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Chapter 1

Probability

1.1 Probability

Probability theory is the mathematical foundation of statistics. We will review the basics
of concepts in probability before we proceed to discuss mathematical statistics.

The core idea of probability theory is studying the randomness. The randomness is
described by random variable X, a function from sample space to a number. Each
random variable X is associated with a distribution function.

We define the cumulative distribution function (cdf) of X as:

FX(x) = P(X ≤ x). (1.1.1)

The cdf satisfies three properties:

• FX(x) is non-decreasing

• FX(x) is right-continuous

• Limits at the infinity:

lim
x→−∞

FX(x) = 0, lim
x→∞

FX(x) = 1.

A cdf uniquely determines a random variable; it can be used to compute the probability
of X belonging to a certain range

P(a < X ≤ b) = FX(b)− FX(a).

In many applications, we often encounter two important classes of random variables,
discrete and continuous random variables.

We say X is a discrete random variable if X takes value from a countable set of num-
bers

X = {a1, a2, · · · , an, · · · }.

The probability of X taking value ai is given by

fX(i) = pi = P(X = ai)
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and we require

pi ≥ 0,
∞∑
i=1

pi = 1.

This discrete function fX(i) is called probability mass function (pmf). It is natural to
see that the connection between cdf and pmf

FX(x) =
∞∑
i=1

pi · 1{ai ≤ x}

where 1{ai ≤ x} is called indicator function:

1{ai ≤ x} =

{
1, if ai ≤ x,

0, otherwise.

It is easily seen that the cdf of a discrete random variable is not continuous. In fact, it is
piecewise continuous.

The expectation (mean) of a random variable is given by

EX =
∞∑
i=1

aipi

given that
∞∑
i=1

|ai|pi <∞.

More generally, suppose we have a function ϕ(x) : X → R, then the expectation of ϕ(X),
a new random variable, is

Eϕ(X) =
∞∑
i=1

ϕ(ai) · pi.

We say X is a continuous random variable if there exists a function fX(x) such that

FX(x) =

ˆ x

−∞
fX(t) dt.

The function fX(x) is called the probability density function (pdf). To get pdf from cdf,
we simply take the derivative of FX(x),

fX(x) =
d

dx
FX(x).

• Continuous random variables takes uncountably many values.

• The probability of X = a, i.e., P(X = a) = 0 since FX is continuous.

What does pdf mean?

lim
ε→0+

P(x− ε ≤ X ≤ x+ ε)

2ε
= lim

ε→0+

FX(x+ ε)− FX(x− ε)
2ε

= fX(x).

The mean of X is defined as

EX =

ˆ
R
xfX(x) dx.
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For a function ϕ(x) : X → R, we have

Eϕ(X) =

ˆ
R
ϕ(x)fX(x) dx.

The variance, as a measure of uncertainty, is

Var(X) = E(X − EX)2 = Eϕ(X), ϕ(x) = (x− EX)2.

We sometimes use another form

Var(X) = EX2 − (EX)2.

Here EX2 is referred as the second moment. The p-th moment is defined as

EXp =

ˆ
R
xp dFX =

{∑n
i=1 pia

p
i , discrete´

R x
pfX(x) dx, continuous

Independence: Independence is an important concept in probability. Two random
variables X and Y are independent if

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B), ∀A,B.

This is equivalent to

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y) = FX(x)FY (y), ∀x, y,

i.e., the joint cdf of (X, Y ) equals the product of its marginal distributions.

Suppose X and Y are independent, then f(X) and g(Y ) are also independent for two
functions f and g. As a result, we have

E f(X)g(Y ) = E f(X)E g(Y ).

Given a sequence of n random variables {Xi}ni=1, they are independent if

P(Xi ≤ xi, 1 ≤ i ≤ n) =
n∏
i=1

P(Xi ≤ xi).

If Xi is discrete or continuous, then the independence can be characterized by using pmf
and pdf:

fX1,··· ,Xn(x1, · · · , xn) =
n∏
i=1

fXi(xi).

The joint pdf/pmf is the product of individual pdf/pmf’s (marginal distribution).

In probability and statistics, we often study the sum of i.i.d. (independent identically
distributed) random variables

∑n
i=1Xi.

Exercise: Denote Zn =
∑n

i=1Xi as the sum of n i.i.d. random variables. Then EZn = nµ
and Var(Zn) = nσ2.

We will see more in the next few sections.
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1.2 Important distributions

1.2.1 Uniform distribution

If the pdf of a random variable X satisfies

fX(x) =
1

b− a
, a ≤ x ≤ b.

This is called the uniform distribution, denoted by Unif[a, b]. Its cdf is

FX(x) =


0, x ≤ a
x−a
b−a , a < x < b

1, x ≥ b.

Exercise: Show that EX = (a+ b)/2 and Var(X) = (b− a)2/12.

1.2.2 Normal distribution/Gaussian distribution

Normal distribution is the most important distribution in probability and statistics. It has
extremely rich structures and connections with other distributions. A random variable
X is Gaussian with mean µ and variable σ2, denoted by N (µ, σ2), if its pdf is

fX(x) =
1√
2πσ

e−(x−µ)2/2σ2

, x ∈ R.

In particular, if µ = 0 and σ = 1, we say X is standard Gaussian. One can verify

1√
2π

ˆ
R
e−x

2/2 dx = 1

by using the trick from multivariate calculus. Let’s verify EX = 0 and Var(X) = 1.

EX =
1√
2π

ˆ
R
xe−x

2/2 dx = 0

since xe−x
2/2 is an odd function. How about EX2?

EX2 =
1√
2π

ˆ
R
x2e−x

2/2 dx

= − 1√
2π

ˆ
R
x de−x

2/2

= − 1√
2π
xe−x

2/2
∣∣∣∞
−∞

+
1√
2π

ˆ
R
e−x

2/2 dx = 1.

Gaussian random variable is linearly invariant: suppose X ∼ N (µ, σ2), then aX + b is
still Gaussian with mean aµ+ b and variance a2σ2, i.e., N (aµ+ b, a2σ2)

E(aX + b) = aµ+ b, Var(aX + b) = Var(aX) = a2 Var(X) = a2σ2.

Moreover, suppose X ∼ N (µX , σ
2
X) and Y ∼ N (µY , σ

2
Y ) are two independent random

variables, then
X + Y ∼ N (µX + µY , σ

2
X + σ2

Y ).

This can be extended to the sum of n independent Gaussian random variables. For
example,

n∑
i=1

Xi ∼ N (0, n)

if Xi ∼ N (0, 1) are i.i.d. random variables.
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1.2.3 Moment-generating function (MGF)

Why does
∑n

i=1 Xi ∼ N (0, n) hold? The moment generating function is

M(t) := E etX .

Moment generating function is named after the following fact:

E etX = 1 + t EX +
t2 EX2

2!
+ · · ·+ tn EXn

n!
+ · · ·

The coefficients of tn corresponds to the nth moment of X. MGF does not always exist
since it requires all the moments exist for a given random variable. We can compute
moment of any order by differentiating mgf w.r.t. t and evaluating it at t = 0:

EXn =
dnM(t)

dtn

∣∣∣
t=0
.

Suppose two random variables have the same moment generating functions, they are of
the same distribution. MGF uniquely determines the distribution. For X ∼ N (µ, σ2), it
holds that

M(t) = E etX = eµt E et(X−µ)

=
eµt√
2πσ2

ˆ
R
etz−

z2

2σ2 dz

=
eµt√
2πσ2

ˆ
R
e−(z/σ−σt)2/2eσ

2t2/2 dz

= exp(µt+ σ2t2/2).

Now for a sequence of n i.i.d. Gaussian random variables,

E et
∑n
i=1Xi =

n∏
i=1

E etXi =
n∏
i=1

exp(µt+ σ2t2/2) = exp(nµt+ nσ2t2/2)

This expression equals the moment generating function of N (nµ, nσ2).

Exercise: Show that Xi ∼ N (µi, σ
2
i ), 1 ≤ i ≤ n is a sequence of n independent random

variables, then
n∑
i=1

Xi ∼ N

(
n∑
i=1

µi,
n∑
i=1

σ2
i

)
.

Exercise: Suppose we are able to generate uniform random samples, can we generate
normal random variables?

1.2.4 Chi-squared distribution

In statistics, chi-squared distribution is frequently used in hypothesis testing. We say
X ∼ χ2

n, i.e., chi-squared distribution of degree n, if

fX(x) =
1

2n/2Γ(n/2)
xn/2−1e−x/2, x > 0

where

Γ(z) =

ˆ ∞
0

xz−1e−x dx.
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In particular, if n is a positive integer, Γ(n) = (n− 1)! and Γ(1/2) =
√
π.

Chi-squared distribution is closely connected to normal distribution. Suppose Z ∼
N (0, 1). Now we take a look at X = Z2:

P(X ≤ x) = P(Z2 ≤ x) = P(−
√
x ≤ Z ≤

√
x)

= 2P(0 ≤ Z ≤
√
x)

=

√
2

π

ˆ √x
0

e−z
2/2 dz.

The pdf of X is obtained by differentiating the cdf,

fX(x) =

√
2

π
· 1

2
√
x
· e−x/2 =

1√
2π
x−1/2e−x/2, x > 0.

Now if {Zi}ni=1 is a sequence of n independent standard normal random variables, then

X =
n∑
i=1

Z2
i ∼ χ2

n.

Chi-squared distribution is a special family of Gamma distribution Γ(α, β).

fX(x;α, β) =
1

Γ(α)βα
xα−1e−x/β, x > 0.

If β = 2 and α = n/2, then Γ(n/2, 2) = χ2
n.

Exercise: Show that E etX = (1− βt)−α, for t < 1/β.

Exercise: Show that
∑n

i=1Xi ∼ Γ(
∑n

i=1 αi, β) if Xi ∼ Γ(αi, β) are independent.

1.2.5 Exponential distribution

Exponential distribution: X has an exponential distribution with parameter β, i.e., E(β)
if

f(x) = β−1e−x/β, x ≥ 0

where β > 0.

• The exponential distribution is used to model the waiting time of a certain event
(lifetimes of electronic components).

• The waiting time of a bus arriving at the station.

It is also a special case of Gamma distribution Γ(1, β). Exponential distribution satisfies
the so-called memoryless property:

P(X ≥ t+ s|X ≥ t) = P(X ≥ s), ∀s ≥ 0.

Recall that the left side involves conditional probability. For two events A and B, the
conditional probability of A given B is

P(A|B) =
P(A ∩B)

P(B)
.
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Here

P(X ≥ t+ s|X ≥ t) =
P(X ≥ t+ s,X ≥ t)

P(X ≥ t)
=

P(X ≥ t+ s)

P(X ≥ t)

since {X ≥ t+ s} is contained in {X ≥ t}

Exercise: Verify the memoryless properties and think about what does it mean?

Exercise: What is the distribution of
∑n

i=1 Xi if Xi ∼ E(β)?

Exercise: Verify EX = β and Var(X) = β2 for X ∼ E(β).

1.2.6 Bernoulli distributions

Let X represent the outcome of a binary coin flip. Then its pmf is

P(X = 1) = p, P(X = 0) = 1− p.

Sometimes, we also write the pmf in this way:

fX(x) = px(1− p)1−x, x ∈ {0, 1}.

The coin is fair if p = 1/2. The cdf is

FX(x) =


0, x < 0,

1− p, 0 ≤ x < 1,

1, x ≥ 1.

In this case, we denote X ∼Bernoulli(p). The mean and variance of X is simple to
obtain:

E(X) = 1 · P(X = 1) + 0 · P(X = 0) = p

and
Var(X) = EX2 − (EX)2 = EX − p2 = p(1− p).

1.2.7 Binomial distribution

Suppose we have a coin which falls heads up with probability p. Flip the coin n times
and X is the number of heads. Each outcome is supposed to be independent.

If X = k, then there must be k heads and n− k tails:

P(X = k) =

(
n

k

)
pk(1− p)n−k

where (
n

k

)
=

n!

k!(n− k)!

Then its pmf is

fX(k) =

(
n

k

)
pk(1− p)n−k, k ∈ {0, 1, · · · , n}.

In this case, we denote X ∼Binomial(n, p).

Exercise: Show
∑n

k=0

(
n
k

)
pk(1− p)n−k = 1.
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Binomial distribution is closely related to Bernoulli distribution. Suppose {Xi}ni=1 are
n i.i.d. Bernoulli(p) random variables, then X =

∑n
i=1 Xi ∼Binomial(n, p). In par-

ticular, if X ∼Binomial(n, p), Y ∼Binomial(m, p), and X is independent of Y , then
X + Y ∼Binomial(n+m, p).

Exercise: Use the idea of moment generating function to show that
∑n

i=1Xi ∼ Binomial(n, p)
if Xi ∼Bernoulli(p).

Exercise: What is the mean and variance of Binomial(n, p)?

