Paper Title Authors
AbDiffuser: full-atom generation of in-vitro functioning antibodies Karolis Martinkus, Jan Ludwiczak, WEI-CHING LIANG, Julien Lafrance-Vanasse, Isidro Hotzel, Arvind Rajpal, Yan Wu, Kyunghyun Cho, Richard Bonneau, Vladimir Gligorijevic, Andreas Loukas
Estimating Noise Correlations Across Continuous Conditions With Wishart Processes
Amin Nejatbakhsh, Isabel Garon, Alex Williams
 
Diffusion-Based Adversarial Sample Generation for Improved Stealthiness and Controllability
Haotian Xue, Alexandre Araujo, Bin Hu, Yongxin Chen
 
Don’t blame Dataset Shift! Shortcut Learning due to Gradients and Cross Entropy
Aahlad Manas Puli, Lily Zhang, Yoav Wald, Rajesh Ranganath
 
Reverse Engineering Self-Supervised Learning
Ido Ben-Shaul, Ravid Shwartz-Ziv, Tomer Galanti, Shai Dekel, Yann LeCun
 
Bottleneck Structure in Learned Features: Low-Dimension vs Regularity Tradeoff Arthur Jacot  
High-dimensional Contextual Bandit Problem without Sparsity Junpei Komiyama, Masaaki Imaizumi  
A Performance-Driven Benchmark for Feature Selection in Tabular Deep Learning
Valeriia Cherepanova, Roman Levin, Gowthami Somepalli, Jonas Geiping, C. Bayan Bruss, Andrew Wilson, Tom Goldstein, Micah Goldblum
 
Estimating Causal Effects Identifiable from a Combination of Observations and Experiments
Yonghan Jung, Ivan Diaz, Jin Tian, Elias Bareinboim
 
Should We Learn Most Likely Functions or Parameters?
Shikai Qiu, Tim G. J. Rudner, Sanyam Kapoor, Andrew Wilson
 
Understanding and Mitigating Copying in Diffusion Models
Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, Tom Goldstein
 
Towards A Richer 2D Understanding of Hands at Scale
Tianyi Cheng, Dandan Shan, Ayda Hassen, Richard Higgins, David Fouhey
 
Exploiting Connections between Lipschitz Structures for Certifiably Robust Deep Equilibrium Models
Aaron Havens, Alexandre Araujo, Siddharth Garg, Farshad Khorrami, Bin Hu
 
The Adversarial Consistency of Surrogate Risks for Binary Classification Natalie Frank, Jonathan Niles-Weed  
Mean-field Langevin dynamics: Time-space discretization, stochastic gradient, and variance reduction Taiji Suzuki, Denny Wu, Atsushi Nitanda  
Learning Interpretable Low-dimensional Representation via Physical Symmetry
Xuanjie Liu, Daniel Chin, Yichen Huang, Gus Xia
 
A Spectral Theory of Neural Prediction and Alignment
Abdulkadir Canatar, Jenelle Feather, Albert Wakhloo, SueYeon Chung
 
NeuralGF: Unsupervised Point Normal Estimation by Learning Neural Gradient Function
Qing Li, Huifang Feng, Kanle Shi, Yue Gao, Yi Fang, Yu-Shen Liu, Zhizhong Han
 
Training biologically plausible recurrent neural networks on cognitive tasks with long-term dependencies
Wayne Soo, Vishwa Goudar, Xiao-Jing Wang
 
Randomized Sparse Neural Galerkin Schemes for Solving Evolution Equations with Deep Networks Jules Berman, Benjamin Peherstorfer  
Efficient Training of Energy-Based Models Using Jarzynski Equality
Davide Carbone, Mengjian Hua, Simon Coste, Eric Vanden-Eijnden
 
Testing the General Deductive Reasoning Capacity of Large Language Models Using OOD Examples
Abulhair Saparov, Richard Yuanzhe Pang, Vishakh Padmakumar, Nitish Joshi, Mehran Kazemi, Najoung Kim, He He
 
