootstrap GNS training with a vast supply of synthetic meta-
learning data. Specifically, we use the Bayesian model to form two
distinct distributions for generating training data (Fig. 10). In the first
distribution P, episodes are generated by first sampling a hypothesis
ℎ from the prior and then sampling a support set 𝑆 and query set
𝑄 from the likelihood 𝑝(𝑋 ∣ ℎ) (Eq. (3)). A similar approach has
been adapted to distill Bayesian priors into neural networks to learn
linguistic patterns (McCoy & Griffiths, 2023). Our work takes a step
further by forming an additional training distribution more relevant
to the human experience. In our second distribution R, episodes are
generated by sampling a support set 𝑆 uniformly from the human
experiment and then sampling query 𝑄 via the posterior of the Bayesian
model. In addition to these two synthetic data distributions, we also use
real human data, dubbed distribution H, as part of the training mix.
Episodes from H are sampled uniformly from the human experiment.

In addition to the P, R and H distributions described above, we make
use of one additional data distribution, C, which provides guidance
towards the two inductive biases noted in Section 2.3.1(ii): the complete
the pattern bias and the reconfigure bias. These two inductive biases are
relevant in trials where the support exemplars convey a partial pattern
with one item apparently left out (see examples in Fig. 13). In all of the
applicable trials, participants exhibit the completion bias an aggregate
59% of the time, and they exhibit the reconfigure bias an aggregate
14% of the time. Despite such high prevalence in the human data, these
inductive biases are not well-explained by the Bayesian program induc-
tion model. Motivated by this shortcoming, we use the distribution C
to guide GNS to these two inductive biases. Appendix F.2.1 provides
details about how episodes are generated from C.

3.3. Results

Our first simulation is designed to test whether the GNS model
can successfully learn to generate new tokens from exemplars, and to
determine what training distributions are most important for learning
this task. For the experiment, we constructed a test set of human
data consisting of 1 randomly-selected trial from each trial type in the
generation task (see Section 2.1.1 for details on trials & trial types).
The remaining 4 trials of each type are provided for model training. By
reserving a portion of the human data for test time, we can use log-
likelihood evaluations to assess whether the GNS model generalizes to
novel trials with unseen behavioral data, and to compare the behavioral
account of GNS to that of the Bayesian model.

Our full GNS model, GNS (P/R/H/C), uses a mixture of all four
training distributions described in the previous section. This represents
our most comprehensive training environment, and we anticipate that
the resulting model will outperform alternatives that receive only a
subset of the proposed training distributions. We test a series of these
alternatives. The first, GNS (P/R/H), receives all but the bias training
15
Table 2
Held-out log-likelihoods. For each model, the average log-likelihood per
human token is reported in the first column. For each GNS model, we
perform a paired t-test to test for improvement over the Bayesian model
(with 336 degrees of freedom). The full GNS model, and all but one
lesion model, show an improved behavioral fit over the Bayesian model
as shown through t-tests.
Model log-likelihood t-statistic (p-value)

Bayesian −4.741 –
GNS (P/R/H/C) −4.444 6.197 (0.000)
GNS (P/R/H) −4.535 4.549 (0.000)
GNS (P/R) −4.645 2.490 (0.013)
GNS (P) −4.930 −2.739 (0.006)

distribution C. In addition, we also evaluated two lesions that receive
only synthetic data from the Bayesian model. One of these, GNS (P/R),
receives data from both of the two synthetic generators. The other, GNS
(P), uses only the forward-sampling modality P. Each of our models is
trained using minibatches of 60 meta-learning episodes (Appendix F.2).

Log-likelihood results for held-out human data are shown in Ta-
ble 2. When evaluating test log-likelihoods, we mix the model dis-
tribution with a naive lapse distribution using weight 𝛼 that is inde-
pendently tuned for each model (Appendix F.3). Our full GNS model,
GNS (P/R/H/C), performs the strongest on held-out data and shows a
considerable improvement in log-likelihood over the Bayesian model.
The improvement is further validated by a significant paired t-test that
looks at per-token difference in log-likelihood 𝓁(𝜃) − 𝓁(𝜃0) between the
GNS model, 𝜃, and Bayesian model 𝜃0 [t(336) = 6.197, p < 0.001].
After lesioning the bias training distribution, our GNS (P/R/H) model
still exhibits a significant log-likelihood improvement over Bayesian
program induction, although the gain is smaller. The simplest lesioned
model, GNS (P), performs the weakest on held-out data and performs
below worse than the Bayesian model. This result matches our intu-
ition: the space of possible episodes generated from P is vast, and so
it is unlikely that the model will receive sufficient experience with
the types of support sets that are relevant to our human experiment.
Our second lesion, GNS (P/R), is the first to outperform the symbolic
Bayesian model and show a statistically significant improvement in log-
likelihood. Like GNS (P), this model is trained solely on synthetic data
from the Bayesian model; however, the way that episodes are sampled
in R – by selecting a support 𝑆 from the human experiment and then
sampling query 𝑄 from the Bayesian posterior – ensures that a sufficient
amount of relevant training experience is provided.

