Events
From Learning, to Meta-Learning, to "Lego-Learning” -- theory, system, and engineering
Speaker: Eric Xing
Location: 60 Fifth Avenue, Room 7th Floor Open Space
Date: Tuesday, May 10, 2022
Software systems for complex tasks - such as controlling manufacturing processes in real-time; or writing radiological case reports within a clinical workflow – are becoming increasingly sophisticated and consist of a large number of data, model, algorithm, and system elements and modules. Traditional benchmark/leaderboard-driven bespoke approaches in the Machine Learning community are not suited to meet the highly demanding industrial standards beyond algorithmic performance, such as cost-effectiveness, safety, scalability, and automatability, typically expected in production systems. In this talk, I discuss some technical issues toward addressing these challenges: 1) a theoretical framework for panoramic learning with all experiences; 2) optimization methods to best the effort for learning under such a principled framework; 3) compositional strategies for building production-grade ML programs from standard parts. I will present our recent work toward developing a standard model for Learning that unifies different special-purpose machine learning paradigms and algorithms, then a Bayesian blackbox optimization approach to Meta Learning in the space of hyperparameters, model architectures, and system configurations, and finally principles and designs of standardized software Legos that facilitate cost-effective building, training, and tunning of practical ML pipelines and systems.