Paper Title Authors
A Data-Augmentation Is Worth A Thousand Samples: Analytical Moments And Sampling-Free Training Randall Balestriero, Ishan Misra, Yann LeCun
A Deep Reinforcement Learning Framework for Column Generation Cheng Chi, Amine Aboussalah, Elias Khalil, Juyoung Wang, Zoha Sherkat-Masoumi
Are All Losses Created Equal: A Neural Collapse Perspective Jinxin Zhou, Chong You, Xiao Li, Kangning Liu, Sheng Liu, Qing Qu, Zhihui Zhu
Asymptotics of smoothed Wasserstein distances in the small noise regime Yunzi Ding, Jonathan Niles-Weed
Behavior Transformers: Cloning k modes with one stone Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya (Arty) Altanzaya, Lerrel Pinto
Biological Learning of Irreducible Representations of Commuting Transformations Alexander Genkin, David Lipshutz, Siavash Golkar, Tiberiu Tesileanu, Dmitri Chklovskii
Chroma-VAE: Mitigating Shortcut Learning with Generative Classifiers Wanqian Yang, Polina Kirichenko, Micah Goldblum, Andrew Wilson
Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone Zi-Yi Dou, Aishwarya Kamath, Zhe Gan, Pengchuan Zhang, Jianfeng Wang, Linjie Li, Zicheng Liu, Ce Liu, Yann LeCun, Nanyun Peng, Jianfeng Gao, Lijuan Wang
Combining Implicit and Explicit Regularization for Efficient Learning in Deep Networks Dan Zhao
Constrained Predictive Coding as a Biologically Plausible Model of the Cortical Hierarchy Siavash Golkar, Tiberiu Tesileanu, Yanis Bahroun, Anirvan Sengupta, Dmitri Chklovskii
Contrastive and Non-Contrastive Self-Supervised Learning Recover Global and Local Spectral Embedding Methods Randall Balestriero, Yann LeCun
D-GCCA: Decomposition-based Generalized Canonical Correlation Analysis for Multi-view High-dimensional Data Hai Shu, Zhe Qu, Hongtu Zhu
Distinguishing discrete and continuous behavioral variability using warped autoregressive HMMs Julia Costacurta, Lea Duncker, Blue Sheffer, Winthrop Gillis, Caleb Weinreb, Jeffrey Markowitz, Sandeep R Datta, Alex Williams, Scott Linderman
Distributional Convergence of the Sliced Wasserstein Process Jiaqi Xi, Jonathan Niles-Weed
Exponential Separations in Symmetric Neural Networks Aaron Zweig, Joan Bruna
Feature Learning in L2-regularized DNNs: Attraction/Repulsion and Sparsity Arthur Jacot, Eugene Golikov, Clement Hongler, Franck Gabriel
FinRL-Meta: Market Environments and Benchmarks for Data-Driven Financial Reinforcement Learning Xiao-Yang Liu, Ziyi Xia, Jingyang Rui, Jiechao Gao, Hongyang Yang, Ming Zhu, Christina Wang, Zhaoran Wang, Jian Guo
Generative multitask learning mitigates target-causing confounding Taro Makino, Krzysztof Geras, Kyunghyun Cho
High-dimensional limit theorems for SGD: Effective dynamics and critical scaling Gerard Ben Arous, Reza Gheissari, Aukosh Jagannath
HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper Surfaces Qing Li, Yu-Shen Liu, Jin-San Cheng, Cheng Wang, Yi Fang, Zhizhong Han
Instability and Local Minima in GAN Training with Kernel Discriminators Evan Becker, Parthe Pandit, Sundeep Rangan, Alyson Fletcher
Learning Consistency-Aware Unsigned Distance Functions Progressively from Raw Point Clouds Junsheng Zhou, Baorui Ma, Yu-Shen Liu, Yi Fang, Zhizhong Han
Learning Optimal Flows for Non-Equilibrium Importance Sampling Yu Cao, Eric Vanden-Eijnden