To help understand how and where our full GNS model outperforms
Bayesian program induction, Fig. 12 shows some of the top-performing
examples where the log-likelihood improvement is largest (a more
exhaustive set of best and worst examples is provided in Fig. 22). The
GNS model does particularly well with the two-part concept from rows
1, 2, and 3. In this trial, the size principle pushes the Bayesian model
to assign most posterior weight to an attachment-specific hypothesis,
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Fig. 12. A subset of most-improved examples, measured by 𝓁(GNS) - 𝓁(Bayes).
so when a new token is shown with a different attachment, it loses
out. GNS also outperforms on the completion bias example from row
4, a result that is expected since the model receives explicit completion
bias training from distribution C. In row 5, the Bayesian model assigns
a majority of posterior weight to a primitive-specific hypothesis, and it
therefore suffers on the human-generated token that uses a new prim-
itive. The concept from rows 6, 7 and 8 has a salient visual compound
that likely guides stronger generalization in human participants, but
the Bayesian model is not aware of the compound. The GNS model,
however, is capable of picking up on this visual pattern and mirroring
human generalization.

To further understand how and whether the GNS model provides
an improved account of human inductive biases, we conducted an
additional simulation designed to give a more in-depth look at the
complete-the-pattern and reconfigure biases discussed in Section 2.3.1
& 3.2. We emphasize these two biases in particular because (a) they
are the most prevalent inductive biases that we find in the human
behavioral data, and (b) they are not currently well-explained by the
Bayesian model. To evaluate whether the GNS model can capture these
biases, we created a test set with all 19 trials that contain the partial-
pattern property discussed, as well as 7 other randomly-selected trials
from the generation task. We then trained the full GNS (P/R/H/C)
model using only the remaining trials for the human distribution H.
Fig. 13 shows the strength of the GNS model’s inductive biases for
a selection of test trials after training, comparing against both the
Bayesian model and humans. The Rotations-N trial type consists of
N-part tokens with a rotation pattern, and Primitives-N consists of N-
part tokens with a primitive assignment pattern. People consistently
exhibit a strong completion bias across different trial types, and the
GNS model largely replicates this bias, showing a marginal proba-
bility for completion tokens that is often much closer to the human
frequency compared with the Bayesian model. In addition, the GNS
model’s reconfigure bias matches humans in strength more closely
than the Bayesian model, showing more accurate probabilities where
the Bayesian model overpredicts in Rotations-2 trials, and where it
underpredicts in Primitives-1 trials.
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3.4. Experiment 3 discussion

Experiment 3 demonstrates that generative neuro-symbolic (GNS)
models can provide an effective means to understand and simulate hu-
man behavior in few-shot generation. When trained with a novel meta-
learning scheme that mixes synthetic and real human data, our GNS
model successfully mimics the symbolic Bayesian model and goes be-
yond to simulate additional human biases that were not previously well
explained. Specifically, GNS shows considerable improvement in the
likelihood of held-out participant data, and also provides an improved
account for two salient inductive biases that participants exhibit: the
‘‘complete-the-pattern’’ bias and the ‘‘reconfigure’’ bias. In addition to
these salient inductive biases, the GNS model accounts for a collection
of one-off behaviors that do not fit into a larger bias category (Fig. 12).