Should Under-parameterized Student Networks Copy or Average Teacher Weights?
Berfin Simsek, Amire Bendjeddou, Wulfram Gerstner, Johanni Brea
 
Gradient-Based Feature Learning under Structured Data
Alireza Mousavi-Hosseini, Denny Wu, Taiji Suzuki, Murat Erdogdu
 
Learning in the Presence of Low-dimensional Structure: A Spiked Random Matrix Perspective
Jimmy Ba, Murat Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu
 
On Single-Index Models beyond Gaussian Data
Aaron Zweig, Loucas PILLAUD-VIVIEN, Joan Bruna
 
Visual Explanations of Image-Text Representations via Multi-Modal Information Bottleneck Attribution
Ying Wang, Tim G. J. Rudner, Andrew Wilson
 
Protein Design with Guided Discrete Diffusion
Nate Gruver, Samuel Stanton, Nathan Frey, Tim G. J. Rudner, Isidro Hotzel, Julien Lafrance-Vanasse, Arvind Rajpal, Kyunghyun Cho, Andrew Wilson
 
An Information Theory Perspective on Variance-Invariance-Covariance Regularization
Ravid Shwartz-Ziv, Randall Balestriero, Kenji Kawaguchi, Tim G. J. Rudner, Yann LeCun
 
ClimSim: A large multi-scale dataset for hybrid physics-ML climate emulation
Sungduk Yu, Walter Hannah, Liran Peng, Jerry Lin, Mohamed Aziz Bhouri, Ritwik Gupta, Björn Lütjens, Justus C. Will, Gunnar Behrens, Julius Busecke, Nora Loose, Charles Stern, Tom Beucler, Bryce Harrop, Benjamin Hillman, Andrea Jenney, Savannah L. Ferretti, Nana Liu, Animashree Anandkumar, Noah Brenowitz, Veronika Eyring, Nicholas Geneva, Pierre Gentine, Stephan Mandt, Jaideep Pathak, Akshay Subramaniam, Carl Vondrick, Rose Yu, Laure Zanna, Tian Zheng, Ryan Abernathey, Fiaz Ahmed, David Bader, Pierre Baldi, Elizabeth Barnes, Christopher Bretherton, Peter Caldwell, Wayne Chuang, Yilun Han, YU HUANG, Fernando Iglesias-Suarez, Sanket Jantre, Karthik Kashinath, Marat Khairoutdinov, Thorsten Kurth, Nicholas Lutsko, Po-Lun Ma, Griffin Mooers, J. David Neelin, David Randall, Sara Shamekh, Mark Taylor, Nathan Urban, Janni Yuval, Guang Zhang, Mike Pritchard
 
Differentiable Registration of Images and LiDAR Point Clouds with VoxelPoint-to-Pixel Matching
Junsheng Zhou, Baorui Ma, Wenyuan Zhang, Yi Fang, Yu-Shen Liu, Zhizhong Han
 
CoLA: Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra
Andres Potapczynski, Marc Finzi, Geoff Pleiss, Andrew Wilson
 
SEEDS: Exponential SDE Solvers for Fast High-Quality Sampling from Diffusion Models
Martin Gonzalez, Nelson Fernandez Pinto, Thuy Tran, elies Gherbi, Hatem Hajri, Nader Masmoudi
 
Hard Prompts Made Easy: Gradient-Based Discrete Optimization for Prompt Tuning and Discovery
Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, Tom Goldstein
 
Simplifying and Empowering Transformers for Large-Graph Representations
Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, Junchi Yan
 
Keypoint-Augmented Self-Supervised Learning for Medical Image Segmentation with Limited Annotation
Zhangsihao Yang, Mengwei Ren, Kaize Ding, Guido Gerig, Yalin Wang
 
