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Abstract

Humans are highly efficient learners, with the ability to grasp
the meaning of a new concept from just a few examples. Un-
like popular computer vision systems, humans can flexibly
leverage the compositional structure of the visual world, under-
standing new concepts as combinations of existing concepts.
In the current paper, we study how people learn different types
of visual compositions, using abstract visual forms with rich
relational structure. We find that people can make meaningful
compositional generalizations from just a few examples in a
variety of scenarios, and we develop a Bayesian program in-
duction model that provides a close fit to the behavioral data.
Unlike past work examining special cases of compositionality,
our work shows how a single computational approach can ac-
count for many distinct types of compositional generalization.
Keywords: concept learning; Bayesian inference; few-shot
learning; visual learning; compositionality

Introduction
Humans have a remarkable capacity to learn new concepts
from limited data. Early in development, children can make
meaningful generalizations from just one or few positive ex-
amples of a new word (Smith et al., 2002; F. Xu & Tenen-
baum, 2007), an ability known as few-shot learning. Criti-
cal to few-shot learning is compositional generalization, the
reuse and manipulation of preexisting knowledge of parts and
relations to understand novel combinations (e.g., Biederman,
1987). For example, people who are familiar with coffee
maker, toaster oven and griddle can effortlessly grasp the
concept of breakfast machine upon seeing it for the first time
(Fig. 1A).1 On the other hand, computer vision models, while
highly successful in many applications, are far more limited
in their abilities to form compositional generalizations (Lake
et al., 2017). For instance, a pre-trained ResNet-50 (He et
al., 2016) classifies the new concept in Fig. 1A as a “waffle
iron,” whereas a strong image captioning system (K. Xu et
al., 2015) describes it as “a close up of a toaster oven with
some muffins in it.”

There are qualitatively different types of composition
present in real-world visual concepts, posing a challenging
learning problem that demands manipulating parts and rela-
tions at various levels of abstraction (see examples in Fig.
1B). A concept like bicycle stipulates a fixed configuration of
parts and relations (e.g. bikes have handlebars, a seat, and two
wheels in a consistent configuration), whereas a concept like
vehicle allows category members to have freer combinations
of parts and relations (varying numbers of wheels, motors,
etc. are acceptable). A concept like sun shield requires selec-
tivity of object orientation, in order to fulfill a given concep-
tual constraint. Finally, a concept like clothing that comes in

1Example from Vicarious Research Blog.

f(                             )A

B Real-world objects “Alien” figures  Potential concept

Fixed Orientation: sun 
shields

Abstract rule: 
wearable objects that 

come in pairs

Fixed configuration of 
parts: bicycles

Free combination of 
parts: vehicles

Figure 1: Visual concept learning requires flexible notions of com-
positional structure. (A) Humans can learn the concept of breakfast
machine with a single example by recognizing familiar components
and reasoning about their relations. Leading computer vision models
tend to struggle with this concept. (B) Real-world visual concepts
are defined by different types of compositions: 1. A bicycle is a well-
defined collection of parts in a consistent configuration; 2. vehicles
allow a set of stereotyped parts to be combined more freely; 3. To be
a sun shield, an upright orientation is required; 4. Wearable objects
that come in pairs stipulate a repetition of wearable elements. The
rightmost column contains examples of experimental stimuli that are
analogous to these concepts.

pairs requires an additional degree of compositional abstrac-
tion, allowing a variety of parts to fill a role as long as they
are duplicated.