In a targeted experiment that tests if the GNS model can be further
instilled with the complete-the-pattern bias and the reconfigure bias,
which are strong inductive biases not well explained by the Bayesian
model, our full GNS model exhibits behavior that better matches human
data (Fig. 13). In this experiment, the C training distribution was
created to simulate human behavior due to the limited amount of
behavioral data available, and the Bayesian prior used to generate the
other synthetic data distributions is unable to replicate these biases
as the complete-the-pattern bias violates the common independent
and identically distributed assumption in the likelihood. Overall, we
see this simulation as a proof-of-concept experiment to demonstrate
the GNS model’s ability to mimic the human biases. Moreover, even
sufficient human data was available for the model to learn the biases
directly, there would be a question of why fitting on more examples
leads to better predictions. Here, we show that a simple augmentation
procedure instating two high-level biases through C, combined with
meta-learning, is enough to induce the desired prior in the model and
improve the fit to behavior.

4. General discussion

Across a set of experiments, we study few-shot visual concept

learning and generalization, with a focus on concepts that compose
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Fig. 13. Inductive biases captured by the GNS and Bayesian models. Two trials are shown from each of four trial types with the partial-pattern property. Bars convey the
marginal model probability of generating a new token that matches the target bias, and the empirical human frequency of doing so. In each trial, GNS exhibits a stronger completion
bias vs. the Bayesian model that more closely matches human behavior. Moreover, the GNS model provides a closer match to human frequency for the reconfigure bias, assigning
more probability where the Bayesian model under-predicts and assigning less probability where the Bayesian model over-predicts.



Cognition 244 (2024) 105711Y. Zhou et al.
primitives together in a variety of different ways. We provide new
empirical data from classification and generation tasks on how people
learn and generalize new visual concepts, modeled after how parts
combine in real objects. In addition, we developed a Bayesian program
induction model that searches over different structured generative
programs describing how parts can combine to best explain a set of
exemplars (i.e., alien figures). The highest scoring programs can then
be utilized for classifying or generating novel examples. This model
provides a strong account of human few-shot categorization judgments,
using a limited set of interpretable free parameters that offer insight
into people’s assumptions about invariance. For example, we find that
people expect category membership to be invariant to rotations and
changing part attachments, although these expectations can be updated
in light of contradicting data. Additionally, the Bayesian program in-
duction model can replicate these biases that human participants also
demonstrate when generating novel alien figures, producing samples
that are indicative of orientation invariance and attachment invariance
(Fig. 7A&B).

Representing concepts as structured programs is one of the key prin-
ciples for modeling in our visual concept learning tasks with the special
emphasis on compositional diversity. Structured programs provide the
representational flexibility for modeling a rich variety of concepts,
including those with tightly-constrained exemplars adhering closely to
a specific part/relation pattern (Fig. 1 first and third rows), or those
with more widely varying exemplars with a defining characteristic
(e.g., a part or set of parts), or those following abstract rules that
require variable binding (Fig. 1 last row) (Marcus, 2003; Overlan et al.,
2017). Human participants are not informed in advance what kinds
of composition to expect, and thus models must construct candidate
programs in response to observations (Lake et al., 2015). The grammar
used by our Bayesian program induction model is designed to produce
programs that reflect different visual compositions, built using shape
primitives and their relations. The Bayesian model also handles variable
binding, producing concepts with various levels of abstractions. In
contrast, the lesioned Bayesian no-Var model and the two alternative
exemplar models applied to the categorization task fall short when
reasoning with variables was required, and the Bayesian no-DP model
struggles on trials where assumptions about defining parts are probed
and tested.

We also observe more subtle human behavioral phenomena be-
yond the scope of the Bayesian program induction model’s capabilities
(Fig. 23). Although incorporating more inductive biases into our exist-
ing Bayesian program induction model is possible through expanding
the grammar to have more complex rules or through designing spe-
cialized likelihood functions that model correlations between tokens,
such efforts involve potentially endless hand engineering to capture
every nuance of human behavior. One approach to avoid extensive
engineering would be to add additional hierarchy to the Bayesian
model, allowing it to cache and reuse sub-programs across sets of
concepts (e.g. Tian, Ellis, Kryven, & Tenenbaum, 2020; Zhao, Bramley,
& Lucas, 2022), with the potential to capture additional patterns in
the human data while maintaining a purely symbolic model. An alter-
native approach, which we explored here through Generative Neuro-
Symbolic (GNS) modeling, adds neural network components rather
than additional hierarchy to increase modeling power. GNS allows us
to bootstrap the success of the Bayesian model and maintain explicit
part composition while capturing additional behavioral nuances in a
data-driven way. The resulting GNS model outperforms the Bayesian
program induction model in terms of log-likelihood of generated human
exemplars. GNS also helps to capture key behavioral phenomena missed
by the Bayesian model, such as the ‘‘complete-the-pattern’’ bias that
violates common likelihood assumptions used in Bayesian models of
concept learning.

