Math and Data (MaD) Seminar: Feature Learning and Margin Maximization via Mirror Descent

Speaker: Matus Telgarsky

Location: 60 Fifth Avenue, Room 150 Auditorium

Date: Thursday, April 25, 2024

This whiteboard talk will motivate and describe the margin maximization problem in neural networks, and show how it can be solved via a simple refinement of the standard mirror descent analysis. In detail, the first part of the talk will explain how margin maximization is an approach to establishing feature learning; as an example, it can achieve sample complexities better than any kernel (e.g., the NTK). The talk will then show how standard gradient descent can be analyzed via an alternative implicit mirror descent, and leads to margin maximization. Time permitting, the talk will also show other consequences of this refined mirror descent, for instance into the study of arbitrarily large steps sizes with logistic regression.

The main content is joint work with Danny Son, and will appear on arXiv in May. The “time permitting” part is joint work with Jingfeng Wu, Peter Bartlett, and Bin Yu, and can be found at https://arxiv.org/abs/2402.15926.