Exercise: Use the mgf to obtain the mean and variance of Binomial(n, p).

1.2.8 Poisson distribution

Suppose we want to model the number of times an event occurs in an interval of time or
space, we would want to use Poisson distribution.

• The number of volcanic eruptions in Hawaii in one year

• The number of customers arriving at McDonald’s in the morning

Poisson distribution: A random variable satisfies Poisson distribution with parameter λ,
i.e., X ∼Poisson(λ) if

fX(k) =
e−λλk

k!
, k ∈ Z+

where λ > 0 is also referred to the intensity, the expected (average) number of occur-
rences.

Exercise: Verify e−λ
∑∞

k=0
λk

k!
= 1.

Exercise: E(X) = Var(X) = λ.

Poisson distribution can be derived from Binomial distribution. Suppose λ is the expected
number of occurrences within a period of time. We divide the time interval into n equal
sub-intervals. Each of them has an expected number of occurrences λ/n. Let’s consider
n as a large number. Now we assume the probability of one occurrence in an interval is
λ/n, which is a Bernoulli random variable with parameter λ/n. Then the total number
of occurrences is

n∑
i=1

Xi = Binomial(n, λ/n)

where Xi ∼Bernoulli(λ/n). In fact, we can show that
∑n

i=1Xi converges to Poisson(λ)
as n→∞.

Exercise: Show that for Xi ∼Bernoulli(λ/n),

lim
n→∞

P

(
n∑
i=1

Xi = k

)
=
e−λλk

k!

for any given k.

Exercise: Suppose we are able to generate uniform random samples, can we generate
Poisson random variables?
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1.3 Limiting theorem

1.3.1 Law of large number

Law of large numbers, along with central limit theorem (CLT), plays fundamental roles
in statistical inference and hypothesis testing.

Theorem 1.3.1 (Weak law of large number). Let Xi be a sequence of i.i.d. random
variables,

lim
n→∞

1

n

n∑
i=1

Xi
p−→ µ,

i.e., convergence in probability, where µ = EXi.

We say a sequence of random variables Xn converge to X in probability if for any given
ε > 0,

lim
n→∞

P(|Xn −X| ≥ ε) = 0.

Law of large number basically says that the sample average converges to the expected
value as the sample size grows to infinity.

We can prove the law of large number easily if assuming Xi has a finite second moment.
The proof relies on Chebyshev’s inequality.

Theorem 1.3.2 (Chebyshev’s inequality). For a random variable X with finite second
moment, then

P(|X − µ| ≥ ε) ≤ E |X − µ|2

ε2
=
σ2

ε2
.

Proof of WLLN. Consider Xn = n−1
∑n

i=1Xi. We aim to prove Xn converges to µ in
probability if Var(Xi) <∞. For ε > 0, it holds that

P(|Xn − µ| ≥ ε) ≤ 1

ε2
E |Xn − µ|2.

It suffices to compute the variance of Xn:

E |Xn − µ|2 = E

∣∣∣∣∣n−1

n∑
i=1

Xi − µ

∣∣∣∣∣
2

= n−2 E

[
n∑
i=1

(Xi − µ)

]2

= n−2 ·
n∑
i=1

E(Xi − µ)2

= n−2 · nσ2 =
σ2

n
.

As a result,

P(|Xn − µ| ≥ ε) ≤ σ2

nε2
→ 0, n→∞.

12



1.3.2 Central limit theorem

Theorem 1.3.3 (Central limit theorem). Let Xi, 1 ≤ i ≤ n be a sequence of i.i.d. random
variables with mean µ and finite variance σ2, then

Zn :=

∑n
i=1 Xi − nµ√

nσ2

d−→ N (0, 1),

i.e., convergence in distribution.

Sometimes, we also use

Zn =

√
n(Xn − µ)

σ
.

We say a sequence of random variable Zn converges to Z in distribution if

lim
n→∞

P(Zn ≤ z) = P(Z ≤ z)

for any z ∈ R. In other words, the cdf of Zn converges to that of Z pointwisely,

lim
n→∞

FXn(x) = FX(x).

What does it mean?

lim
n→∞

P(a ≤ Zn ≤ b) = P(a ≤ Z ≤ b) =
1√
2π

ˆ b

a

e−t
2/2 dt.

In statistics, one useful choice of a and b are

a = zα/2, b = z1−α/2.

Here zα is defined as the α-quantile of normal random variable, i.e.,

P(Z ≤ zα) =
1√
2π

ˆ zα

−∞
e−t

2/2 dt = α, 0 ≤ α ≤ 1

and by symmetry, we have
zα = −z1−α.

In particular,
z0.975 ≈ 1.96.

In other words, as n is sufficiently large, with probability approximately 1 − α, it holds
that

zα/2 ≤
√
n(Xn − µ)

σ
≤ z1−α/2 ⇐⇒ |Xn − µ| ≤

σz1−α/2√
n

, zα/2 = −z1−α/2

which implies that the “error” decays at the rate of 1/
√
n.

Theorem 1.3.4. Convergence in probability implies convergence in distribution.

Exercise: Show that EZn = 0 and Var(Zn) = 1.

The proof of CLT relies on the moment generating function. We can show that the MGF
of Zn converges to that of a standard normal. Here we provide a sketch of the proof.

13



Proof: The mgf of Zn is

E exp(tZn) = E exp

(
t√
nσ

n∑
i=1

(Xi − µ)

)
=

n∏
i=1

E exp

(
t√
nσ

(Xi − µ)

)
where the second equality uses independence of Xi.

For each i, we expand the mgf using Taylor approximation,

E exp

(
t√
nσ

(Xi − µ)

)
= 1 +

t√
nσ

E(Xi − µ) +
t2

2nσ2
· E(Xi − µ)2 + o(n−1)

= 1 +
t2

2n
+ o(n−1)

As a result,

lim
n→∞

E exp(tZn) = lim
n→∞

(
E exp

(
t√
nσ

(Xi − µ)

))n
= lim

n→∞

(
1 +

t2

2n
+ o(n−1)

)n
= exp(t2/2).

This is exactly the mgf of standard normal distribution.

Exercise: (Wasserman 5.14) What is the limiting distribution ofX
2

n ifXi
i.i.d.∼ Unif[0, 1]?

Exercise: Drawm samples from Bernoulli distribution (or exponential, Gamma, Poisson,
etc). Compute the normalized sum:

Ym =
√
n(Xn − µ)/σ.

Repeat M times and collect the data. Plot the histogram or the empirical cdf. Here the
empirical cdf is defined as

FY (y) =
1

M

M∑
j=1

1{Yi ≤ y}.

Does it look like that of standard normal distribution?
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Chapter 2

Introduction to statistics

2.1 Population

One core task of statistics is making inferences about an unknown parameter θ associated
to a population. What is a population? In statistics, a population is a set consisting of
the entire similar items we are interested in. For example, a population may refer to
all the college students in Shanghai or all the residents in Shanghai. The choice of the
population depends on the actual scientific problem.

Suppose we want to know the average height of all the college students in Shanghai or
want to know the age distribution of residents in Shanghai. What should we do? Usually,
a population is too large to deal with directly. Instead, we often draw samples from the
population and then use the samples to estimate a population parameter θ such as mean,
variance, median, or even the actual distribution.

This leads to several important questions in statistics:

• How to design a proper sampling procedure to collect data? Statistical/Experimental
design.

• How to use the data to estimate a particular population parameter?

• How to evaluate the quality of an estimator?

2.1.1 Important statistics

If we get a dataset, we usually compute the basic statistics to roughly describe the
dataset.

• Sample mean/average:

xn =
1

n

n∑
i=1

xi

• Variance:

S2
n =

1

n− 1

n∑
i=1

(xi − xn)2

15



• Standard deviation:

Sn =

√√√√ 1

n− 1

n∑
i=1

(xi − xn)2

• Median:
median(xi) = x[(n+1)/2]

where [(n + 1)/2] means the closest integer to (n + 1)/2. More generally, the α
quantile is x[α(n+1)].

• Range, max/min:
Range = max

1≤i≤n
xi − min

1≤i≤n
xi.

• Empirical cdf:

Fn(x) =
1

n

n∑
i=1

1{xi ≤ x}.

Exercise: Show that xn minimizes

f(z) =
n∑
i=1

(xi − z)2

Exercise: Show that median(xi) minimizes

f(z) =
n∑
i=1

|xi − z|

Is the global minimizer unique?

Notice that all the quantities above are based on samples {x1, · · · , xn}. These quantities
are called statistics.

Definition 2.1.1. A statistic is a deterministic function of samples,

y = T (x1, · · · , xn),

which is used to estimate the value of a population parameter θ.

Question: How to evaluate the quality of these estimators?

2.1.2 Probabilistic assumption

We assume the population has a probability distribution FX and each observed sample xi
is a realization of a random variable Xi obeying the population distribution FX . A set of
samples {x1, · · · , xn} are treated as one realization of a random sequence {X1, · · · , Xn}.
From now on, we assume that all the random variables Xi are i.i.d., independent identi-
cally distributed.

In other words, T (x1, . . . , xn) is one copy of a random variable

θ̂n = T (X1, · · · , Xn),

which is a point estimator of θ. We ask several questions:

• Does θ̂n well approximate the population parameter θ?

• How to evaluate the quality of the estimators?

16



2.2 Evaluation of estimators

There are several ways to evaluate the quality of point estimators.

Definition 2.2.1. The bias of θ̂n is

bias(θ̂n) = E θ̂n − θ.

We say θ̂n is an unbiased estimator of θ if the bias is zero.

Exercise: Show that Xn and S2
n are unbiased estimators of µ and σ2 respectively.

For S2
n, we know that

S2
n =

1

n− 1

n∑
i=1

(Xi −Xn)2

=
1

n− 1

n∑
i=1

(Xi − µ+ µ−Xn)2

=
1

n− 1

(
n∑
i=1

(Xi − µ)2 − n(Xn − µ)2

)

Now by taking the expectation of S2
n, we have

E(Xi − µ)2 = σ2, E(Xn − µ)2 = σ2/n.

As a result, it holds

ES2
n =

1

n− 1

(
nσ2 − σ2

)
= σ2.

However, bias is not usually a good measure of a statistic. It is likely that two unbiased
estimators of the same parameter are of different variance. For example, both T1 = X1

and T2 = Xn are both unbiased estimators of θ. However, the latter is definitely preferred
as it uses all the samples: the sample mean is consistent.

Definition 2.2.2. We say θ̂n is a consistent estimator of θ if θ̂n converges to θ in prob-
ability, i.e.,

lim
n→∞

P(|θ̂n − θ| ≥ ε) = 0

for any fixed ε > 0. The probability is taken w.r.t. the joint distribution of (X1, · · · , Xn).

The consistency of sample mean is guaranteed by the law of large number. How about
sample variance S2

n?

Let’s take a closer look at S2
n:

S2
n =

1

n− 1

(
n∑
i=1

X2
i − nX

2

n

)
.

We are interested in the limit of S2
n as n → ∞. First note that by law of large number,

we have
1

n

n∑
i=1

X2
i

p−→ EX2, Xn
p−→ EX.

Recall that variance of X equals EX2 − (EX)2. As a result, we can finish the proof if

X
2

n → µ2. Does it hold?
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Theorem 2.2.1 (Continuous mapping theorem). Suppose g is a continuous function and

Xn
p−→ X, then g(Xn)

p−→ g(X). This also applies to convergence in distribution.

Remark: this is also true for random vectors. Suppose Xn = (Xn1, · · · , Xnd) ∈ Rd is a

random vector and Xi
p−→X, i.e., for any ε > 0,

lim
n→∞

P(‖Xn −X‖ ≥ ε) = 0

where ‖Xn −X‖ denotes the Euclidean distance between Xn and X, then g(Xn)
p−→

g(X) for a continuous function g.

This justifies X
2

n

p−→ µ2. Now, we have

lim
n→∞

n

n− 1
·

(
n−1

n∑
i=1

X2
i −X

2

n

)
= EX2 − (EX)2 = σ2

convergence in probability.

Exercise: Complete the proof to show that S2
n and Sn are consistent estimators of σ2

and σ.

Another commonly-used quantity to evaluate the quality of estimator is MSE (mean-
squared-error).

Definition 2.2.3 (MSE: mean-squared-error). The mean squared error is defined as

MSE(θ̂n) = E(θ̂n − θ)2

where the expectation is taken w.r.t. the joint distribution of (X1, · · · , Xn).

Recall that the pdf/pmf for (X1, · · · , Xn) is

fX1,··· ,Xn(x1, · · · , xn) =
n∏
i=1

fXi(xi)

and the population parameter is associated to the actual distribution fX(x).

Note that by Chebyshev’s inequality, convergence in MSE implies convergence in proba-
bility:

P(|θ̂n − θ| ≥ ε) ≤ E(θ̂n − θ)2

ε2
.