Although standard deep neural network models have difficulty with
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compositional generalization (Fodor & Pylyshyn, 1988; Lake & Baroni,
2018; Lake et al., 2017; Marcus, 2003), we show that a hybrid ap-
proach, with a symbolic control flow that calls neural sub-routines
to generate parts and their relations, can successfully model few-shot
compositional learning and capture patterns of behavior missed by the
Bayesian induction model. Although the current GNS model is a step
forward, it relies on the Bayesian model and other synthetic generators
for training data, and as result, it may include some of the same
biases and shortcomings. In future work, we would like to scale up the
human experiment to provide more training data that we can learn a
GNS model more directly from human behavior. The current dataset
includes only 155 trials in total, which is insufficient to train the neural
network components considered in this article.

There are also aspects of human behavior in the current visual
concept learning experiments not accounted for by our models. First,
we observe a divergence of behavioral patterns between the catego-
rization task and the generation task, which lead to distinct MAP
values for a subset of the free grammar parameters fitted separately
on the two tasks (Fig. 18). Model performance suffers when parameter
values were transferred from one task to another, leading to a decline
in average per-token log-likelihood for Experiment 2. One possible
driving forces of this divergence is the set of inductive biases unique
to the generative task. For example, both complete-the-pattern biases
are only found when participants are asked to generate their own novel
alien figures (see Appendix E.1 for illustrations). There are multiple
possible explanations for differences between classification and genera-
tion: one possibility is that generative tasks elicit richer behavior from
participants that reveal additional assumptions; another possibility is
that participants engage in additional reasoning about what makes
a particularly ‘‘good example’’ of the concept rather than a random
example, or what particular example the experimenter may be looking
for. GNS, through its generative neural network components, could
potentially provide the modeling power to capture these additional
factors, although more work is needed to develop a complete theoret-
ical account of the differences between categorization and generation
behaviors.

We also found intriguing preliminary evidence that participants are
sensitive to certain visual ‘motifs’ that the Bayesian program induction
model is blind to. In particular, people seem to be more visually
attuned to compositions of shape primitives that are more symmetric
and have smoother contours, and more easily perceived as gestalt
entities than other randomly generated compositions (see an example
in Appendix E.2). Although not observed directly in our particular
stimuli, certain motifs may also be particularly salient because of their
connection with background knowledge (Murphy, 2002); for instance,
observing exemplars with a shape that, by happenstance, resembles
a fish’s silhouette would likely influence participant judgments. The
nameability of certain familiar visual forms such as ‘‘diamond’’ or
‘‘hexagon’’ might also enhance the learnability of novel concepts as
language can facilitate learning by efficiently relating new information
to existing knowledge (Lupyan & Bergen, 2016; Lupyan & Clark, 2015).
The Bayesian program induction model is not well-equipped to account
for these potential factors, as they are not evident from a concepts sym-
bolic structure description. It is possible that extensions of the current
model either through a more expansive set of geometric primitives, or
through learning and caching sub-level programs that produce shape
primitives that have smooth contours and canonical forms (Dehaene,
Fosca, Lakretz, Planton, & Sablé-Meyer, 2022), could help uncover
favorable spatial arrangements and local geometry that echo the sensi-
tivity to visual motifs observed in the data. Alternatively, GNS could
in principle learn these factors via its neural network components,
using either visual pre-training or large amounts of human behavior to
acquire aspects of background knowledge. More computational work
is needed to demonstrate these possibilities and more empirical work
is needed to understand the details of how background knowledge can

drive human behavior in compositional tasks.
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There are many additional avenues for extending the experimen-
tal and computational modeling approaches pursued here. Extending
models of compositional visual concept learning to naturalistic images
and/or 3D models of real objects is one important direction, moving
beyond synthetic stimuli studied here (alien figures; Fig. 1B right)
to the types of everyday concepts people learn (bikes, vehicles, pairs
of gloves, etc.; Fig. 1B left). We see the Bayesian program induction
model as providing critical guidance regarding the ingredients for
moving forward – Bayesian inference over structured representations
– while we see GNS as the most promising practical means of building
models with these ingredients that also interface with noisier natural
images and capture correlational structure between parts that fully
symbolic models may miss. Extending models to capture how people
learn compositions of functions, and how functions relate to object
parts and visual appearances, is another critical extension. For instance,
human understanding of the ‘‘breakfast machine’’ (Fig. 1A) is greatly
enhanced by understanding how parts relate to functions (toaster,
griddle, coffee maker, etc.) and how composing the parts relates to
composing the functions. A complete account of human visual concept
learning would thus need to relate form to function, either through
inferring more sophisticated symbolic programs or through more data-
driven, embodied learning that places objects in functional roles. We
hope that the empirical and modeling findings presented here will
inform future efforts for meeting these challenges.
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Appendix A. Full set of grammatical rules