Structured Semidefinite Programming for Recovering Structured Preconditioners
Arun Jambulapati, Jerry Li, Christopher Musco, Kirankumar Shiragur, Aaron Sidford, Kevin Tian
 
On Imitation in Mean-field Games
Giorgia Ramponi, Pavel Kolev, Olivier Pietquin, Niao He, Mathieu Lauriere, Matthieu Geist
 
Language Models Dont Always Say What They Think: Unfaithful Explanations in Chain-of-Thought Prompting
Miles Turpin, Julian Michael, Ethan Perez, Samuel Bowman
 
When can Regression-Adjusted Control Variate Help? Rare Events, Sobolev Embedding and Minimax Optimality
Jose Blanchet, Haoxuan Chen, Yiping Lu, Lexing Ying
 
Cluster-aware Semi-supervised Learning: Relational Knowledge Distillation Provably Learns Clustering
Yijun Dong, Kevin Miller, Qi Lei, Rachel Ward
 
Posterior Sampling for Competitive RL: Function Approximation and Partial Observation
Shuang Qiu, Ziyu Dai, Han Zhong, Zhaoran Wang, Zhuoran Yang, Tong Zhang
 
Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise
Arpit Bansal, Eitan Borgnia, Hong-Min Chu, Jie Li, Hamid Kazemi, Furong Huang, Micah Goldblum, Jonas Geiping, Tom Goldstein
 
Self-Supervised Learning with Lie Symmetries for Partial Differential Equations
Grégoire Mialon, Quentin Garrido, Hannah Lawrence, Danyal Rehman, Yann LeCun, Bobak Kiani
 
EvoPrompting: Language Models for Code-Level Neural Architecture Search Angelica Chen, David Dohan, David So  
Formalizing locality for normative synaptic plasticity models
Colin Bredenberg, Ezekiel Williams, Cristina Savin, Blake Richards, Guillaume Lajoie
 
Learning Efficient Coding of Natural Images with Maximum Manifold Capacity Representations
Thomas Yerxa, Yilun Kuang, Eero Simoncelli, SueYeon Chung
 
A polar prediction model for learning to represent visual transformations Pierre-Étienne Fiquet, Eero Simoncelli  
K-Nearest-Neighbor Local Sampling Based Conditional Independence Testing
Shuai Li, Yingjie Zhang, Hongtu Zhu, Christina Wang, Hai Shu, Ziqi Chen, Zhuoran Sun, Yanfeng Yang
 
Inverse Dynamics Pretraining Learns Good Representations for Multitask Imitation
David Brandfonbrener, Ofir Nachum, Joan Bruna
 
Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and Optimal Algorithms
Qian Yu, Yining Wang, Baihe Huang, Qi Lei, Jason Lee
 
Contrastive Retrospection: honing in on critical steps for rapid learning and generalization in RL
Chen Sun, Wannan Yang, Thomas Jiralerspong, Dane Malenfant, Benjamin Alsbury-Nealy, Yoshua Bengio, Blake Richards
 
Rethinking Bias Mitigation: Fairer Architectures Make for Fairer Face Recognition
Samuel Dooley, Rhea Sukthanker, John Dickerson, Colin White, Frank Hutter, Micah Goldblum
 
Large Language Models Are Zero-Shot Time Series Forecasters
Nate Gruver, Marc Finzi, Shikai Qiu, Andrew Wilson
 
Simplifying Neural Network Training Under Class Imbalance
Ravid Shwartz-Ziv, Micah Goldblum, Yucen Li, C. Bayan Bruss, Andrew Wilson
 
EPIC Fields: Marrying 3D Geometry and Video Understanding
Vadim Tschernezki, Ahmad Darkhalil, Zhifan Zhu, David Fouhey, Iro Laina, Diane Larlus, Dima Damen, Andrea Vedaldi
 