Although previous work on few-shot learning has exam-
ined special cases of compositionality, we are still far from
understanding the full variety of compositions present in real-
world visual concepts (Fig. 1B). In a seminal study, F. Xu and
Tenenbaum (2007) examined word learning as Bayesian in-
ference over tree-structured hypothesis spaces. Their model
explains how children can make meaningful inferences from
just a few examples, but compositional concepts were not
considered. Lake, Salakhutdinov, and Tenenbaum (2015) de-
veloped compositional models of learning handwritten char-
acters, although individual characters are highly constrained
in how their parts and configuration are allowed to vary
(as in the 1st row of Fig. 1B). Other studies have con-
sidered sequential patterns (Overlan, Jacobs, & Piantadosi,
2017; Lake, Linzen, & Baroni, 2019) and recursive struc-
tures (Stuhlmuller, Tenenbaum, & Goodman, 2010; Lake &
Piantadosi, 2020) more akin to the 4th row of Fig. 1B, or
free combinations of parts akin to the 2nd row of Fig. 1B ar-
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Figure 2: Examples of trial types tested in the experiments. Top: example alien figures given to participants to study on a given trial. Bottom:
simplified parse tree of the most likely concept inferred by the Bayesian program induction model for each trial. The grammar over programs
specifies primitive shapes and operations including the attach function, which returns the set of all possible configurations of two parts,
and the attach* function which returns a set containing the single specified configuration. We can see that the spatial arrangement among
components cannot be described with simple relations such as left, right, above or under.

ranged in grid-like scenes (Orbán, Fiser, Aslin, & Lengyel,
2008), although each of these concept types considered rela-
tively simplistic spatial relations.

Our goal here is to study these various types of visual com-
position in a single experimental paradigm, and evaluate the
success of Bayesian program induction in accounting for the
inferences people make. To do so, we consider a domain of
visual concepts that is richly hierarchical, compositional, and
relational. Using “alien figures” as our stimuli, we conducted
two experiments on few-shot concept learning, asking partic-
ipants to make generalization judgements on test items after
observing only a small number of positive examples. Fol-
lowing previous modeling work on Bayesian program induc-
tion in the visual domains (Stuhlmuller et al., 2010; Lake et
al., 2015; Overlan et al., 2017; Lake & Piantadosi, 2020),
we formalize learning in the alien categorization game as
a search for the best programs for explaining the examples
under a Bayesian score. The space of possible programs is
constructed using a probabilistic language of thought (PLoT)
(Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Pianta-
dosi, 2011; Piantadosi & Jacobs, 2016), allowing for a wide
range of compositions and abstractions. We found that our
Bayesian program induction model provides an excellent ac-
count of experimental data, outperforming alternative models
that lack key capacities to represent relations and composi-
tionality. In addition, the fitted model parameters are psycho-
logically meaningful, providing insight into people’s induc-
tive biases for these few-shot learning tasks.

Behavioral Experiments
Our experiments aimed to evaluate the flexibility of human
compositional learning across a range of concept types. We

adapted the few-shot learning paradigm of F. Xu and Tenen-
baum (2007) for our purposes, as described below.
Stimuli. The stimuli were described to participants as
“alien figures,” which were programmatically generated by
composing one to three shape primitives (see examples in Fig
2). A composition of two parts is considered valid when they
are non-overlapping and connected via two sides of identi-
cal length. Participants saw black-and-white outlines of each
primitive2. We left these primitives uncolored to motivate
closer observations of stimulus shapes. As a visual aid in the
experiment, rolling one’s mouse over a primitive led all iden-
tical primitives in the display to become highlighted. The
primitives were constructed through an additional level of
compositionality, as they were composed of four isosceles
right triangles. To form each set of training examples, we
varied (1) which primitives can appear, (2) how many primi-
tives appear in each exemplar (3) how the parts are composed
and (4) if the configuration has a fixed orientation.
Task. Participants took part in an “alien figure categoriza-
tion game” in which they are the assistant to a professor
who collected samples of alien figures on a newly discovered
planet. Their job in the game is to help the professor catego-
rize a series of unnamed alien figures based on a small set of
named examples.