Fig. 14 shows the full set of expansion rules associated with the
grammar used by the Bayesian program induction model. The set of free
grammar parameters fitted to the human datasets are also indicated.
From the START symbol, nonterminal nodes are expanded into their
downstream nonterminal until a terminal node has been reached. To
handle variable binding, every time a variable 𝑥𝑖 is created via a 𝜆-
expression, the rule 𝑃𝐴𝑅𝑇 is modified slightly in the grammar such
that it now can be expanded into 𝑥𝑖 for all lower nodes. For simplicity,
we assume that all variables 𝑥𝑖 created and stored at the time of
expansion share equal probabilities.
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Appendix B. Full set of trial types and categorization results

Figs. 15 and 16 show the full set of trial types participants were
tested on in Experiment 1a and 1b, along with the maximum-a-
posteriori (MAP) concept associated with each trial. Trial types are
shown with one possible assignment of shape primitives, and partic-
ipants saw other possible random assignments of shape primitives.
Fig. 17 shows the full set of Experiment 1 results summarizing correla-
tions between human judgments and model predictions per trial type
and model.

The two sets of trial types were combined and shown to partici-
pants in the generation task (Experiment 2). In the generation task,
participants were also assigned to either the 3-exemplar condition or
the 6-exemplar condition for all Experiment 1b trial types.

Appendix C. Model parameter fitting

Given the behavioral data collected in our experiments, we are
interested in finding the set of grammar parameters that most likely
generated participants’ response patterns. Formally, we would like to
infer the probability of the set of parameters of interest, given human
response data in Experiment 1: argmax𝜃,𝛼,𝛽 𝑃 (𝐿|𝑋; 𝜃, 𝛼, 𝛽), where 𝜃,

and 𝛽 are parameters of the learning model and 𝐿 is the set of
uman assigned labels to test items; and given human generations in
xperiment 2: argmax𝜃,𝛼 𝑃 (𝑌 |𝑋; 𝜃, 𝛼), where 𝑌 is the set of human
enerated tokens. We only considered grammar parameters that are
sychologically meaningful (e.g. parameters that encode participants’
references for orientation invariance and configuration invariance), and
e fixed the rest of expansions to have uniform probabilities. We
iscuss the implications of the fitted values of these parameters in the
esults section.

In addition to the set of grammar parameters and the likelihood
arameters 𝛼, 𝛽, we also included two more free parameters in 𝜃, a

prior temperature 𝑇𝑝, and a likelihood temperature 𝑇𝑙 which control
the strength of the prior in Eq. (2) and likelihood in Eq. (3) by raising
them to the 1∕𝑇 th power, respectively. By implementing the prior
emperature parameter we control the overall confidence of the prior
odel: the prior becomes increasingly uniform as 𝑇𝑝 approaches higher

alues, assigning less preferential probabilities to shorter programs and
ice versa. The likelihood temperature parameter adjusts the strength
he of size principle effect: with lower values of 𝑇𝑙, the likelihood
ecomes more sensitive to the size of hypotheses and this sensitivity
eakens as 𝑇𝑙 increases.

Based on the approximate hypothesis space ̂, we re-normalized the
emperature-adjusted prior distribution to be 𝑃 (ℎ; 𝛽, 𝑇𝑝) ∝ 𝑃 (ℎ; 𝛽)1∕𝑇𝑝 =

1
𝑍(𝛽,𝑇𝑝)

𝑃 (ℎ; 𝛽)1∕𝑇𝑝 , we subsequently re-normalized the posterior distribu-
ion after likelihood temperature adjustment. The posterior distribution
̂ (ℎ ∈ ̂|𝑋) becomes:

̂ (ℎ ∈ ̂|𝑋) =

1
𝑍(𝛽,𝑇𝑝)