The MSE is closely related to bias and variance of θ̂n. In fact, we have the following
famous bias-variance decomposition

MSE(θ̂n) = bias(θ̂n)2 + Var(θ̂n).

Proof: The proof is quite straightforward:

MSE(θ̂n) = E(θ̂n − θ)2

= E(θ̂n − µ+ µ− θ)2

= E(θ̂n − µ)2 + 2 E(θ̂n − µ)(µ− θ) + (µ− θ)2

= E(θ̂n − µ)2︸ ︷︷ ︸
Var(θ̂n)

+ (µ− θ)2︸ ︷︷ ︸
bias(θ̂n)2

where µ = E θ̂n and the second term equals 0.
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Lemma 2.2.2. Convergence in MSE implies convergence in probability.

The proof of this lemma directly follows from Chebyshev’s inequality.

2.3 Confidence interval

All the aforementioned measures of estimators such as sample mean, variance, etc, are
called point estimators. Can we provide an interval estimator for an unknown parameter?
In other words, we are interested in finding a range of plausible values which contain an
unknown parameter with reasonably large probability. This leads to the construction of
confidence interval.

What is a confidence interval of θ?

Definition 2.3.1. A 1−α confidence interval for a parameter θ is an interval Cn = (a, b)
where a = a(X1, · · · , Xn) and b = b(X1, · · · , Xn) are two statistics of the data such that

P(θ ∈ Cn) ≥ 1− α,

i.e., the interval (a, b) contains θ with probability 1− α.

Note that we cannot say the probability of θ falling inside (a, b) is 1 − α since Cn is
random while θ is a fixed value.

Question: How to construct a confidence interval?

Let’s take a look at a simple yet important example. In fact, CLT is very useful in
constructing a confidence interval for the mean.

We have shown that sample mean Xn is a consistent estimator of the population mean
µ. By CLT, we have √

n(Xn − µ)

σ
→ N (0, 1)

where σ is the standard deviation.

For a sufficiently large n, CLT implies that

P

(
|Xn − µ| ≤

z1−α/2σ√
n

)
≈ 1− α

where zα is the α-quantile of standard normal distribution.

Note that

|Xn − µ| ≤
z1−α/2σ√

n
⇐⇒ Xn −

z1−α/2σ√
n
≤ µ ≤ Xn +

z1−α/2σ√
n

In other words, if σ is known, the random interval(
Xn −

z1−α/2σ√
n

,Xn +
z1−α/2σ√

n

)
covers µ with probability approximately 1− α.

A few remarks:

• Suppose σ is known, then the confidence interval (CI) becomes small as the sample
size n increase! Smaller interval is preferred since it means less uncertainty.
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• As α decreases (1− α increases), z1−α/2 increases, making CI larger.

• Suppose we have the samples, the CI is(
xn −

z1−α/2σ√
n

, xn +
z1−α/2σ√

n

)
.

The meaning of CI is: suppose we repeat this experiments many times, the fre-
quency of this interval containing µ is close to 1− α.

Now, we focus on another question: what if σ is unknown? A simple remedy is: use
sample standard deviation Sn to replace σ and we have the following potential candidate
of CI: (

Xn −
z1−α/2Sn√

n
,Xn +

z1−α/2Sn√
n

)
Does it work? Does this interval cover µ with probability approximately 1 − α. This
question is equivalent to ask if

√
n(Xn − µ)

Sn

d−→ N (0, 1)

as n→∞.

This is indeed true, which is guaranteed by Slutsky’s theorem.

Theorem 2.3.1 (Slutsky’s theorem). Suppose

Xn
d−→ X, Yn

p−→ c

where c is a constant, then

XnYn
d−→ cX, Xn + Yn

d−→ X + c.

Exercise: Construct a counterexample. Suppose Xn
d−→ X, Yn

d−→ Y , then Xn + Yn
does not necessarily converge to X + Y in distribution.

Exercise: Show that if Xn
d−→ c, then Xn

p−→ c where c is a fixed value.

Exercise: Challenging! Prove Slutsky’s theorem.

Note that Sn
p−→ σ (Why?). By Slutsky’s theorem, we have

√
n(Xn − µ)

Sn
=

√
n(Xn − µ)

σ︸ ︷︷ ︸
d−→N (0,1)

· σ

Sn︸︷︷︸
p−→σ

d−→ N (0, 1).

The argument above justifies why
(
Xn −

z1−α/2Sn√
n

, Xn +
z1−α/2Sn√

n

)
is a 1 − α confidence

interval of µ.
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Chapter 3

Nonparametric inference

3.1 Cumulative distribution function

3.1.1 Estimation of CDF

Suppose we are interested in estimating the age distribution of residents in Shanghai
with n samples. How to perform this statistical estimation? Naturally, it suffices to
come up with an estimator of the cumulative distribution function FX(x) = P(X ≤ x).
Once we have a good estimator of the cdf, we can use it to estimate other population
parameters.

One common approach is to compute the empirical cdf. Let X1, · · · , Xn be i.i.d. samples
from FX . The empirical cdf Fn,X of FX is

Fn,X(x) =
1

n

n∑
i=1

1{Xi ≤ x}

where

1{Xi ≤ x} =

{
1, Xi ≤ x,

0, Xi > x.

Why Fn,X is a proper estimator of FX for any x?
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Figure 3.1: CDF v.s. empirical CDF for n = 100 and n = 500
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Figure 3.1, the empirical cdf gets closer to cdf as the number of data increases. In fact,
Fn,X(x) is a consistent estimator of FX(x). Why?

Proof: Note that {Xi}ni=1 are i.i.d. random variables. Therefore, 1{Xi ≤ x} are also
i.i.d. random variables.

Fn,X(x) =
1

n

n∑
i=1

1{Xi ≤ x}

is the sample mean of 1{Xi ≤ x}. By law of large number, it holds that

Fn,X(x)
p−→ E 1{Xi ≤ x}.

Since we have
E 1{Xi ≤ x} = P(Xi ≤ x) = FX(x),

Fn,X(x) is a consistent estimator of FX(x).

Exercise: Construct a 1− α confidence interval for FX(x). (See homework).

The consistency of Fn,X(x) is pointwise for any fixed x. As we have seen the Figure 3.1,
the convergence of Fn,X(x) to FX(x) seems uniform for any x. This is indeed true and
leads to the famous Glivenko-Cantelli theorem.

Theorem 3.1.1 (Glivenko-Cantelli theorem). For X1, · · · , Xn
i.i.d.∼ FX , then

sup
x
|F̂n,X(x)− FX(x)| p−→ 0

as n→∞.

In other words, the empirical cdf is a consistent estimator of the actual cdf.

3.1.2 Plug-in principle

One useful application regarding the consistency of empirical cdf is the plug-in principle,
which gives us a simple way to construct statistical estimators. Suppose we aim to
estimate a population parameter θ:

θ = E r(X) =

ˆ
R
r(x) dFX(x).

Examples of r(·) include

• Population mean: r(x) = x

• Higher moment: r(x) = xp

What would be a natural choice of estimator for θ? Simply replace FX(x) by Fn,X(x)!

θ̂n =

ˆ
R
r(x) dFn,X(x) =

1

n

n∑
i=1

r(Xi).

Here Fn,X(x) is not continuous everywhere since it jumps at Xi. One way to understand
this integral is to treat Fn,X(x) as the cdf of a discrete random variable which takes value

Xi with probability 1/n. By law of large number, θ̂n is a consistent estimator of θ if the
population parameter θ exists.

The plug-in principle can be also extended to more complicated scenarios.
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• α-quantile:
θ = F−1

X (α) := inf{x : FX(x) ≥ α}.
The plug-in estimator for α-quantile is

F−1
n,X(α) := inf{x : Fn,X(x) ≥ α}.

The empirical quantile is a consistent estimator of the population quantile. Why?

• Variance:

θ = EX2 − (EX)2 =

ˆ
R
x2 dFX(x)−

(ˆ
R
x dFX(x)

)2

Then the plug-in estimator for θ is

θ̂n =

ˆ
R
x2 dFn,X(x)−

(ˆ
R
x dFn,X(x)

)2

=
1

n

n∑
i=1

X2
i −

(
1

n

n∑
i=1

Xi

)2

.

• Covariance: if we have 2D samples, i.e., random vectors,

σXY = Cov(X, Y ) = EXY − EX EY.

What would be the plug-in estimator of σXY ? The only difference here is: we need
to use the 2D empirical cumulative distribution function.

Fn(x, y) =
1

n

n∑
i=1

1{Xi ≤ x, Yi ≤ y}

which is a natural estimator of the 2D cdf:

FX,Y (x, y) = P(X ≤ x, Y ≤ y).

Note that

σXY =

ˆ
R2
xy dF (x, y)−

ˆ
R
x dF (x, y)

ˆ
R
y dF (x, y).

and thus

σ̂XY,n =

ˆ
R2
xy dFn(x, y)−

ˆ
R
x dFn(x, y)

ˆ
R
y dFn(x, y)

=
1

n

n∑
i=1

XiYi −XnY n.

Exercise: Show that

1

n

n∑
i=1

XiYi −XnY n =
1

n

n∑
i=1

(Xi −Xn)(Yi − Y n).

Exercise: Is σ̂XY,n an unbiased estimator of σXY ? Why or why not?

Exercise: Show that Fn(x, y) is an unbiased/consistent estimator of FX,Y (x, y).

Exercise: Show that
lim
y→∞

Fn,XY (x, y) = Fn,X(x),

i.e., sending y to ∞ gives the marginal empirical distribution of X.

Exercise: Compute the mean and variance of Fn(x, y). What is the MSE(Fn)?
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3.2 Bootstrap

We have discussed how to evaluate the quality of an estimator θ̂n = T (X1, · · · , Xn) and
construct a confidence interval for a population parameter. From the previous discussion,
we may realize that the core problem in understanding θ̂n is deriving its distribution. Once
we know its distribution and connection to the population parameter θ, we can easily
evaluate the its quality and construct confidence interval.

However, it is usually not easy to characterize the distribution of an estimator. Suppose
we observe a set of samples X1, · · · , Xn ∼ FX . We want to estimate its mean, variance,
and median, as well as a 1 − α confidence interval for these population parameters.
What should we do? Our current toolbox is able to provide an interval estimation for µ;
however, it is less clear for variance and median.

Let’s start with providing estimators for µ, σ2, and median.

T (Fn) = Xn,

T (Fn) =
1

n− 1

n∑
i=1

(Xi −Xn)2,

T (Fn) = median(X1, · · · , Xn).

All these estimators are consistent, i.e., as n→∞

T (Fn)
p−→ T (F ) = θ.

Suppose we know the actual distribution of θ̂n = T (Fn), it will be much easier to find a
confidence interval for θ. Why? First we can find the α/2 and 1−α/2 quantiles, denoted

by a = qα/2 and b = q1−α/2, for θ̂n − θ, then

P(a ≤ θ̂n − θ ≤ b) ≥ 1− α.

Then a 1− α confidence interval of θ is(
θ̂n − q1−α/2, θ̂n − qα/2

)
However, we don’t know either the distribution of θ̂n or θ. What is the solution?

Bootstrap was invented by Bradley Efron in 1979. It is widely used in various applications
due to its simplicity and effectiveness. The idea of bootstrap is quite simple: we use the
empirical distribution to approximate the actual population distribution plus resampling.
Recall that

θ = T (F ), θ̂n = T (Fn).

How to find the distribution of θ̂n? Assume we have access to a random number generator
of FX . Then we can sample X1,k, · · · , Xn,k, and compute

θ̂n,k = T (X1,k, · · · , Xn,k), 1 ≤ k ≤ B.

Suppose we repeat this procedure many times (say B times), the distribution of θ̂n will

be well approximated by {θ̂n,k}Bk=1.

However, we still haven’t resolved the issue that FX is unknown. The solution is: we
replace FX by Fn,X , i.e., instead of sampling data from FX , we sample from Fn,X which

is known. Then use the obtained data to approximate the distribution of θ̂n. For the
unknown parameter θ, we simply approximate it by θ̂n.

Essentially, the idea is summarized as follows:
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• If we know θ and FX , to estimate the distribution of θ̂n = T (Fn), we sample

(X1, · · · , Xn) from FX and calculate θ̂ = T (Fn). Repeat it many times and the

obtained samples approximate the distribution of θ̂n.

• In reality, we only have one sample x1, · · · , xn without knowing the underlying
FX . Thus we approximate FX by Fn from x1, · · · , xn; use Fn to generate new data
points X∗1 , · · · , X∗n from Fn,X ; and get θ̂∗n = T (F ∗n) where F ∗n is the empirical cdf of

X∗1 , · · · , X∗n. Use the simulated data θ̂∗n to approximate the distribution of θ̂n.

Here we actually have a two-stage approximation:

• The approximation error due to Fn,X and FX may not be small.