During each trial, participants were first familiarized with
four different shape primitives. They were also informed that
all relevant figures within the trial were built from these four
primitives and no other primitives were possible. Next, par-

2In this paper, all alien figures are shown with color-coded shape
primitives for clarity.



ticipants were given a small set of example figures that shared
a common name (see Fig. 4 for example trials). To minimize
the effect of memory demands on learning, a display of the
examples and primitives remained on screen throughout the
trial. After an untimed observation period, participants en-
tered a test stage in which they categorized a series of 9-13
unnamed alien figures. Specifically, participants chose ‘yes’
or ‘no’ for each test image to indicate whether it belongs to
the same named category as the example images. We con-
structed each test set to cover a wide range of both possible
and impossible extensions of potential concepts.

We conducted two separate experiments with identical task
procedures. The two experiments differed only in terms of
the training and test sets in each trial. In Experiment 1, for
every participant we tested 11 trials with each trial contain-
ing one to three training examples, followed by judgments on
the test examples. Experiment 2 consisted of 10 trials and
considered concept types that were more complex compared
to those used in Experiment 1. We also used Experiment 2
to evaluate out-of-sample model predictions, since all model
parameters were fit on the basis of Experiment 1. To study
the effect of the exemplar set size on learning, participants in
Experiment 2 were randomly separated into two conditions,
based on whether they saw three or six exemplars of each
concept. Trial orders were randomized for each participant;
the set of allowable primitives were also randomized per par-
ticipant per trial.

Participants. We used Amazon Mechanical Turk to recruit
participants for both online experiments. Forty participants
took part in Experiment 1, and 30 for each condition of Ex-
periment 2. Responses from participants that failed one or
more attention checks during either task were excluded. In
the end, generalization judgements from 32, 25 and 20 par-
ticipants were used in our reported analyses of Experiment 1,
the 3-example condition of Experiment 2, and the 6-example
condition of Experiment 2, respectively. All participants fin-
ished the task within an hour and were paid $5.00 at the com-
pletion of the experiment.

Computational models
We explored several types of computational models, with
the aim of characterizing human generalizations in compu-
tational terms.

Bayesian program induction
To provide a unifying computational account of the wide
range of generalization behavior elicited by various com-
position types, we developed a Bayesian program induction
model that considers explicit, structural hypotheses as expla-
nations for novel visual concepts. The model updates its
beliefs over these hypotheses using a Bayesian framework
(Goodman et al., 2008; Piantadosi & Jacobs, 2016) which
generates human-like graded predictions with very limited
data. In particular, the alien concepts were represented as
probabilistic programs, which are structured generative mod-

START       
Actions
ATTACH → (attach P P) Returns the set of all allowable configurations 

of two parts
ATTACH* → (attach* P P) Returns a specific configuration of two parts
ROTATE → (rotate P d) Returns a rotated copy of input at d degrees
Parts
PART →ATTACH* A fixed configuration
PART → p1, …, p4 A shape primitive
PART → x A part variable
Mapping & λ-expressions
MAP → (map fxA SET) Maps an expression onto a set
fxA → (λ x FUNC) Action expression with part variable
Part-based functions
PARTIAL → (has PART) Returns the set of all possible figures that 

contain a particular part 
PARTIAL → (only PART) Returns the set of all possible figures that 

consist only of a particular part
Sets
SET → (diff SET, SET) Removes the second set from first set
SET → (union SET, SET) Returns a combined set of two sets
SET → {p1, …, p4} The set of all shape primitives

Figure 3: Core grammatical rules used to generate concept pro-
grams. The hypothesis space used in the study consisted of valid
compositions of these primitives. Full grammar and code will be
available online: https://github.com/yanlizhou/AlienFigures.