𝑃 (ℎ|𝛽)1∕𝑇𝑝𝑃 (𝑋|ℎ)1∕𝑇𝑙

∑

ℎ′∈̂
1

𝑍(𝛽,𝑇𝑝)
𝑃 (ℎ′|𝛽)1∕𝑇𝑝𝑃 (𝑋|ℎ′)1∕𝑇𝑙

=

1
𝑍(𝛽,𝑇𝑝)

𝑃 (ℎ|𝛽)1∕𝑇𝑝𝑃 (𝑋|ℎ)1∕𝑇𝑙

1
𝑍(𝛽,𝑇𝑝)

∑

ℎ′ 𝑃 (ℎ′|𝛽)
1∕𝑇𝑝𝑃 (𝑋|ℎ′)1∕𝑇𝑙

=
𝑃 (ℎ|𝛽)1∕𝑇𝑝𝑃 (𝑋|ℎ)1∕𝑇𝑙

∑

ℎ′ 𝑃 (ℎ′|𝛽)
1∕𝑇𝑝𝑃 (𝑋|ℎ′)1∕𝑇𝑙

(7)

Together, the optimization problem for categorization judgments in
xperiment 1 becomes:

rgmax
�⃗�

𝑃 (𝐿|𝑋; �⃗�) = argmax
�⃗�

𝑇
∏

𝑡

𝑚
∏

𝑗

(

𝑛
𝑘

)

𝑝𝑘𝑗 (1 − 𝑝𝑗 )𝑛−𝑘,

here 𝑝𝑗 = 𝑃 (𝑙𝑦,𝑗 |𝑋𝑡), the probability that the label 𝑙𝑦,𝑗 of the 𝑗th

est item 𝑦𝑗 is consistent with the set of exemplars 𝑋𝑡 on trial 𝑡, as

https://github.com/yanlizhou/CompositionalDiversity
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Fig. 14. Full set of grammatical rules. The full probabilistic context-free grammar used by the Bayesian program induction model to define the space of all possible alien figures.
on-terminals are indicated by uppercase letters. See text for details.
alculated in Eq. (4); 𝑛 is the number of participant responses collected
or each trial while 𝑘 is the number of responses such that 𝑙𝑦,𝑗 = 1; and
⃗ = {𝜃, 𝛼, 𝛽, 𝑇𝑝, 𝑇𝑙}.

And for the generation data in Experiment 2:

rgmax
�⃗�

𝑃 (𝑌 |𝑋; �⃗�) = argmax
�⃗�

𝑇
∏

𝑡

𝑛
∏

𝑖
𝑃 (𝑦𝑖|𝑋𝑡; �⃗�),

where 𝑦𝑖 is the 𝑖th participant generated token given observation 𝑋𝑡 for
trial 𝑡, and �⃗� = {𝜃, 𝛼, 𝑇 , 𝑇 }.
20

𝑝 𝑙
Free parameters are fitted via a sequential least squares program-
ming algorithm (SLSQP); MAP parameter values for Experiment 1&2
are reported in Fig. 18.

We infer the free parameters of the two variants of the GCM in
a similar procedure, by finding the set of weight parameters �⃗� that
minimizes the sum of squared error between participants’ categoriza-
tion judgments and model predictions for all test items and trials, via
the same optimization algorithm. (The Bayesian model can also be fit
with this objective, and it performs comparably with log-likelihood.)
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Fig. 15. Experiment 1a trials and their associated MAP concepts. The Leftmost column shows the examples of exemplar sets shown to the participants on each trial of Experiment
1a. Note that the set of shape primitives were randomized per participant per trial. The middle column shows the hypotheses assigned the highest posterior probabilities by the
Bayesian program induction model in each trial of Experiment 1. Verbal interpretation of each MAP concept program is provided in the rightmost column.
Additionally, while the GCMs presented here do not have a lapse rate
(1−𝛼) and a base rate 𝛽, we found that adding these parameters did not
improve the model predictions as judged via correlation with human
behavior.

Appendix D. Null token distribution

We model the null distribution of the tokens 𝑃 0(𝑥) while taking
into account the complexity of tokens. Intuitively, more complex tokens
should have lower probabilities: as we increase the complexity of a
token by including more parts and attachments, the number of possible
configurations increases exponentially, and thus the probability for any
particular configuration should be smaller than that of a simpler token.
The pseudo code below illustrates how a token 𝑥 is sampled and how
its associated probability 𝑃 0(𝑥) is calculated.