• The approximation error due to the resampling is small if B is large; where B is
the number of copies of θ̂∗n.

Now we are ready to present the bootstrap method for the construction of confidence
interval.

• Step 1: Given the empirical cdf Fn,X (one realization):

Fn,X =
1

n

n∑
i=1

1{xi ≤ x}.

• Step 2: Generate n samples X∗1,k, · · · , X∗n,k from Fn,X and compute

θ̂∗n,k = T (X∗1,k, · · · , X∗n,k) = T (F ∗n,X,k), 1 ≤ k ≤ B,

where {X∗i,k}ni=1 are n independent samples from Fn,X(x) and they form the empir-
ical cdf F ∗n,X,k. Note that generating samples from Fn,X is equivalent to uniformly
picking data from {x1, · · · , xn} with replacement, i.e., it is the cdf of the following
random variable Z:

P(Z = xi) =
1

n
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• Step 3a (Basic bootstrap): Compute Rk = θ̂∗n,k − θ̂n, and find the α/2 and 1− α/2
empirical quantiles of {Rk}Bk=1, i.e., R(α) = θ̂∗n,k(α) − θ̂n. A (1 − α)-confidence
interval is given by

θ̂∗n,k

(α
2

)
− θ̂n ≤ θ̂n − θ ≤ θ̂∗n,k

(
1− α

2

)
− θ̂n

which equals

2θ̂n − θ̂∗n,k
(

1− α

2

)
≤ θ ≤ 2θ̂n − θ̂∗n,k

(α
2

)
In other words, we use the empirical quantile R(α) = θ̂∗n,k (α)− θ̂n as an α-quantile

estimator of the random variable θ̂n − θ.

• Step 3b (Percentile intervals): Another way is to use the empirical quantile of

{θ̂∗n,k}Bk=1, (
θ̂∗n,k

(α
2

)
, θ̂∗n,k

(
1− α

2

))
as a 1− α confidence interval for θ.

• Estimation of standard deviation:

σ̂2
∗ =

1

B − 1

B∑
k=1

(
θ̂∗n,k −

1

B

n∑
j=1

θ̂∗n,j

)2

Exercise: The empirical cdf Fn,X = n−1
∑n

i=1 1{xi ≤ x} defines a discrete random
variable Z with pmf:

P(Z = xi) =
1

n
.

Exercise: Show that drawing i.i.d. samples X∗1 , · · · , X∗n from Fn,X is equivalent to draw
n samples from {x1, · · · , xn} uniformly with replacement.

Exercise: Suppose x1, · · · , xn are observed i.i.d. data from FX . Assume that they are
distinct, i.e., xi 6= xj for all i 6= j. Compute the mean and variance for the random
variable X∗ with cdf Fn,X = n−1

∑n
i=1 1{xi ≤ x}.

Example: The number of traffic accidents in Berkeley, California, in 10 randomly chosen
non-rainy days in 1998 is as follows:

4, 0, 6, 5, 2, 1, 2, 0, 4, 3

Can we find a 95% confidence interval for the mean?

We know that
Xn = 2.7, S2

n = 4.2333.

We follow the bootstrap approach described above. Sampling n points from Fn

Yk = T (X∗1 , · · · , X∗n)

by repeating B times. This is equivalent to picking n samples from {X1, · · · , Xn} with
replacement. Here is the histogram of {Y ∗j }Bj=1 where B = 1000 :
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• The 95% CI via central limit theorem is (1.4247, 3.9753):(
Xn − 1.96

Sn√
n
,Xn + 1.96

Sn√
n

)
where n = 10.

• The 95% CI via Bootstrap methods is (1.5, 3.9)

Example: (Wasserman Example 8.6). Here is an example first used by Bradley Efron to
illustrate the bootstrap. The data consist of the LSAT scores and GPA, and one wants
to study the correlation between LSAT score and GPA.

The population correlation is

ρ =
E(X − µX)(Y − µY )√

E(X − µX)2
√

E(Y − µY )2

By using plug-in principle, we have a consistent estimator of ρ by using the empirical
correlation.

ρ̂ =

∑n
i=1(Xi −Xn)(Yi − Y n)√∑n

i=1(Xi −Xn)2

√∑n
i=1(Yi − Y n)2

Exercise: Show that ρ̂ is the plug-in estimator of ρ.

It is equal to

ρ̂ =
SXY
SXSY

.

where SXY is the sample covariance, and SX and SY are the sample standard deviations
of X and Y respectively.

SXY =
1

n− 1

n∑
i=1

(Xi −Xn)(Yi − Y n),

S2
X =

1

n− 1

n∑
i=1

(Xi −Xn)2,

S2
Y =

1

n− 1

n∑
i=1

(Yi − Y n)2.
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Figure 3.2: GPA v.s. LSAT

The scatterplot implies that higher LSAT score tends to give higher GPA. The empir-
ical correlation is ρ̂ = 0.776 which indicates high correlation between GPA and LSAT
scores.

How to obtain a 1 − α confidence interval for ρ? We apply bootstrap method to obtain
a confidence interval for ρ.

1. Independently sample (X∗i , Y
∗
i ), i = 1, 2, · · · , n, from {(Xi, Yi)}ni=1 uniformly with

replacement.

2. Let

ρ̂∗k =

∑n
i=1(X∗i −X

∗
n)(Yi − Y

∗
n)√∑n

i=1(X∗i −X
∗
n)2

√∑n
i=1(Y ∗i − Y

∗
n)2

be an estimator of correlation of the resampled data. Repeat Step 1 and 2 B = 1000
times and obtain {ρ̂∗k}Bk=1.

• The estimated variance of the correlation is

σ̂2
∗ =

1

B − 1

B∑
k=1

(ρ̂k − ρ̂
∗
B)2

where

ρ̂
∗
B =

1

B

B∑
k=1

ρ̂∗k.

• The CI can be obtained via computing the empirical quantile of {ρ̂∗k}Bk=1.

Let B = 1000 and we have the histogram in Figure 3.3. A 95% confidence interval for
the correlation (0.4646, 0.9592).

Exercise: Show that drawing n i.i.d. samples from the 2D empirical cdf Fn(x, y) =
n−1

∑n
i=1 1{Xi ≤ x, Yi ≤ y} is equivalent to sampling n points uniformly with replacement

from {Xi, Yi}ni=1.

In this note, we briefly introduce the bootstrap method and apply it to construct con-
fidence interval. However, we didn’t cover the theory for bootstrap. Under certain reg-
ularity condition, the CI from bootstrap covers the actual parameter θ with probability
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Figure 3.3: Histogram of {ρ̂∗k}Bk=1

approximately 1−α as n→∞. For more details, you may refer to [3, Chapter 8] and [1,
Chapter 6.5].
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Chapter 4

Parametric inference

We have discussed the estimation of some common population parameters such as mean,
variance, and median. You may have realized that we did not impose any assumption
on the underlying population distribution: the analysis hold for quite general distribu-
tions. However, in many applications, we have more information about the underlying
distribution, e.g., the population distribution may belong to a family of distributions
S = {fθ(x)|θ ∈ Θ} where Θ is the parameter space and fθ(x), also denoted by f(x; θ), is
the pdf or pmf. This is referred to as the parametric models. The population distribution
is uniquely determined by the hidden parameter θ. Of course, the validity of such an as-
sumption remains verified: one may need to check if the population is indeed consistent
with the assumed distribution. This is a separated important question which we will deal
with later.

Here are several examples of parametric models.

Normal data model:

S =

{
1√

2πσ2
e−

(x−µ)2

2σ2 : σ > 0, µ ∈ R

}
.

Poisson data model:

S =

{
f(x;λ) =

λxe−λ

x!
, x ∈ Z+

}
.

Gamma distribution:

S =

{
1

βαΓ(a)
xα−1e−x/β, x > 0 : θ ∈ Θ

}
, θ = (α, β), Θ = {(α, β) : α > 0, β > 0}.

We are interested in several questions:

• Given i.i.d. samples X1, · · · , Xn from f(x; θ), how to estimate θ?

• How to evaluate the quality of θ̂?

• Construct a 1− α confidence interval for θ?
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4.1 Method of moments (M.O.M)

Method of moments is a convenient way to construct point estimators with wide appli-
cations in statistics and econometrics. Given a set of i.i.d. samples X1, · · · , Xn from
f(x; θ), how to find a suitable θ such that the data X1, · · · , Xn well fit f(x; θ)? Suppose
two distributions are close, we would expect their mean, second moment/variance, and
higher moments to be similar. This is the key idea of the method of moments: moment
matching.

Suppose the distribution f(x; θ) depends on θ = (θ1, · · · , θk) ∈ Rk.

• First compute the jth moment of F (x; θ), i.e.,

αj(θ) = EXj, 1 ≤ j ≤ k.

• The jth moment can be estimated by sample moment

α̂j =
1

n

n∑
i=1

Xj
i

where α̂j converges to the population moment αj in probability provided the higher
order moment exists by the law of large number.

The method of moments estimator θ̂n is the solution to a set of equations:

αj(θ̂n) = α̂j, 1 ≤ j ≤ k.

In other words, the method of moments estimator matches sample moments. It is ob-
tained by solving these equations.

Question: How to choose k? We usually choose the smallest k such that θ̂n is uniquely
determined, i.e., the solution to αj(θ) = α̂j is unique. We prefer lower moments since
higher moment may not exist and also have a higher variance.

Example: Suppose X1, · · · , Xn be i.i.d. samples from Poisson(λ). Find the method of
moments estimators.

The first moment of Poisson(λ) is
EX = λ

Thus

λ̂ =
1

n

n∑
i=1

Xi.

It is a consistent estimator and converges to λ in mean squared error.

However, the method of moments estimator is not unique:

EX2
i = Var(Xi) + (EXi)

2 = λ2 + λ.

Now we can find the MOM estimator from

λ2 + λ =
1

n

n∑
i=1

X2
i .

Another choice is

λ̂ =
1

n

n∑
i=1

(Xi −Xn)2.

31



since λ = Var(Xi). How to compare these three estimators? Which one is the best?

Example: For X1, · · · , Xn ∼Poisson(λ), Xn and S2
n are both unbiased estimators of λ.

Which one has smaller MSE? What is the optimal MSE? You are encouraged to try but
the calculation can be long and involved.

Example: Suppose X1, · · · , Xn be i.i.d. samples from N (µ, σ2). Find the method of
moments estimators.

The means of first two moments are

α1(θ) = E(Xi) = µ

and
α2(θ) = E(Xi)

2 = Var(Xi) + (E(Xi))
2 = µ2 + σ2.

Matching the quantities above with the sample moments gives

µ =
1

n

n∑
i=1

Xi = Xn, µ2 + σ2 =
1

n

n∑
i=1

X2
i .

Solving for µ and σ2 gives

µ̂ = Xn, σ̂2 =
1

n

n∑
i=1

X2
i −X

2

n =
1

n

n∑
i=1

(Xi −Xn)2.

The estimator of σ2 is biased but consistent.

Exercise: Find the method of moments estimator for Gamma(α, β).

Exercise: (Challenging if you are unfamiliar with multivariate probability) Find the
method of moments estimator for bivariate Gaussian distribution. We say (Xi, Yi) satisfies
a bivariate Gaussian distribution with parameters (µX , µY , σ

2
X , σ

2
Y , ρ) if

fX,Y (x, y) =
1

2π
√

det(Σ)
exp(−1

2
[x− µX , y − µY ]Σ−1[x− µX , y − µY ]>)

where −1 ≤ ρ ≤ 1 is the correlation between X and Y , and

Σ =

[
σ2
X ρσXσY

ρσXσY σ2
Y

]
.

Here µX and µY are the mean of X and Y respectively; σ2
X and µ2

Y are the variance of
X and Y respectively;

ρ =
Cov(X, Y )

σXσY
, Cov(X, Y ) = EXY − EX EY.

You may try it now and we will focus more on multivariate Gaussian distributions.

Previous examples suggest that the method of moments is easy to use and also satisfies
many useful properties. Is there any drawback for MOM? Yes, it has several weaknesses.
First, some distributions do not have moments. For example, if X1, · · · , Xn satisfy the
shifted Cauchy distribution:

fX(x, θ) =
1

π

1

1 + (x− θ)2
, x ∈ R.
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Method of moment does not exist as E(X) =∞. It is also possible that the first moment
exist while the second moment does not.

Secondly, the MOM estimators may not satisfy some natural constraints of the population
distribution. Here is one such example.

Example: Suppose we have a sample X1, · · · , Xn ∼ Binomial(n, p) where n and p are
unknown. Find the method of moment estimator for n and p.

First we compute the expectation and second moment.

E(X) = np, E(X2) = Var(X) + (E(X))2 = np(1− p) + n2p2.

We approximate the mean and second moment via its empirical mean and second mo-
ment:

np = Xn, np(1− p) + n2p2 =
1

n

n∑
i=1

X2
i .

