Deane Yang

Professor of Mathematics

email: deane.yang@nyu.edu

phone: +1 (212) 9983185 (Unused)

pronouns: he/him/his

Campus Location Office Hours
Manhattan Warren Weaver Hall 522 (Fall 2024) Tuesdays 4-6pm, Fridays 2-4pm
Brooklyn 2 Metrotech 864 By appointment
Online Zoom By appointment
Teaching
A Cluttered Mind (blog)
Research

I work with Erwin Lutwak and Gaoyong Zhang on affine and linearly invariant geometric and analytic inequalities. In the past I have worked on overdetermined systems of PDE's and convergence and collapsing theorems for Riemannian manifolds.

Academic profiles

Google Scholar

Mathscinet (requires university or individual subscription)

Professional history
Survey papers
Selected refereed journal articles

Note on copyright issues: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holders.

  1. E. Lutwak, D. Yang, G. Zhang. A new ellipsoid associated with convex bodies, Duke Mathematical Journal 104 (2000) 375-390.
  2. E. Lutwak, D. Yang, G. Zhang. Lp affine isoperimetric inequalities, Journal of Differential Geometry 56 (2000) 111-132.
  3. E. Lutwak, D. Yang, G. Zhang. A new affine invariant for polytopes and Schneider's projection problem. Transactions of the AMS 353 (2001) 1767-1779.
  4. O. Guleryuz, E. Lutwak, D. Yang, G. Zhang. Information theoretic inequalities for contoured probability distributions, IEEE Transactions on Information Theory 48 (2002) 2377-2383.
  5. E. Lutwak, D. Yang, G. Zhang. The Cramer-Rao inequality for star bodies, Duke Mathematical Journal 112 (2002) 59-81.
  6. E. Lutwak, D. Yang, G. Zhang. Sharp affine Lp Sobolev Inequalities, Journal of Differential Geometry 62 (2002) 17-38.
  7. E. Lutwak, D. Yang, G. Zhang. Moment-entropy inequalities, Annals of Probability 32 (2004) 757-774.
  8. E. Lutwak, D. Yang, G. Zhang. On the Lp-Minkowski problem, Transactions of the AMS 356 (2004) 4359-4370.
  9. D. Hug, E. Lutwak, D. Yang, and G. Zhang, On the Lp Minkowski problem for polytopes, Discrete and Computational Geometry (2005) 699-715.
  10. E. Lutwak, D. Yang, and G. Zhang, Lp John ellipsoids, Proceedings of the London Mathematical Society 90 (2005) 497-520.
  11. E. Lutwak, D. Yang, and G. Zhang, Volume inequalities for subspaces of Lp, Journal of Differential Geometry 68 (2004) 159-184.
  12. W. Chen, R. Howard, E. Lutwak, D. Yang, and G. Zhang, A generalized affine isoperimetric inequality, Journal of Geometric Analysis 14 (2004) 597-612.
  13. E. Lutwak, D. Yang, G. Zhang. Cramer-Rao and moment-entropy inequalities for Renyi entropy and generalized Fisher information, IEEE Transactions on Information Theory 51 (2005) 473-478.
  14. E. Lutwak, D. Yang, G. Zhang. Optimal Sobolev Norms and the Lp Minkowski Problem, International Mathematical Research Notices (2006) 1-21.
  15. E. Lutwak, D. Yang, G. Zhang. Volume Inequalities for Isotropic Measures, American Journal of Mathematics 129 (2007) 1711-1723.
  16. E. Lutwak, D. Yang, G. Zhang. Moment-entropy inequalities for a random vector, IEEE Transactions on Information Theory 53 (2007) 1603-1607.
  17. A. Cianchi, E. Lutwak, D. Yang, G. Zhang. Affine Moser-Trudinger and Morrey-Sobolev inequalities, Calculus of Variations and PDE's 36 (2009) 419-436.
  18. E. Lutwak, D. Yang, G. Zhang. Orlicz projection bodies, Advances in Mathematics 223 (2010) 220-242.
  19. C. Haberl, E. Lutwak, D. Yang, G. Zhang. The even Orlicz Minkowski problem, Advances in Mathematics 224 (2010) 2485-2510.
  20. E. Lutwak, D. Yang, G. Zhang. A volume inequality for polar bodies, Journal of Differential Geometry 84 (2010) 163-178.
  21. E. Lutwak, D. Yang, G. Zhang. Orlicz centroid bodies, Journal of Differential Geometry 84 (2010) 365-387.
  22. G. Bianchi, D. Klain, E. Lutwak, D. Yang, G. Zhang. A countable set of directions is sufficient for Steiner symmetrization, Advances in Applied Mathematics 47 (2011) 869-873.
  23. E. Lutwak, D. Yang, G. Zhang. The Brunn-Minkowski-Firey inequality for nonconvex sets, Advances in Applied Mathematics 48 (2012) 407-413.
  24. E. Lutwak, S. Lv, D. Yang, G. Zhang. Extensions of Fisher information and Stam's inequality, IEEE Transactions in Information Theory (2012) 1319-1327.
  25. K. J. Böröczky, Jr., E. Lutwak, D. Yang, G. Zhang. The log-Brunn-Minkowski inequality, Advances in Mathematics 231 (2012) 1974-1997.
  26. K. J. Böröczky, Jr., E. Lutwak, D. Yang, G. Zhang. The logarithmic Minkowski problem, Journal of the American Mathematics Society 26 (2013) 831-852.
  27. E. Lutwak, S Lv, D. Yang, G. Zhang. Affine moments of a random vector, IEEE Transactions in Information Theory 59 (2013) 5592-5599
  28. A. Cianchi, E. Lutwak, D. Yang, G. Zhang. A Unified Approach to Cramér-Rao Inequalities, IEEE Transactions in Information Theory 60, (2014) 643--650.
  29. K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang. Affine images of isotropic measures, Journal of Differential Geometry 99 (2015) 407--442.
  30. Y. Huang, E. Lutwak, D. Yang, G. Zhang. Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Mathematica 216 (2016) 325-388.
  31. E. Lutwak, D. Yang, G. Zhang. Lp dual curvature measures, Advances in Mathematics 329 (2018) 85-132.
  32. K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang, Y. Zhao. The dual Minkowski problem for symmetric convex bodies, Advances in Mathematics 356 (2019).
  33. K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang, Y. Zhao. The Gauss Image Problem, Communications in Pure and Applied Mathematics (2020).
Unpublished articles
  1. D. Yang. Gunther's proof of Nash's isometric embedding theorem.
  2. J. Goodman and D. Yang. Local solvability of nonlinear partial differential equations of real principal type.
  3. C. T. Yang (as told to D. Yang). Memories of Chern
  4. C. T. Yang. Equivalence of the Alexander-Kolmogorff and Čech Cohomology Theories. Dissertation, Tulane University, 1952.
Mathematical Fragments
  1. A simple way to discover the Riemann curvature
  2. DeTurck's trick for the prescribed Ricci equation
  3. A simple proof of the Theorema Egregium of Gauss
  4. Gromov's approach to solving underdetermined ODE's
  5. Gunther's proof of Nash's isometric embedding theorem.
  6. Holonomy equals curvature.
  7. The exterior derivative via Stokes's theorem
  8. The Lie derivative of a differential form
  9. A simple proof of Heron's formula for the area of a triangle
  10. The pullback of a connection on a vector bundle
  11. The dot product via length and orthogonality
  12. Fundamental concepts of calculus
Good advice on how to email a professor (not just me)
Front page of New York Times, 2/23/2017
My mathematical ancestry
Produced by the Mathematical Genealogy Project