Appendix E. Additional behavioral results

E.1. Divergence of behavior in Experiment 1&2

Human response patterns show qualitative divergence on a number
of trials between the categorization and generation, leading to distinct
MAP values for a subset of the grammar parameters in Fig. 18 across
tasks, and suggestive of additional assumptions participants bear when
asked to generate their own alien figures. For example, complete-the-
pattern biases are uniquely identified in the generation task, while
interestingly, the categorization results reports an opposite effect. That
21
Algorithm 1 Generate a token 𝑦 from the null distribution 𝑃 (𝑦). The
cardinality of each uniform distribution depends on previous variates;
for example, the number of valid relations 𝑟2 – i.e. the number of
ways part 2 can attach to existing objects – depends on the primitives
sampled for 𝑝1 and 𝑝2.

procedure GenerateToken
𝑝1 ∼ Uniform ⊳ Sample primitive for first part
𝑟1 ← 𝑛𝑢𝑙𝑙 ⊳ Null first relation
for 𝑖 = 2...𝑇𝑚𝑎𝑥 do

𝑝𝑖 ∼ Uniform ⊳ Sample primitive for 𝑖𝑡ℎ part
if 𝑝𝑖 = 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 then ⊳ Check termination

break
𝑟𝑖 ∼ Uniform ⊳ Sample relation for 𝑖𝑡ℎ part

return {𝑝0, 𝑟0, ..., 𝑝𝑇 , 𝑟𝑇 }

is, when a similar all-but-one pattern was tested in categorization
experiments, we see a slight drop in generalizations to test items that
would ‘‘complete the pattern’’ in comparison to the test items that
would not complete a pattern but have been observed as a whole or a
part in the exemplar set (see Fig. 19, highlighted bar). When plugging in
the MAP values fitted for the generation task, the model assigns equally
high probabilities for conceptually consistent test items with a novel
primitive, whereas both participants and the Bayesian model fitted for
the categorization data show a decline in generalization. Conversely,
when asked to generate new examples based on observations, the
Bayesian model with transferred parameters produces tokens with the
primitive that completes the pattern at a lower probability (see Fig. 19,
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Fig. 16. Experiment 1b trials and their associated MAP concepts. The Leftmost column shows the examples of exemplar sets shown to the participants on each trial of
Experiment 2. Participants assigned to the 3-exemplar condition were shown the three left most exemplars for every trial type, and participants in the 6-exemplar condition were
shown all six exemplars. The middle column shows the hypotheses assigned the highest posterior probabilities by the Bayesian program induction model in each trial of Experiment
1b. Verbal interpretation of each MAP concept program is provided in the rightmost column.
highlighted samples), a behavior in direct opposition with what we
observed in human generation data.

E.2. Sensitivity to ‘‘visual motifs’’

We find evidence for sensitivity to primitive compositions that
are more visually salient, which are usually highly symmetrical with
familiar forms. For example, when the set of exemplars show a com-
mon subpart with a familiar, easily identifiable form, participants are
more likely to generate tokens consistent with the underlying concept
(Fig. 20).

Appendix F. GNS model

F.1. Relation architecture

The GNS model uses polygon attachments as a model of relations be-
tween parts in an alien figure. Each relation 𝑟𝑖 = {𝑗, 𝑠𝑗 , 𝑠𝑖} encompasses
3 unique choices which together specify an attachment. The first is the
choice of attachment part, represented by index 𝑗, selected from the set
of all previous parts. Second and third are the choice of polygon side
22
for the attachment part 𝑠𝑗 , and for the current part 𝑠𝑖. These choices
convey which polygon sides will be touching when the two polygons
are connected to one another.

To predict the next relation 𝑟𝑖, GNS uses a neural network as an
energy function to score every combination of values {𝑗, 𝑠𝑗 , 𝑠𝑖} (Fig. 21).
The choice of attachment part 𝑗 is conveyed by a binary image of the
isolated part, which is processed to a hidden embedding by a CNN. The
side choices 𝑠𝑗 and 𝑠𝑖 are each conveyed by a discrete embedding from
a learnable dictionary with one entry for every side of every primitive
polygon, indexed as 𝑒[𝑐𝑖, 𝑠𝑖]. Each of these inputs is concatenated and
fed to the neural network, which returns a scalar energy that represents
the unnormalized log-probability of choosing this combination.