els that produce distributions of examples. The goal of the
learner is to infer programs consistent with the observed ex-
amples and the prior beliefs over programs. Inspired by
Piantadosi (2011) and Piantadosi, Tenenbaum, and Goodman
(2016), we formed a compositional hypothesis space using
a probabilistic grammar based on λ-calculus. The grammar
defines a set of primitive parts and operations which can be
combined to build up programs of various levels of complex-
ity (see Fig. 2 for examples of programs and output). Each
sample from the grammar corresponds to a visual concept,
and the production rules of the grammar specify the infinite
space of possible concepts.
Prior over programs. To generate a concept, our grammar
begins with expanding the START symbol into downstream
nodes according to applicable rewrite rules. These nodes are
subsequently rewritten until no further expansions are possi-
ble. Fig 3 shows the core set of rules used to generate the pro-
grams (concepts) considered in our study. The output of each
program is the set of all possible alien figures under such con-
cept. In the example (rotate (attach1 p1 p2), 180),
the inner most expression is first evaluated and returns the 1st

allowable configuration of primitives p1 and p2, which gets
passed on to the outside expression that generates a rotated
copy at 180◦. This program has only a single element in its
output set, as it corresponds to a generative process that fully
specifies the types of parts, their configuration, and overall
rotation. Figure orientation is based on four discrete possi-
bilities, and two identical configurations at different rotations
are considered distinct alien figures.

The grammar also supports λ-expressions; together with
mapping and set operations, the grammar can produce ab-
stract concepts like (map (lambda x (attach x x)) S)



which outputs the set of all possible configurations of two
identical components sampled from the set S. Other func-
tion primitives in the grammar support hypotheses that do not
fully specify a composition process. For example, (has p)
returns the set of all possible alien figures with p as a part.

Likelihood and inference. In Bayesian concept learning,
the learner aims to compute the probability of a hypothe-
sis h given a set of examples X = {x1, . . . ,xk}, or the poste-
rior probability P(h|X), which can be calculated by applying
Bayes’ rule: P(h|X) ∝ P(X |h)P(h). The first component, the
likelihood of X assuming hypothesis h is true is defined as

P(X |h) =
k

∏
i

P(xi|h) =
1
|h|k

,

where |h| is the size of the concept. A likelihood function that
is inversely proportional to the concept size, in our case the
number of all unique outputs of a program, reflects the size
principle which assigns more weight to smaller hypotheses
(Tenenbaum, 1999). The second component P(h), the prior
probability of a concept, can be naturally derived from the
grammar (Goodman et al., 2008). Since each production of
the grammar is a sequence of expansions of non-terminals,
the probability of the production is the product of the proba-
bilities associated with each expansion. This formulation op-
erationalizes an important psychological preference for sim-
plicity (Chater & Vitányi, 2003) as shorter programs require
fewer multiplications of expansion probabilities. To gener-
ate a model prediction for each test item y after making a
set of observations, we calculate the probability that the label
ly ∈ {0,1} of y is consistent with the set of observed examples
X as

P(ly = 1|X) = ∑
h∈H

P(ly = 1|h)P(h|X)

where H is the hypothesis space considered in our study.
Approximate posterior inference was implemented in the
LOTlib3 software package (Piantadosi, 2014). For each trial,
we ran three Monte Carlo chains for 100,000 steps of a tree-
regeneration Markov chain Monte Carlo (MCMC) procedure
(Goodman et al., 2008).

Parameter fitting. Given behavioral data collected in our
experiments, we are interested in finding the set of grammar
parameters that most likely generated people’s generalization
patterns. Formally, we would like to infer the probability of
the set of parameters of interest, given human response data:
argmax~θ,α,β P(~θ,α,β|R,Y ), where~θ, α and β are parameters
of the learning model and R is the set of human responses to
the set of test items Y . To account for possible response noise
in our collected generalization judgements, we fit a lapse rate
α, which determines the probability that a response was made
at random. In the case of a lapse trial, we also represented a
baseline preference for answering Yes with parameter β. ~θ
is the set of grammar parameters, which are the probabili-
ties associated with the distribution of expansions for each
non-terminal. We only considered two grammar parameters

that are psychologically meaningful, and we fixed the rest of
expansions to have uniform probabilities. These two gram-
mar parameters encode participants’ preferences for orien-
tation invariance and configuration invariance, respectively.
We discuss the implications of the fitted values of these pa-
rameters in the Results section. The model-fitting procedure
closely followed the one implemented by Piantadosi et al.
(2016), in which we performed stochastic search for the best
fitting parameters via MCMC. The prior over the parameters
used beta distributions with uninformative, uniform priors for
~θ, α and β.