Learning single-index models with shallow neural networks Alberto Bietti, Joan Bruna, Clayton Sanford, Min Jae Song
Leonardo Petrini, Francesco Cagnetta, Eric Vanden-Eijnden, Matthieu Wyart
Leveraging the Hints: Adaptive Bidding in Repeated First-Price Auctions Wei Zhang, Yanjun Han, Zhengyuan Zhou, Aaron Flores, Tsachy Weissman
Local Spatiotemporal Representation Learning for Longitudinally-consistent Neuroimage Analysis Mengwei Ren, Neel Dey, Martin Styner, Kelly Botteron, Guido Gerig
Maximum a posteriori natural scene reconstruction from retinal ganglion cells with deep denoiser priors Eric Wu, Nora Brackbill, Alexander Sher, Alan Litke, Eero Simoncelli, E.J. Chichilnisky
Minimax Optimal Algorithms for Fixed-Budget Best Arm Identification Junpei Komiyama, Taira Tsuchiya, Junya Honda
Multi-Class H-Consistency Bounds Pranjal Awasthi, Anqi Mao, Mehryar Mohri, Yutao Zhong
Non-stationary Bandits with Knapsacks Shang Liu, Jiashuo Jiang, Xiaocheng Li
On Feature Learning in the Presence of Spurious Correlations Pavel Izmailov, Polina Kirichenko, Nate Gruver, Andrew Wilson
On Non-Linear operators for Geometric Deep Learning Grégoire Sergeant-Perthuis, Jakob Maier, Joan Bruna, Edouard Oyallon
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification Sanyam Kapoor, Wesley Maddox, Pavel Izmailov, Andrew Wilson
PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization Sanae Lotfi, Marc Finzi, Sanyam Kapoor, Andres Potapczynski, Micah Goldblum, Andrew Wilson
Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Priors Ravid Shwartz-Ziv, Micah Goldblum, Hossein Souri, Sanyam Kapoor, Chen Zhu, Yann LeCun, Andrew Wilson
projUNN: efficient method for training deep networks with unitary matrices Bobak Kiani, Randall Balestriero, Yann LeCun, Seth Lloyd
Reinforcement Learning with Automated Auxiliary Loss Search Tairan He, Yuge Zhang, Kan Ren, Minghuan Liu, Che Wang, Weinan Zhang, Yuqing Yang, Dongsheng Li
SeqPATE: Differentially Private Text Generation via Knowledge Distillation Zhiliang Tian, Yingxiu Zhao, Ziyue Huang, Yu-Xiang Wang, Nevin L. Zhang, He He
Society of Agents: Regrets Bounds of Concurrent Thompson Sampling Yan Chen, Perry Dong, Qinxun Bai, Maria Dimakopoulou, Wei Xu, Zhengyuan Zhou
StrokeRehab: A Benchmark Dataset for Sub-second Action Identification Aakash Kaku, Kangning Liu, Avinash Parnandi, Haresh Rengaraj Rajamohan, Kannan Venkataramanan, Anita Venkatesan, Audre Wirtanen, Natasha Pandit, Heidi Schambra, Carlos Fernandez-Granda
The Effects of Regularization and Data Augmentation are Class Dependent Randall Balestriero, Leon Bottou, Yann LeCun
Unsupervised Reinforcement Learning with Contrastive Intrinsic Control Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, Pieter Abbeel
VICRegL: Self-Supervised Learning of Local Visual Features Adrien Bardes, Jean Ponce, Yann LeCun
VRL3: A Data-Driven Framework for Visual Deep Reinforcement Learning Che Wang, Xufang Luo, Keith Ross, Dongsheng Li
What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness? Nikolaos Tsilivis, Julia Kempe
When does return-conditioned supervised learning work for offline reinforcement learning? David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, Joan Bruna