F.2. Training the GNS model

Our full GNS model and all lesions are training using minibatches
of 60 meta-learning episodes. The composition of data distributions for
each lesion is provided in Table F.3. The number of support examples
in an episode is sampled uniformly between 1–6 at each iteration, and
the number of query examples is fixed at 5. Models are trained to
maximize the log-likelihood (minimize log-loss) of the query examples
conditioned on support. Training proceeds for 40,000 batch iterations
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Fig. 17. Full set of categorization results. Comparison between human responses and model predictions for each trial type of the categorization experiment. The set of exemplars
participants observed for each trial is shown above each scatter plot. Each dot in a scatter plot indicates the probability of responding ‘Yes’ for each test item. Human-model
correlations are also shown for each trial and each model.
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Fig. 18. Fitted model parameters values. First two tables shows fitted parameter values for the Bayesian program induction model: top row shows the MAP parameter values
when the model was fitted to categorization task (Experiment 1) data; the bottom row shows parameter fits for the generation task (Experiment 2). The last table shows the fitted
weight parameter values for both GCM variants fitted to the categorization data.
Fig. 19. Example trial suggesting divergence of behavior across tasks. Bar plot
shows model predictions for different test item types when grammar parameters
are either fitted directly on categorization data (Exp.1 fit) or transferred from the
generation task (Exp.2 fit). Bottom rows show model generations with their predicted
(log) probabilities when grammar parameters are either fitted directly on generation
data (Exp.2 fit) or transferred from the categorization task (Exp.1 fit).

using the Adam optimizer with cosine learning rate annealing. For each
GNS model, we train 4 different models with different random initial-
ization. In subsequent evaluations, we use the average log-likelihood
from all 4 seeds as the overall log-likelihood.

F.2.1. Data distribution C
The C distribution is designed to help teach the complete-the-

pattern and reconfigure biases, two inductive biases that are relevant in
trials with the partial-pattern property. To generate episodes from C, we
24
Table F.3
Minibatch compositions for GNS model
training.
Model Composition

GNS (P) 60
GNS (P/R) 40/20
GNS (P/R/H) 30/15/15
GNS (P/R/H/C) 20/10/10/20

first sample a trial type from the four partial-pattern types: Rotations-1,
Rotations-2, Primitives-1, Primitives-2. Next we sample a support set 𝑆
by selecting 3 tokens from the trial type that make a partial-pattern.
Finally, to construct the query set 𝑄 we sample completion items with
probability 𝑝𝑎 = 0.59, reconfigure items with probability 𝑝𝑏 = 0.14,
and alternate ‘‘noise’’ tokens with the remaining probability mass. The
values of 𝑝𝑎 and 𝑝𝑏 are set to mirror the empirical human frequencies
for each bias.

F.3. Likelihood analysis

All token likelihoods that we report for the GNS model are marginal
image likelihoods. By default, the GNS model computes the likelihood
of a latent program or a token string, i.e. a sequence of parts and relations
{𝑐1, 𝑟1,… , 𝑐𝑁 , 𝑟𝑁}. There is a many-to-one mapping from these latent
programs to images; to obtain the marginal likelihood of a token image,
we sum the individual likelihoods from all programs that yield the
target image.

For both the GNS model and the Bayesian model, we fit a lapse
parameter 𝛼 that mixes the model distribution 𝑝(𝑦 ∣ 𝑋) with a null
distribution 𝑞(𝑦) to produce a final distribution �̃�(𝑦 ∣ 𝑋) = (1 − 𝛼) ⋅ 𝑝(𝑦 ∣
𝑋)+𝛼 ⋅ 𝑞(𝑦). We use the complexity-based null distribution 𝑞(𝑦) = 𝑃 0(𝑦)
discussed in Appendix D.

Appendix G. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.cognition.2023.105711.

https://doi.org/10.1016/j.cognition.2023.105711
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Fig. 20. Example of human sensitivity to visual motifs. Two different random primitive assignments are shown for the same trial type. The green common subpart on the left
happens to adopt a familiar rectangular form, while the green common subpart on the right has a more irregular outline. Generated tokens suggest that humans are more visually
attuned to the more salient subpart on the left. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 21. Relation prediction architecture used in GNS subroutine GenerateRelation.
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Fig. 22. Best and worst 20 human examples, measured by 𝓁(GNS) - 𝓁(Bayes).
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Fig. 23. Inductive biases captured by GNS and Bayesian models (exhaustive version).
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