Alternative models

We compare the Bayesian program induction model with two
versions of an exemplar model known as the Generalized
Context Model (GCM) (Nosofsky, 1986). In a GCM, the
probability of extending a category label ly to a new stimu-
lus y is based on its similarity to the training examples X :

P(ly = 1|X) ∝
1
k

k

∑
i

exp(−w ·d(y,xi))

where d is a distance function and w a scaling parameter. We
evaluated two variants of the GCM with different distance
measures.

Pixel-GCM. We used a deep convolutional neural net
(CNN) to extract features of our visual stimuli from raw pixel
data. A pre-trained 50-layer ResNet (He et al., 2015) was
used to encode all images into vectorized representations.
Cosine distance between two feature vectors was calculated
as a measure of their similarity.

String-GCM. We also used a weighted Levenshtein dis-
tance to measure the distance between the string representa-
tions of two alien figures. For every image, its string format is
a concatenation of 3 substrings that separately encode shape
primitive types, primitive configurations and orientation. For
example, an alien figure consisted of two primitives p1 and
p2 connected according to their 1st allowable configuration
and rotated to 180◦ can represented in the string format as
“(p1 p2)+1+180”. We fit a weight parameter for each type
of substring and the overall distance is a weighted average of
the distances between each pair of corresponding substrings.

Results
The scatter plots in Fig. 5 summarize the correlations be-
tween human responses and model predictions for every trial
type and model. Fig. 4 shows examples of model predictions
alongside human data. Overall, we found that the Bayesian
model provides an excellent account of human behavior with
an average correlation of r = 0.955 across all trial types stud-
ied in both experiments. We observe that the Bayesian model
consistently assigns high probabilities to the test item that
human participants found most likely, and produced graded
predictions that tracked people’s willingness to extend the
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Figure 4: Model predictions on four of the trial types used in Experiment 2. The set of training examples is shown on the top of each panel;
examples of test items were shown at the bottom. Identity test items are identical to one of the examples; Part test items are parts that
appeared in one of examples; Novel configurations items were new configurations of parts in examples; Novel part items were conceptually
consistent with examples but contained unseen parts; Higher-level items were configurations with one of examples as subpart; No repetition,
No common and Other items in B,C and D were conceptually inconsistent with examples; Wider items in D are samples from a wider concept
for which the set of possible extensions is a superset of the concept of interest.

Table 1: Fitted parameters values.

Type Probability
Orientation invariance 0.999
Configuration invariance 0.725
α (1-lapse rate) 0.839
β (base rate for responding ‘yes’) 0.714

concept. Importantly, the Bayesian model makes robust out-
of-sample predictions. Using maximum-a-posteriori (MAP)
parameters fit based on Experiment 1, the model was able
to make good predictions for the more complex concepts in
Experiment 2 (r = 0.952 for Experiment 1, r = 0.948 for
3-exemplar condition of Experiment 2 and r = 0.947 for 6-
exemplar condition of Experiment 2). All Bayesian model
predictions regarding Experiment 2 trials reported were gen-
erated in this manner.

On the other hand, the two GCM variants fit the human
data less closely, with average correlations of r = 0.604 for
the pixel-GCM and r = 0.874 for the string-GCM. In the case
of the pixel-GCM, the model responds strongly to the iden-
tity match, but unlike people, it does not clearly distinguish
between the other types of generalization (Fig. 4). The pre-
trained CNN seemingly fails to perceive the stimuli in terms

of their underlying parts and relations, at least without further
fine-tuning. The string-GCM is a reasonably good account of
the trial types with example figures sharing common parts,
with no additional configuration constraints (e.g Fig. 4A).
This is unsurprising since the string format precisely encodes
which shape primitives are present in each alien figure. The
string-GCM struggles with more abstract rules that extends
to unseen primitives (e.g. Fig. 4B) or contain configurations
of primitives not previously observed (e.g. Fig. 4C). It also
has a hard time grasping partial configuration constraints in a
concept (e.g. Fig. 4D).