Solving for n and p:

n̂ =
X

2

n

Xn − n−1
∑n

i=1(Xi −Xn)2
, p̂ = 1−

∑n
i=1(Xi −Xn)2

nXn

The estimation of n is not necessarily an integer, even negative if the rescaled empirical
variance is larger than the empirical for a small sample.

4.2 Consistency and asymptotic normality of MM

estimators

How about the quality of MOM estimators in general? We will discuss two important
properties of MOM estimators under mild conditions.

• Consistency: θ̂n
p−→ θ. As the sample size increases to infinity, θ̂n converges to θ in

probability.

• Asymptotic normality: √
n(θ̂n − θ)

d−→ N (0, σ2)

for some variance σ2. Asymptotic normality makes the construction of confidence
interval possible.

Let’s start with consistency. Remember that

αj(θ) = EXj

form a set of functions w.r.t. variable θ. It is essentially a vector-valued function

h(θ) =

α1(θ)
...

αk(θ)

 ∈ Rk.

Suppose h(θ) is a one-to-one function, then h(θ) is invertible, i.e., given α̂ = (α̂1, · · · , α̂k)> ∈
Rk,

θ̂n = h−1(α̂)
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is uniquely determined. However, it could be tricky to determine if a function is one-to-
one. For a single variable function, h(θ) is one-to-one if it is strictly increasing/decreasing.

Moreover, if h(θ) and h−1(α) are also continuous at θ and α respectively, then by con-
tinuous mapping theorem, it holds

θ̂n = h−1(α̂)
p−→ h−1(α) = θ.

since the law of large number guarantees

α̂j =
1

n

n∑
i=1

Xj
i

p−→ αj = EXj.

Theorem 4.2.1 (Consistency). Suppose h(θ) is one-to-one with its inverse function h−1

continuous at α, then θ̂ = h−1(α̂) is a consistent estimator of θ provided that the corre-
sponding moments exist.

Question: Can we construct a confidence interval for θ? Yes, under certain mild condi-
tions. Let’s consider a simple case: the single variable case, and the analysis can be easily
extended to multivariate case which will involve multivariate Gaussian distribution and
CLT.

For θ ∈ R, we have
h(θ) = EX.

Suppose h(θ) is one-to-one, then the inverse function exists. The MOM estimator satis-
fies:

h(θ̂n) = Xn.

In other words,
h(θ̂n)− h(θ) = Xn − EX.

Recall that θ̂n is a consistent estimator of θ, then θ̂n is quite close to θ for large n and by
linearization, we have

h′(θ)(θ̂n − θ) +R(θ̂n)(θ̂n − θ) = Xn − EX

for some function R(x) which goes to zero as x→ θ. This is the Taylor’s theorem with a
remainder. Suppose h′(θ) 6= 0 holds, then we have the following approximation:

θ̂n − θ ≈
1

h′(θ)

(
Xn − EX

)
Now we can see that

√
n(θ̂n − θ)

d−→ N
(

0,
σ2

[h′(θ)]2

)
.

When constructing a confidence interval, we can use plug-in principle to estimate σ2 and
h′(θ) by S2

n and h′(θ̂n) respectively.

By Slutsky’s theorem, we have

√
nh′(θ̂n)(θ̂n − θ)

Sn

d−→ N (0, 1) .
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A 1− α confidence interval for θ is∣∣∣θ − θ̂n∣∣∣ < z1−α/2Sn
√
n|h′(θ̂n)|

.

Example: Suppose X1, · · · , Xn are samples from Geometric distribution with parameter
p:

P(Xi = k) = (1− p)k−1p, k ∈ Z+.

The MOM estimator is given by

p̂ = 1/Xn, EX = 1/p.

Can we derive a confidence interval for p? Let h(p) = p−1 and then h′(p) = −p−2. Thus
a 1− α CI for p is

|p− p̂| <
z1−α/2Sn
√
nh′(θ̂n)

=⇒ |p−X−1

n | <
z1−α/2Sn√

n
·X2

n.

4.2.1 Generalized method of moments

We have seen that one issue of method of moments is the nonexistence of moments. Let’s
consider a simple scenario: it is possible that E

√
|X| < ∞ while E |X| does not exist.

More generally, what if we know Eθ r(X) exists where X ∼ f(x; θ)? Can we extend the
idea of method of moments to these general scenarios? The answer is yes. Assume

αr(θ) = Eθ r(X) =

ˆ
R
r(x)f(x; θ) dx

exists for some function r(·). Then we perform “moment matching” by solving θ̂n
from

αr(θ) =
1

n

n∑
i=1

r(Xi).

Intuitively, this approach also would work if αr(·) is one-to-one. This idea is actually
called generalized method of moments. We can derive similar results for GMM by using
the tools we have just covered.

4.3 Maximum likelihood estimation

Maximum likelihood estimation (MLE) is the most popular technique in statistical infer-
ence. Suppose we observe a set of data x1, · · · , xn ∼ f(x; θ). The idea of MLE is quite
simple: we aim to find the θ such that the corresponding population distribution is most
likely to generate the observed data. How to quantify the likelihood? Recall that the
value of pdf/pmf f(x; θ) at x indicates the probability of the random variable X taking
value around x. This leads to the definition of likelihood function.

Definition 4.3.1 (Likelihood function). If X1, · · · , Xn are i.i.d. samples from their joint
pdf/pmf f(x; θ), the likelihood function is defined by

L(θ|Xi = xi, 1 ≤ i ≤ n) =
n∏
i=1

f(xi; θ).
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Here we have a few remarks. Firstly, the likelihood function is just the joint density/pmf
of the data, except that we treat it as a function of the parameter θ. Similarly, we can
define the likelihood function for non i.i.d. samples. Suppose X1, · · · , Xn are samples
from a joint distribution fX1,··· ,Xn(x|θ), then

L(θ|Xi = xi, 1 ≤ i ≤ n) = fX1,··· ,Xn(x; θ).

The likelihood function for non-i.i.d. data will be very useful in linear regression. We will
also briefly discuss an interesting example from matrix spike model later in this lecture.
Another thing to bear in mind is: in general, L(θ|x) is not a density function of θ even
though it looks like a conditional pdf of θ given x.

Now it is natural to ask: what is maximum likelihood estimation? As the name has
suggested, it means the maximizer of L(θ|x).

Definition 4.3.2 (Maximum likelihood estimation). The maximum likelihood estimator

MLE denoted by θ̂n is the value of θ which maximizes L(θ|x), i.e.,

θ̂n = argmaxθ∈ΘL(θ|x).

This matches our original idea: we want to find a parameter such that the corresponding
population distribution is most likely to produce the observed samples {x1, · · · , xn}.
In practice, we often maximize log-likelihood function instead of likelihood function.
Log-likelihood function `(θ|x) := logL(θ|x) is defined as the logarithm of likelihood
L(θ|x).

There are two reasons to consider log-likelihood function:

• The log-transform will not change the maximizer since natural logarithm is a strictly
increasing function.

• The log-transform enjoys the following property:

`(θ|x) = log
n∏
i=1

fXi(xi; θ) =
n∑
i=1

log fXi(xi; θ)

where Xi are independent with the pdf/pmf fXi(·; θ). This simple equation usually
makes the calculation and analysis much easier.

Example: Suppose that x1, · · · , xn ∼ Bernoulli(p). The pmf is

f(x; p) = px(1− p)1−x

where x ∈ {0, 1}.

First let’s write down the likelihood function. Note that xi is an independent copy of
Bernoulli(p); their distribution equals the product of their marginal distributions.

L(p|x) :=
n∏
i=1

pxi(1− p)1−xi = p
∑
i xi(1− p)n−

∑
i xi

= pnxn(1− p)n(1−xn)

where xn = n−1
∑n

i=1 xi. Next we take the logarithm of L(p) (Here we omit x if there is
no confusion) and we have

`(p) = nxn log(p) + n

(
1−

n∑
i=1

xi

)
log(1− p).
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How to maximize it? We can differentiate it, find the critical point, and use tests to see if
the solution is a global maximizer. We differentiate `n(p) w.r.t. p and obtain the critical
point:

d`(p)

dp
=
nxn
p
− n(1− xn)

1− p
= 0 =⇒ p̂ = xn

Is p̂ a global maximizer?

d2`(p)

dp2
= −nxn

p2
− n(1− xn)

(1− p)2
< 0.

This implies that the likelihood function is concave. All the local maximizers of a concave
function are global. Therefore, p̂ = xn is the MLE. If we treat each xi as a realization of
Xi, then the statistic

p̂ = Xn

is a consistent estimator of p and enjoys asymptotic normality
√
n(p̂− p) d−→ N (0, 1) by

CLT. From now on, we replace xi by Xi since xi is a realization of Xi.
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Figure 4.1: Plot of `(p) with n = 100 and
∑n

i=1 xi = 75.

Example: Suppose X1, · · · , Xn are sampled from N (µ, σ2) where µ and σ2 > 0 are
unknown. What is the MLE of (µ, σ2)?

L(µ, σ2|X1, · · · , Xn) =
n∏
i=1

1√
2πσ2

exp

(
−(Xi − µ)2

2σ2

)

=
1

(2πσ2)n/2
exp

(
−

n∑
i=1

(Xi − µ)2

2σ2

)
.

Taking the logarithm of the likelihood function leads to

`(µ, σ2) = −n
2

log σ2 − 1

2σ2

n∑
i=1

(Xi − µ)2 + C

where C contains no information about µ and σ2. Taking the partial derivative w.r.t. µ
and σ2 (we treat σ2 as a variable) gives

∂`

∂µ
= − 1

σ2

n∑
i=1

(µ−Xi) = 0

∂`

∂σ2
= − n

2σ2
+

1

2σ4

n∑
i=1

(Xi − µ)2 = 0

37



Solving for µ and σ2:

µ̂ = Xn, σ̂2 =
1

n

n∑
i=1

(Xi −Xn)2 =
n− 1

n
S2
n.

Are they the global maximizers of `(µ, σ2)?

Exercise: Show that
(
Xn,

n−1
n
S2
n

)
is the global maximizer to `(µ, σ2).

Exercise: Show that (n − 1)S2
n/σ

2 ∼ χ2
n−1 if Xi ∼ N (µ, σ2). (This may be challenging

now. We will discuss this later. But it would be nice to think about it now.)

Exercise: Show that Xn and S2
n are independent. (Same comments as the previous

exercise).

To show the global optimality could be slightly trickier. However, we can quickly verify
its local optimality by checking it Hessian matrix.

∂2`

∂µ2
= − n

σ2
,

∂2`

∂µ∂σ2
=

1

σ4

n∑
i=1

(µ−Xi),

∂2`

∂(σ2)2
=

n

2σ4
− 1

σ6

n∑
i=1

(Xi − µ)2.

Let’s evaluate the Hessian at (µ̂, σ̂2):

∂2`

∂µ2
= − n

σ̂2
,

∂2`

∂µ∂σ2
= 0

∂2`

∂(σ2)2
=

n

2σ̂4
− 1

σ̂6

n∑
i=1

(Xi − µ̂)2

=
n

2σ̂4
− n

σ̂4
= − n

2σ̂4
.

Thus the Hessian matrix is

∇2`(µ̂, σ̂2) = −
[
n
σ̂2 0
0 n

2σ̂4

]
.

It is negative definite which is equivalent to the statement that all of its eigenvalues
are negative. As a result, (µ̂, σ̂2) is a local maximizer. The Hessian of log-likelihood
function plays an important role in statistics, which is also called Fisher information
matrix. Obviously, the MLE is a consistent estimator of (µ, σ2).

Example: Let X1, · · · , Xn ∼ Unif(0, θ) where θ is unknown. Recall that

f(x; θ) =

{
θ−1, if 0 ≤ x ≤ θ,

0, otherwise.

First let’s write down Ln(θ|X) :

L(θ) =
n∏
i=1

f(Xi; θ) =
1

θn

n∏
i=1

1{Xi ≤ θ} =
1

θn
1

{
max
1≤i≤n

Xi ≤ θ

}
.
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Note Ln(θ) is zero if max1≤i≤nXi > θ and is decreasing as θ increases. Therefore, the
MLE is max1≤i≤nXi.

Exercise: Is θ̂ = max1≤i≤nXi a consistent and unbiased estimator of θ?

Exercise: Does θ̂ = max1≤i≤nXi enjoy asymptotic normality? Or ask what is the distri-

bution of θ̂? We actually have derived the distribution in one homework problem.

All the examples we have seen have an MLE of closed form. However, it is often that we
don’t have an explicit formula for the MLE. Here is one such example.

Example: Consider

f(x;α, β) =
1

Γ(α)βα
xα−1e−x/β, x > 0.

How to find out the MLE?