Battle of the Backbones: A Large-Scale Comparison of Pretrained Models across Computer Vision Tasks
Micah Goldblum, Hossein Souri, Renkun Ni, Manli Shu, Viraj Prabhu, Gowthami Somepalli, Prithvijit Chattopadhyay, Mark Ibrahim, Adrien Bardes, Judy Hoffman, Rama Chellappa, Andrew Wilson, Tom Goldstein
 
OpenProteinSet: Training data for structural biology at scale
Gustaf Ahdritz, Nazim Bouatta, Sachin Kadyan, Lukas Jarosch, Dan Berenberg, Ian Fisk, Andrew Watkins, Stephen Ra, Richard Bonneau, Mohammed AlQuraishi
 
American Stories: A Large-Scale Structured Text Dataset of Historical U.S. Newspapers
Melissa Dell, Jacob Carlson, Tom Bryan, Emily Silcock, Abhishek Arora, Zejiang Shen, "Luca DAmico-Wong", Quan Le, Pablo Querubin, Leander Heldring
 
Adaptive whitening with fast gain modulation and slow synaptic plasticity
Lyndon Duong, Eero Simoncelli, Dmitri Chklovskii, David Lipshutz
 
Bypassing spike sorting: Density-based decoding using spike localization from dense multielectrode probes
Yizi Zhang, Tianxiao He, Julien Boussard, Charles Windolf, Olivier Winter, Eric Trautmann, Noam Roth, Hailey Barrell, Mark Churchland, Nicholas A Steinmetz, Erdem Varol, Cole Hurwitz, Liam Paninski
 
A Neural Collapse Perspective on Feature Evolution in Graph Neural Networks
Vignesh Kothapalli, Tom Tirer, Joan Bruna
 
Feature learning via mean-field Langevin dynamics: classifying sparse parities and beyond
Taiji Suzuki, Denny Wu, Kazusato Oko, Atsushi Nitanda
 
A Logic for Expressing Log-Precision Transformers William Merrill, Ashish Sabharwal  
MARBLE: Music Audio Representation Benchmark for Universal Evaluation
Ruibin Yuan, Yinghao Ma, Yizhi Li, Ge Zhang, Xingran Chen, Hanzhi Yin, zhuo le, Yiqi Liu, Jiawen Huang, Zeyue Tian, Binyue Deng, Ningzhi Wang, Chenghua Lin, Emmanouil Benetos, Anton Ragni, Norbert Gyenge, Roger Dannenberg, Wenhu Chen, Gus Xia, Wei Xue, Si Liu, Shi Wang, Ruibo Liu, Yike Guo, Jie Fu
 
Minigrid & Miniworld: Modular & Customizable Reinforcement Learning Environments for Goal-Oriented Tasks
Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems, Salem Lahlou, Suman Pal, Pablo Samuel Castro, J Terry
 
NetHack is Hard to Hack
Ulyana Piterbarg, Lerrel Pinto, Rob Fergus
 
What Can We Learn from Unlearnable Datasets?
Pedro Sandoval-Segura, Vasu Singla, Jonas Geiping, Micah Goldblum, Tom Goldstein
 
Understanding the detrimental class-level effects of data augmentation
Polina Kirichenko, Mark Ibrahim, Randall Balestriero, Diane Bouchacourt, Shanmukha Ramakrishna Vedantam, Hamed Firooz, Andrew Wilson
 
When Do Neural Nets Outperform Boosted Trees on Tabular Data?
Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C, Ganesh Ramakrishnan, Micah Goldblum, Colin White
 
Spatial-frequency channels, shape bias, and adversarial robustness
Ajay Subramanian, Elena Sizikova, Najib Majaj, Denis Pelli
 
Re Exploring the Role of Grammar and Word Choice in Bias Toward African American English (AAE) in Hate Speech Classification
Priyanka Bose, Chandra Shekhar Pandey, Fraida Fund
 
Learning and Collusion in Multi-unit Auctions
Simina Branzei, Mahsa Derakhshan, Negin Golrezaei, Yanjun Han