The MAP values of fitted free parameters are reported in
Table 1. Values of the two grammar parameters reveal two
inductive biases people brought to bear when performing this
visual concept learning task. The first parameter is the prob-
ability that a given concept contains images of the same con-
figuration at different orientations. This probability is found
to be very high, suggesting that our participants had a strong
preference for orientation invariance when judging unnamed
alien figures. People may have been influenced by their expe-
rience with named objects in the real world, which are usually
orientation invariant. People were also biased towards con-
cepts that do not require fixed configurations of parts. This is
exemplified by their willingness to generalize to novel con-
figurations, even when all examples shared the same configu-



Figure 5: Comparison between human responses and model predictions for each trial type of Experiment 1 (top row), 3-exemplar condition
of Experiment 2 (middle row), and 6-exemplar condition of Experiment 2 (bottom row). Each dot in a scatter plot indicates the probability
of responding ‘Yes’ for each test item. The color of dots corresponds to the model type: blue for the Bayesian model, yellow for pixel-GCM
and purple for string-GCM. Human-model correlations are also shown for each trial.

ration.

Discussion
We carried out an investigation of human few-shot visual con-
cept learning, with an emphasis on concepts that compose
primitives together in different ways. We studied “alien fig-
ures” that are richly structured, defined in terms of visual
shapes connected in different systems of relations and at var-
ious levels of abstraction. Extending previous work on few-
shot learning, we provided new empirical results on a set of
concepts that better reflect the variety of ways parts combine
in real wold visual concepts.

Our Bayesian program induction model provided predic-
tions that closely matched human generalization patterns. Al-
though the model is formulated exclusively to describe the
class of alien figures, the model is flexible enough to be fur-
ther extended by incorporating more or different primitives,
or by adding grammatical rules to represent other types of vi-
sual concepts. Alternatively, we can formulate a set of differ-
ent grammars and perform model comparison to distinguish
between different language of thought theories within our ex-
isting framework.

Importantly, our paradigm is readily applicable to other
learning approaches such as neural network (NN) models.
The probabilistic grammar used in our studies can be used
to sample many more concepts, as is needed for training NN
models capable of few-shot learning through meta-learning
(Vinyals et al., 2016). By training NN models on this dis-
tribution of concepts, we can examine their ability to make
compositional generalizations. We can also further refine NN
models by fine-tuning them on a subset of the behavioral data,
with the aim of better capturing more complex types of induc-
tive bias. Direct comparisons between human and model be-
havior may further inform how to build machines with more
compositional forms of learning (Lake et al., 2019), and help
identify potential ingredients that can endow NN models with
more human-like capabilities.

In addition, various architectures and algorithms have been
developed for problems such as Raven’s Progressive Matrices
(Zhang et al., 2019) and Bongard problems (Nie et al., 2020).
In these datasets, simple visual forms are used to compose
problems that test for compositional and relational reasoning
abilities. Our task is related in some ways, but with a greater
focus on understanding a variety of different types of compo-
sition. It’s not obvious that models developed for these other
domains will generalize to our tasks, but it’s an important path
for future work to consider.

Using our framework, we also plan to compare humans and
computational models on generative tasks. Our Bayesian pro-
gram induction model can generate new examples; however,
generative tasks can provide a particularly direct window into
human inductive biases, and it’s likely that some modification
will be needed to bring the prior closer to human expecta-
tions. We hope that generative tasks, building on the findings
presented here, will further inform efforts to develop models
of flexible, human-like compositional learning.
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