L(α, β|Xi, 1 ≤ i ≤ n) =
1

Γ(α)nβnα

(
n∏
i=1

Xi

)α−1

exp(−
n∑
i=1

Xi/β), x > 0.

After taking the log, it holds

`(α, β) = −n log Γ(α)− nα log β + (α− 1) log

(
n∏
i=1

Xi

)
− β−1nXn.

Maximizing the log-likelihood function over α is quite tricky as it will involve the deriva-
tive of Gamma function. On the other hand, it is quite simple to derive the method of
moments estimator for Gamma(α, β).

Here is another very interesting but challenging problem related to the matrix spike
model, a famous model in high dimensional statistics. Feel free to try it.

Challenging Exercise: Suppose we observe the data

Yij = θiθj + σWij,

where {Wij}i≤j are independent Gaussian random variables and satisfy

Wij =

{
N (0, 1), i 6= j,

N (0, 2), i = j.

and Wij = Wji. Here θ = (θ1, · · · , θn)> ∈ Rn is the hidden parameter to be estimated and
‖θ‖ = 1. Write down the log-likelihood function and show that the MLE of θ is the top
eigenvector of Y . (Note that Yij are independent but not identically distributed.)

In fact, finding the MLE in some statistical models is quite challenging and may even be
NP-hard.

• Optimization tools are needed to maximize

max
θ∈Θ

`n(θ).

Algorithms include gradient descent, Newton’s method, EM algorithm (expectation-
maximization), etc...

• Does the likelihood function always have unique maximizer? In fact, this is not
the case. The likelihood from some examples exhibit complicated landscape (loca-
tion/number of local optima) which is an active research field.
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4.4 Properties of MLE

We have discussed that MOM estimators satisfy consistency and asymptotic normality
property under certain mild conditions. Does these two important properties also hold
for MLE?

4.4.1 Consistency

First let’s recall some examples:

1. For Xi ∼Bernoulli(p), the MLE is p̂ = Xn. By LLN, p̂ is a consistent estimator of
p.

2. For Xi ∼Unif[0, θ], the MLE is θ̂n = maxXi ≤ θ. We have calculated the distribu-

tion of θ̂n
P(θ̂n ≤ x) = θ−nxn, 0 ≤ x ≤ θ.

Now P(|θ − θ̂n| ≥ ε) = P(θ̂n ≤ θ − ε) = (1− θ−1ε)
n → 0 as n goes to infinity.

Therefore, θ̂n is a consistent estimator of θ in the two examples described above. Can we
extend it to more general scenarios?

Theorem 4.4.1 (Consistency). Under certain regularity condition, the MLE is consis-
tent, i.e.,

lim
n→∞

P(|θ̂n − θ| ≥ ε) = 0

where θ is the population parameter.

These regularity conditions include:

• The pdf/pmf satisfies f(x; θ1) = f(x; θ2) iff θ1 = θ2. In other words, we ensure the
parameters determine the distribution uniquely.

• Eθ0 log f(X; θ) <∞ for the true population parameter θ0.

An informal proof. Suppose X1, · · · , Xn ∼ f(x; θ0) where θ0 is the true parameter.

`(θ) = log
n∏
i=1

f(Xi; θ) =
n∑
i=1

log f(Xi; θ).

Each log f(Xi; θ) is an independent copy of the random variable f(X; θ). By the law of
large number, it holds that

1

n
`(θ)

p−→ Eθ0 log f(X; θ)

as n→∞ where

Eθ0 log f(X; θ) =

ˆ
X

(log f(x; θ))f(x; θ0) dx.

On the other hand, we can show that

θ0 = argmaxθ Eθ0 log f(X; θ)

Why? Note that log t ≤ t− 1 for t > 0.

Eθ0 (log f(X; θ)− log f(X; θ0)) = Eθ0 log
f(X; θ)

f(X; θ0)
≤ Eθ0

(
f(X; θ)

f(X; θ0)
− 1

)
= 0
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since

Eθ0

(
f(X; θ)

f(X; θ0)
− 1

)
=

ˆ
X

(f(x; θ)− f(x; θ0)) dx = 1− 1 = 0.

Now we summarize:

• θ̂n is the MLE, i.e., the global maximizer of `(θ);

• θ0 is the unique maximizer of Eθ0 log f(X; θ) due to identifiability;

• For any θ, n−1`(θ) converges to its expectation Eθ0 log f(X; θ).

Since `(θ) and Eθ0 log f(X; θ) are getting closer, their points of maximum should also get
closer.

The proof is not completely rigorous: in order to make the argument solid, we actually
would ask the uniform convergence of n−1`(θ) to Eθ0 log f(X; θ).

4.4.2 Asymptotic normality

Like method of moments estimator, MLE also enjoys asymptotic normality, provided
that certain regularity conditions holds. However, not every MLE enjoys asymptotic
normality.

In order to discuss asymptotic distribution of θ̂n, we will introduce a very useful quantity
called Fisher information. The Fisher information of a random variable X ∼ f(x; θ) is
given by

I(θ) = −Eθ

(
d2

dθ2
log f(X; θ)

)
.

This is essentially the negative second derivative of log-likelihood function (n = 1) in
expectation.

Exercise: Show that

I(θ) = −Eθ

(
d2 log f(X; θ)

dθ2

)
= Eθ

(
d log f(X; θ)

dθ

)2

.

(Hint: Suppose differentiation and integration can be exchanged. We haveˆ
X

df(x; θ)

dθ
dx = 0,

ˆ
X

d2f(x; θ)

dθ2
dx = 0,

since
´
X f(x; θ) dx = 1.)

Exercise: Find the Fisher information I(µ, σ2) for N (µ, σ2).

In particular, for a sample of n i.i.d. data points X1, · · · , Xn, their Fisher information
is

In(θ) = −Eθ `
′′(θ)

where

`(θ) =
n∑
i=1

log f(Xi; θ).

Apparently, if {Xi}di=1 are i.i.d., then

In(θ) = −E
n∑
i=1

d2

dθ2
log f(Xi; θ) = nI(θ)

provided that the differentiation and expectation are exchangeable.
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Theorem 4.4.2. Suppose θ̂n is the MLE, i.e., the global maximizer of `(θ). Then

θ̂n − θ0
d−→ N (0, In(θ0)−1)

where θ0 is the true parameter provided that `(θ) has a continuous second derivative in a
neighborhood around θ0 and In(θ) = nI(θ) is continuous at θ0.

Once we have the asymptotic normality of MLE, we can use it to construct a (1 − α)

confidence interval. Since θ̂n is a consistent estimator of θ0, Slutsky theorem implies
that √

n(θ̂n − θ0)√[
I(θ̂n)

]−1

d−→ N (0, 1)

since I(θ̂n)
p−→ I(θ0) if I(θ) is continuous at θ0. Note that In(θ̂n) = nI(θ̂n). Therefore,

this asymptotic distribution can also be written into√
In(θ̂n) · (θ̂n − θ)

d−→ N (0, 1) or θ̂n − θ
d−→ N (0, In(θ̂n)−1).

A 1− α confidence interval could be

|θ̂n − θ| ≤
z1−α/2√
nI(θ̂n)

, or |θ̂n − θ| ≤
z1−α/2√
In(θ̂n)

.

Example: Let X1, · · · , Xn ∼Bernoulli(p). Its pmf is f(x; p) = px(1−p)1−x, x ∈ {0, 1}.
Then

log f(x; p) = x log p+ (1− x) log(1− p).

The first and second derivative are

d log f(x; p)

dp
=
x

p
− 1− x

1− p
,

d2 log f(x; p)

dp2
= − x

p2
− 1− x

(1− p)2

I(p) = −E
d2 log f(X; p)

dp2
=

p

p2
+

1− p
(1− p)2

=
1

p(1− p)
.

Therefore, we have √
n(p̂n − p) ∼ N (0, p(1− p)).

This matches the result obtained from CLT.

Exercise: Let X1, · · · , Xn ∼Poisson(λ). First find the MLE of λ. Calculate the Fisher
information I(λ) and construct a 1− α confidence interval for λ.

Example: Let X1, · · · , Xn ∼Unif[0, θ]. We know that the MLE of θ is θ̂ = maxXi. The

cdf of θ̂n is

Pθ
(
θ̂n ≤ x

)
=
xn

θn
, 0 ≤ x ≤ θ.

Now we can see that the distribution of
√
n(θ̂n− θ) does not satisfy normal distribution.

The likelihood function L(θ) is discontinuous at θ̂n and takes value 0 if θ > θ̂n.
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Proof of asymptotic normality. By Taylor theorem, it holds that

`′(θ̂n) = `′(θ0) + `′′(θ0)(θ0 − θ̂n) + o(|θ̂n − θ0|).

Here o(|θ0 − θ̂n|) means this term has a smaller order than |θ0 − θ̂n|.

Note that `′(θ̂n) = 0 since θ̂n is the maximizer. We have

−`′(θ0) = `′′(θ0)(θ̂n − θ0) + o(|θ̂n − θ0|) =⇒ θ̂n − θ0 ≈ −
`′(θ0)

`′′(θ0)

which implies
√
n(θ̂n − θ0) = −

1√
n
`′(θ0)

1
n
`′′(θ0)

+ small error.

We will see why we need these terms containing n immediately.

Note that
Eθ0 `

′(θ0) = 0

since θ0 is global maximizer to Eθ0 log f(X; θ). By CLT, we have

1√
n
`′(θ0) =

1√
n

n∑
i=1

d

dθ
log f(Xi; θ)

∣∣∣
θ=θ0

d−→ N

(
0,E

(
d

dθ
log f(Xi; θ)

)2 ∣∣∣
θ=θ0

)
= N (0, I(θ0))

where each d
dθ

log f(Xi; θ) is an i.i.d. random variable. On the other hand, by law of large
number,

1

n
`′′(θ0)

p−→ E
d2

dθ2
log f(X; θ0) = −I(θ0).

in probability. Therefore, we have
√
n(θ̂n − θ0) converges in distribution:

√
n(θ̂n − θ0) = −

1√
n
`′(θ0)

1
n
`′′(θ0)

d→ N (0, I(θ0)−1)

which follows from Slutsky’s theorem.

4.4.3 Equivariance of MLE

Proposition 4.4.3. If θ̂ is the MLE of θ, then g(θ̂) is the MLE of g(θ).

Proof: Let τ = g(θ) and θ̂ be the MLE of L(θ|x). We prove the simplest case where g
is one-to-one. Define

L∗(τ |x) := L(g−1(τ)|x) ≤ L(θ̂|x)

We call L∗(τ |x) the induced likelihood. It is easy to see that τ̂ = g(θ̂) attains the
maximum of L∗(τ |x):

L∗(τ̂ |x) = L(g−1(τ̂)|x) = L(θ̂|x).

Thus τ̂ = g(θ̂) is the MLE of τ = g(θ).

For the non-one-to-one scenario, we define

L∗(τ |x) := sup
{θ:g(θ)=τ}

L(θ|x).
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It is the induced likelihood function of τ . This definition does not depend on whether
g is one-to-one or not. Since θ̂ is the MLE of L(θ|x), L∗(τ |x) ≤ L(θ̂|x). On the other
hand,

L∗(τ̂ |x) = sup
{θ:g(θ)=τ̂}

L(θ|x) ≥ L(θ̂|x).

Thus τ̂ is the MLE of g(θ).

Example: Suppose X1, · · · , Xn ∼ N (µ, σ2) and the MLE of σ2 is

σ̂2 =
1

n

n∑
i=1

(Xi −Xn)2.

By equivariance, the MLE of σ is

σ̂ =

√√√√ 1

n

n∑
i=1

(Xi −Xn)2.

4.5 Delta method

Remember we know that τ̂ = g(θ̂n) is the MLE of τ = g(θ).

• Does τ̂ converge to τ?

• How to construct an approximate confidence interval for τ?

If g(·) is continuous at θ, then by continuous mapping theorem, it holds that

g(θ̂n)
p−→ g(θ).

Regarding the construction of confidence interval for τ , we need to know the asymptotic
distribution of g(θ̂n).

Theorem 4.5.1 (Delta method). Suppose a sequence of random variables θ̂n satisfies

that
√
n(θ̂n − θ) converges to N (0, σ2) in distribution. For a given function g(x) such

that g′(θ) exists and is nonzero, then

√
n(g(θ̂n)− g(θ))

d−→ N (0, [g′(θ)]2σ2).

Proof: By Taylor’s theorem, it holds that

g(θ̂n)− g(θ) = g′(θ)(θ̂n − θ) +R(θ̂n)(θ̂n − θ)
= (g′(θ) +R(θ̂n))(θ̂n − θ)

where R(θ̂n) is the remainder and goes to zero as θ̂n
p−→ θ. Note that θ̂n converges to θ

in probability and thus R vanishes as n approaches ∞. Therefore,

√
n(g(θ̂n)− g(θ)) = (g′(θ) +R(θ̂n)) ·

√
n(θ̂n − θ)

As n→∞, the Slutsky’s theorem implies that

√
n(g(θ̂n)− g(θ))

d−→ N (0, [g′(θ)]2σ2)

since
√
n(θ̂n − θ)

d−→ N (0, σ2) and R(θ̂n)
p−→ 0.
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Exercise: Show that
√
n(θ̂n− θ)

d−→ N (0, 1) implies that θ̂n converges to θ in probabil-
ity.

Following from Delta method, we immediately have:

Theorem 4.5.2. Suppose θ̂n is the MLE of θ, then τ̂ satisfies

√
n(τ̂n − τ)→ N

(
0,

[g′(θ)]2

I(θ)

)
where I(θ) is the Fisher information of θ and g(·) has non-vanishing derivative at θ.

Exercise: what if g′(θ) = 0 but g′′(θ) exists? Show that if g′(θ) = 0 and g′′(θ) 6= 0,
then

n(g(θ̂n)− g(θ))
d−→ σ2g′′(θ)

2
χ2

1

where √
n(θ̂n − θ)

d−→ N (0, σ2).

(Hint: Use 2nd-order Taylor approximation:

g(θ̂n)− g(θ) = g′(θ)(θ̂n − θ) +
1

2
g′′(θ)(θ̂n − θ)2 +R

=
1

2
g′′(θ)(θ̂n − θ)2 +R

Note that Z =
√
n(θ̂n−θ)
σ

converges to a standard normal random variable. Z2 is actually
χ2

1 distribution (chi-square distribution of degree 1). One can derive the corresponding

distribution of n(g(θ̂n)− g(θ)) by using this fact.)

Exercise: Show that the asymptotic distribution

λ(X1, · · · , Xn) = 2 log
L(θ̂n)

L(θ0)
= 2(`(θ̂n)− `(θ0)) ∼ χ2

1

where Xi ∼ f(x; θ0), i.e., θ0 is the true parameter, and θ̂n is the MLE. This is called the
likelihood ratio statistic. We will see this again in likelihood ratio test.

Example: Suppose we observe X1, · · · , Xn ∼Bernoulli(p) random variables. We are
interested in the odds

ψ =
p

1− p
.

The MLE of ψ is ψ̂ = p̂/(1− p̂) where p̂ = Xn.

The variance of ψ̂ is

Var(ψ̂) ≈ [g′(p)]2 Var(p̂) =
1

(1− p)4
· p(1− p)

n
=

p

n(1− p)3

where

g′(p) =
1

(1− p)2
.

The limiting distribution is

√
n(ψ̂ − ψ) ∼ N

(
0,

p

(1− p)3

)
.

45



Example: Suppose X1, · · · , Xn ∼Geo(p). Find the MLE of p. Use Delta method to find
an asymptotic distribution of

√
n(p̂− p).

We start with the log-likelihood function:

L(p|Xi, 1 ≤ i ≤ n) =
n∏
i=1

(1− p)Xi−1p = (1− p)
∑n
i=1Xi−npn

and
`(p) = n(Xn − 1) log(1− p) + n log p.

Let’s compute the critical point and show it is a global maximizer.

`′(p) = −n(Xn − 1)

1− p
+
n

p
=⇒ p̂ =

1

Xn

.

Note that by CLT, we have

√
n(X − 1/p)

d−→ N (0, (1− p)/p2)

where Var(Xi) = (1− p)/p2.

By Delta method (letting g(x) = 1/x and x = Xn), it holds

Var(g(Xn)) ≈ [g′(1/p)]2 · Var(Xn) = p4 · 1− p
np2

=
p2(1− p)

n
.

Therefore, √
n(p̂− p) d−→ N

(
0, (1− p)p2

)
.

Now we try another approach:

`′′(p) = −n(Xn − 1)

(1− p)2
− n

p2

So the Fisher information is

In(p) = Ep `
′′(p) =

n(1/p− 1)

(1− p)2
+
n

p2
=

n

p(1− p)
+
n

p2
=

n

p2(1− p)

where EXi = 1/p and EXn = 1/p. By asymptotic normality of MLE, we have

√
n(p̂− p) d−→ N

(
0, (1− p)p2

)
.

4.6 Cramer-Rao bound

Can we find an unbiased estimator of θ with variance as small as possible?

Theorem 4.6.1. Suppose θ̂n is an unbiased estimator of θ with finite variance. Then

Varθ(θ̂n) ≥ 1

nI(θ)
.

• Any unbiased estimator must have variance at least 1/I(θ).

• MLE is asymptotically the best unbiased estimator of θ. (Efficiency)
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Theorem 4.6.2 (Cramer-Rao inequality). Suppose θ̂n is an estimator of θ with finite
variance. Then

Varθ(θ̂n) ≥

(
d
dθ

Eθ θ̂n
)2

nI(θ)
.

where

I(θ) =

ˆ
R

(
d

dθ
log f(x; θ)

)2

f(x; θ) dx

with f(x; θ) as the pdf.

Proof: Note that Eθ θ̂n is a function of θ. Assume that the integration and differentia-
tion can be exchanged, i.e.,

d

dθ
Eθ(θ̂) =

ˆ
X
θ̂(x)

d

dθ
f(x; θ) dx

where f(x; θ) =
∏n

i=1 f(xi; θ) is the joint pdf of X1, · · · , Xn.)

Note that by definition we have

ˆ
X

(θ̂(x)− Eθ(θ̂n))f(x; θ) dx = 0.

Differentiating it w.r.t. θ:

ˆ
X

(θ̂(x)− Eθ(θ̂n))
df(x; θ)

dθ
dx−

ˆ
X

dEθ θ̂n
dθ

f(x; θ) dx = 0

which gives
d

dθ
Eθ(θ̂n) =

ˆ
X

(θ̂(x)− Eθ(θ̂n))
df(x; θ)

dθ
dx.

Applying Cauchy-Schwarz inequality, we have∣∣∣∣ d

dθ
Eθ(θ̂n)

∣∣∣∣2 =

∣∣∣∣∣
ˆ
X

(θ̂(x)− Eθ(θ̂n))
√
f(x; θ) · 1√

f(x; θ)

df(x; θ)

dθ
dx

∣∣∣∣∣
2

≤
ˆ
X

(θ̂(x)− Eθ(θ̂n))2f(x; θ) dx ·
ˆ
X

1

f(x; θ)

(
df(x; θ)

dθ

)2

dx

= Varθ(θ̂n) · Eθ
(

d log f(x; θ)

dθ

)2

= Varθ(θ̂n) · nI(θ).

This finishes the proof.

Example: Suppose X1, · · · , Xn ∼Poisson(λ).

f(x;λ) =
e−λλx

x!
, x ∈ {0, 1, · · · }.

The Fisher information is I(λ) = λ−1. Note that the MLE of λ is Xn.

Varλ(Xn) =
λ

n
,

1

nI(λ)
=
λ

n
.
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Thus Xn is the best unbiased estimator of λ since Var(Xn) = λ/n.

Exercise: Suppose X1, · · · , Xn ∼ N (0, σ2). Find the MLE of σ2 and the Fisher infor-
mation I(σ2). Show that

1

n

n∑
i=1

X2
i

is the unbiased estimator of σ2 with the smallest possible variance.

Exercise: Suppose X1, · · · , Xn ∼ N (0, σ2). Find the MLE of σ and the Fisher informa-
tion I(σ). What is the actual and approximate variance of σ̂?

Exercise: Suppose X1, · · · , Xn are samples from

f(x; θ) =

{
θxθ−1, 0 < x < 1,

0, otherwise.

Recall that the MLE of θ is
θ̂ = − n∑n

i=1 logXi

.

Use Delta method to find out the asymptotic distribution of θ̂. Does it match the result
obtained by directly applying the asymptotic normality of MLE?

4.7 Multiparameter models

In practice, we are often facing the problem of inferring multiple population parameters
from a dataset. Therefore, we ask if it is possible to extend all the analysis we’ve done
the multi-parameter scenario.

As a motivating example, let’s recall the example of finding the MLE fromX1, · · · , XnN (µ, σ2)
where µ and σ2 are unknown. We know that

µ̂ = Xn, σ̂2 =
1

n

n∑
i=1

(Xi −Xn)2.

In probability and statistics, sometimes we are interested in the coefficient of variation
(relative standard deviation) defined as

cv =
σ

µ
.

By equivariance, we know the MLE of cv is

ĉv =
σ̂

µ̂
.

The question is: can we construct a (1− α) confidence interval for cv?

This problem is closely related to finding the asymptotic distribution of ĉv. We may ask
whether ĉv satisfy certain asymptotic normality

√
n(ĉv − cv)

d−→ N (0, σ2
cv)

for some variance σ2
cv? This requires us to find out what the joint distribution of (µ̂, σ̂2),

which is made more clearly later.
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4.7.1 Multiparameter MLE

Suppose a family of distributions depends on several parameters θ = (θ1, · · · , θk)> (a
column vector). By maximizing the likelihood function, we obtain the MLE:

θ̂ = argmaxθ∈ΘL(θ).

Two questions:

• Is the MLE consistent?

• Does asymptotic normality hold?

Theorem 4.7.1. The MLE is consistent under certain regularity condition.

If you are interested in the rigorous proof of consistency, you may refer to advanced
textbook such as [2].

Exercise: Can you generalize the argument in the single parameter scenario to multi-
parameter scenario?

How about asymptotic normality of MLE? Note that the MLE is no longer a vector, we
will naturally use multivariate normal distribution.

4.7.2 Bivariate normal distribution

We start with bivariate normal distribution. We say (X, Y ) satisfies bivariate normal
distribution N (µX , µY , σ

2
X , σ

2
Y , ρ) if its pdf is

f(x, y,µ,Σ) =
1

2π
√

det(Σ)
exp

(
−1

2
(x− µX , y − µY )Σ−1(x− µX , y − µY )>

)
where

Σ =

[
σ2
X ρσXσY

ρσXσY σ2
Y

]
, Σ−1 =

1

σ2
Xσ

2
Y (1− ρ2)

[
σ2
Y −ρσXσY

−ρσXσY σ2
X

]
Here µX (σ2

X) and µY (σ2
Y ) are the mean (variance) of X and Y respectively. The

parameter ρ is the correlation:

ρ =
Cov(X, Y )

σXσY
, Cov(X, Y ) = ρσXσY

which satisfies |ρ| ≤ 1 by Cauchy-Schwarz inequality.

Exercise: Show that Σ is strictly positive definite.

Exercise: Verify that ΣΣ−1 = I2. Here I2 denotes 2× 2 identity matrix.

Note that det(Σ) = (1− ρ2)σ2
Xσ

2
Y and

Σ−1 =
1

1− ρ2

[
1/σ2

X −ρ/σXσY
−ρ/σXσY 1/σ2

Y

]
If written explicitly, the pdf is

fX,Y (x, y;µ,Σ) =
1

2π
√

1− ρ2σXσY
·

exp
(
− 1

2(1− ρ2)

[(x− µX)2

σ2
X

− 2ρ(x− µX)(y − µY )

σXσY
+

(y − µY )2

σY

])
.
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Example: If X and Y are two independent standard normal random variables, then
their joint pdf is

fX,Y (x, y) =
1

2π
exp

(
−x

2 + y2

2

)
.

This is essentially N (0, I2), i.e., N (0, 0, 1, 1, 0).

Example: No correlation implies independence for joint normal distribution. Suppose
(X, Y ) ∼ N (µ,Σ) with zero correlation ρ = 0. Then it holds

fX,Y (x, y;µ,Σ) =
1

2πσXσY
exp

(
−1

2

[
(x− µX)2

σ2
X

+
(y − µY )2

σY

])
=

1√
2πσ2

X

exp

(
−(x− µX)2

2σ2
X

)
· 1√

2πσ2
Y

exp

(
−(y − µY )2

2σ2
Y

)
= fX(x)fY (y).

In other words, they are independent.

Question: Is fX,Y indeed a probability density function? To justify it, we need to show
fX,Y ≥ 0 (obvious) and

˜
R fX,Y (x, y) dx dy = 1.

Proof: We will show that
˜
R fX,Y (x, y) dx dy = 1. To do this, we first introduce a few

notations:

z =

[
x
y

]
, µ =

[
µX
µY

]
Then ¨

R2
fX,Y (x, y) dx dy =

1

2π
√

det(Σ)

ˆ
R2

exp

(
−1

2
(z − µ)>Σ−1(z − µ)

)
dz

where dz equals dx dy. Now we perform a change of variable:

w = Σ−1/2(z − µ), Σ1/2 = UΛ1/2U> = U

[√
λ1 0
0
√
λ2

]
U>

where Σ = UΛU> is the spectral decomposition (eigen-decomposition) of Σ, i.e., U is
orthogonal (UU> = U>U = I2) and

Λ =

[
λ1 0
0 λ2

]
, λ1, λ2 > 0

consists of all eigenvalues of Σ. This change of variable maps R2 to R2 and is one-to-one.
Now we substitute z = Σ1/2w + µ into the integral. Note that

dz = | det(Σ1/2)| dw =
√
λ1λ2 =

√
det(Σ) dw

where Σ1/2 is essentially the Jacobian matrix
[
∂zi
∂wj

]
2×2

and

(z − µ)>Σ−1(z − µ) = w>w = w2
1 + w2

2

where w = (w1, w2)>. Thus the integral equals¨
R2
fX,Y (x, y) dx dy =

1

2π
√

det(Σ)

ˆ
R2

exp

(
−1

2
w>w

)√
det(Σ) dw

=
1

2π

ˆ
R2

exp

(
−1

2
w>w

)
dw

=
1√
2π

ˆ
R

exp

(
−1

2
w2

1

)
dw1 ·

1√
2π

ˆ
R

exp

(
−1

2
w2

2

)
dw2

= 1.
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Essentially, the argument above proves the following statement.

Lemma 4.7.2. Suppose Z = (X, Y )> ∼ N (µ,Σ). Then

Σ−1/2(Z − µ) ∼ N (0, I2).

Exercise: Show thatˆ
R
fX,Y (x, y;µ,Σ) dy =

1√
2πσX

exp

(
−(x− µX)2

2σ2
X

)
.

This exercise shows that the marginal distribution of X is still normal N (µX , σ
2
X). For

simplicity, you may try it by assuming µX = µY = 0. Apply the similar technique used
to verify that fX,Y is a pdf.

Exercise: Suppose (Xi, Yi), 1 ≤ i ≤ n are i.i.d. samples from N (µX , µY , σ
2
X , σ

2
Y , ρ). Find

the MLE for these five parameters.

Theorem 4.7.3. Suppose (X, Y ) ∼ N (µX , µY , σ
2
X , σ

2
Y , ρ). Then

aX + bY ∼ N (aµX + bµY , a
2σ2

X + 2abρσXσY + b2σ2
Y ).

Proof: First note that aX + bY is normal. Thus it suffices to determines its mean and
variance.

E(aX + bY ) = aEX + bEY = aµX + bµY

and

Var(aX + bY ) = E [a(X − EX) + b(Y − EY )] [a(X − EX) + b(Y − EY )]

= a2 E(X − EX)2 + 2ab E(X − EX)(Y − EY ) + b2 E(Y − EY )2

= a2 Var(X) + 2abCov(X, Y ) + b2 Var(Y )

= a2σ2
X + 2abρσXσY + b2σ2

Y .

Thus we have the result.

Question: Why is aX + bY normal? We can use the moment generating function. For
simplicity, we can let µX and µY be zero. We let

λ =

[
a
b

]
, z =

[
x
y

]
w =

[
w1

w2

]
= Σ−1/2z.

Then

M(t) := E et(aX+bY ) = E etλ
>z =

1

2π
√

det(Σ)

ˆ
R2
etλ
>z exp

(
−1

2
z>Σ−1z

)
dz

Note that z = Σ1/2w and thus dz = | det(Σ1/2)| dw.

M(t) :=
1

2π
√

det(Σ)

ˆ
R2
etλ
>z exp

(
−1

2
z>Σ−1z

)
dz

=
1

2π
√

det(Σ)

ˆ
R2
etλ
>Σ1/2w exp

(
−1

2
w>w

)
| det(Σ1/2)| dw

=
1

2π

ˆ
R2

exp

(
−1

2
w>w + tλ>Σ1/2w

)
dw

= exp

(
−1

2
λ>Σλ

)
· 1

2π

ˆ
R2

exp

(
−1

2
(w −Σ1/2λ)>(w −Σ1/2λ)

)
dw
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Note that the integral is 1 since it is a pdf, i.e., the pdf of N (Σ1/2λ, I2). Thus

M(t) = exp

(
−1

2
λ>Σλ

)
.

It is the mgf of N (0,λ>Σλ) where

λ>Σλ = a2σ2
X + 2abρσXσY + b2σ2

Y .

4.7.3 Asymptotic normality of MLE

There is a natural extension of asymptotic normality from single parameter to multiple
parameters scenario. Consider the likelihood function

`(θ;X1, · · · ,Xn) =
n∑
i=1

log f(Xi;θ)

where Xi ∈ Rk are i.i.d. random variable (vectors). Define the Fisher information matrix
as

In(θ) = −
[
Eθ

∂2

∂θi∂θj
`(θ)

]
= −


Eθ ∂2

∂θ21
`(θ) Eθ ∂2

∂θ1∂θ2
`(θ) · · · Eθ ∂2

∂θ1∂θk
`(θ)

Eθ ∂2

∂θ1∂θ2
`(θ) Eθ ∂2

∂θ22
`(θ) · · · Eθ ∂2

∂θ2∂θk
`(θ)

...
...

. . .
...

Eθ ∂2

∂θ1∂θk
`(θ) Eθ ∂2

∂θ2∂θk
`(θ) · · · Eθ ∂2

∂θ2k
`(θ)


Fisher information matrix is equal to the Hessian matrix of −`(θ|X) under expectation.
Is it always positive semidefinite?

Theorem 4.7.4 (Asymptotic normality of MLE). Under certain regularity condi-
tion, it holds that

θ̂ − θ d−→ N (0, I−1
n (θ))

where I−1
n (θ) is the inverse of Fisher information matrix.

If Xi ∈ Rk are i.i.d. random vectors, then

√
n(θ̂ − θ)

d−→ N (0, I−1(θ))

where I(θ) is given by

[I(θ)]ij = −E

[
∂2

∂θi∂θj
log f(X;θ)

]
.

Obviously, In(θ) = nI(θ) follows from the linearity of expectation.

We will not give the proof here but the idea is similar to that of the single parameter
scenario.

Example: Suppose X1, · · · , Xn ∼ N (µ, σ2) are i.i.d. samples. Let’s compute the Fisher
information:

log f(X;µ, σ2) = log
1√

2πσ2
e−

(X−µ)2

2σ2 = −1

2
log σ2 − 1

2σ2
(X − µ)2
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The second order derivative of log-pdf is

∂`

∂µ
= − 1

σ2
(µ−X),

∂`

∂σ2
= − 1

2σ2
+

1

2σ4
(X − µ)2

and
∂2`

∂µ2
= − 1

σ2
,

∂2`

∂(σ2)2
=

1

2σ4
− 1

σ6
(X − µ)2,

∂2`

∂µ∂σ2
=

1

σ4
(µ−X)

The Fisher information is

I(µ, σ2) =

[
1
σ2 0
0 1

2σ4

]
and its inverse is

I(µ, σ2)−1 =

[
σ2 0
0 2σ4

]
By asymptotic normality of MLE, we have

√
n

[
µ̂− µ
σ̂2 − σ2

]
d−→ N

(
0,

[
σ2 0
0 2σ4

])
where µ̂ = Xn and σ̂2 = n−1

∑n
i=1(Xi −Xn)2.

Still by Slutsky theorem, we can replace σ2 by σ̂2. A (1− α) confidence interval for σ2 is
given by

|σ̂2 − σ2| ≤ z1−α/2

√
2σ̂2

√
n
.

Exercise: Find the Fisher information matrix I(µ, σ) (not I(µ, σ2)). Derive the asymp-
totic distribution

√
n(σ̂ − σ). Then find a (1− α) confidence interval for σ.

4.7.4 Multiparameter Delta method

Theorem 4.7.5. Suppose ∇g(θ) = (∂g/∂θ1, · · · , ∂g/∂θk)> is not 0 at θ, then

√
n(g(θ̂)− g(θ))

d−→ N (0, (∇g(θ))>I−1(θ)∇g(θ))

where θ̂ is the MLE of θ.

Proof: The proof follows from

g(θ̂)− g(θ) =
k∑
i=1

∂g

∂θi
(θ)(θ̂i − θi) + error = 〈∇g(θ), θ̂ − θ〉+ error

where the error diminishes to 0 as n→∞. Here 〈·, ·〉 denotes the inner product between

two vectors. This is approximately Gaussian since
√
n(θ̂ − θ) is asymptotically normal

N (0, I−1(θ)). The variance of
√
n(g(θ̂)− g(θ)) is given by (∇g(θ))>I−1(θ)∇g(θ).

Example Consider τ = g(µ, σ2) = σ/µ where the samples are drawn from Gaussian
Xi ∼ N (µ, σ2). The goal is to find out the asymptotic distribution of MLE of τ.

Note that the MLE of τ is given by τ̂ = σ̂/µ̂ where µ̂ = Xn and σ̂2 = 1
n

∑n
i=1(Xi −

Xn)2.
∂g

∂µ
= − σ

µ2
,

∂g

∂σ2
=

1

2µσ
.
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Thus
√
n(τ̂ − τ) ∼ N

(
0,
σ4

µ4
+

σ2

2µ2

)
where

(∇g(θ))>I−1(θ)∇g(θ) =
σ2

µ4
· σ2 +

1

4µ2σ2
· 2σ4 =

σ4

µ4
+

σ2

2µ2

4.7.5 Multiparameter normal distribution

We have discussed bivariate normal distribution. In practice, we often encounter multi-
parameter normal distribution with dimension greater than 2. What is multiparameter
normal distribution? A multi-parameter normal distribution is characterized by its mean
vector µ ∈ Rk and covariance matrix Σ ∈ Rk×k. In particular, we require the covariance
matrix Σ (symmetric) is positive definite.

Theorem 4.7.6. A matrix Σ is positive definite, i.e., Σ � 0, if one of the following
equivalent statements is true:

1. All the eigenvalues of Σ are positive;

2. There exists a full-rank lower triangle matrix L such that Σ = LL>;

3. x>Σx > 0 for any nonzero x ∈ Rk;

4. The determinant of all the leading principal submatrices are positive.

In particular, if a matrix is 2× 2, then

Σ =

[
σ11 σ12

σ12 σ22

]
� 0⇐⇒ σ11 > 0, σ11σ22 − σ2

12 > 0.

Definition 4.7.1. A random vector X = (X1, · · · , Xk)
> satisfies multivariate normal

N (µ,Σ) if its probability density function is

f(x;µ,Σ) =
1

(
√

2π)k
√

det Σ
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
.

We can see that the pdf involves the inverse of covariance matrix. Usually, finding the
matrix inverse is tricky. In some special cases, the inverse is easy to obtain.

1. If a matrix Σ is 2× 2, then its inverse is

Σ−1 =
1

σ11σ22 − σ2
12

[
σ22 −σ12

−σ12 σ11

]

2. If Σ is a diagonal matrix

Σij =

{
σii, i = j,

0, i 6= j,

then its inverse is

[Σ−1]ij =

{
σ−1
ii , i = j,

0, i 6= j,
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In fact, we have seen multivariate normal distribution before. For example, if X1, · · · , Xk

are independent standard normal random variables, then the random vectorX = (X1, · · · , Xk)
>

has a joint distribution

f(x; 0; In) =
1

√
2π

k√
det(In)

exp

(
−1

2
x>I−1

n x

)
=

1
√

2π
k

exp

(
−1

2
‖x‖2

)

=
k∏
i=1

1√
2π

exp

(
−x

2
i

2

)
which is essentially N (0, Ik) where Ik is the k × k identity matrix.

Exercise: Verify that f(x;µ,Σ) is indeed a pdf, i.e.,

ˆ
x∈Rk

f(x;µ,Σ) dx = 1.

Exercise: If Σ is diagonal, then all X1, · · · , Xk are independent.

Exercise: If σij = 0, then Xi and Xj are independent. In other words, if (Xi, Xj) is
jointly normal and Cov(Xi, Xj) = 0, then Xi and Xj are independent.

Exercise: Show that

EX = µ, E(X − µ)(X − µ)> = Σ.

In other words, Σij = E(Xi − µi)(Xj − µj) is the covariance between Xi and Xj and Σii

is the variance of Xi.

An important property of joint normal distribution is that: the linear combination∑n
i=1 aiXi is still normal for any deterministic a = (a1, · · · , ak)>. How to find its distri-

bution? Since it is normal, we only need to compute its mean and variance.

Theorem 4.7.7. Suppose X ∼ N (µ,Σ), then
∑k

i=1 aiXi obeys

k∑
i=1

aiXi ∼ N

(
k∑
i=1

aiµi,
∑
i,j

Σijaiaj

)

or equivalently,
〈a,X〉 ∼ N

(
〈a,µ〉,a>Σa

)
where 〈·, ·〉 denotes the inner product of two vectors.

Proof: It suffices to compute its mean and variance:

E
k∑
i=1

aiXi =
k∑
i=1

ai EXi =
k∑
i=1

aiµi.
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Its variance is

Var

(
k∑
i=1

aiXi

)
= E

(
k∑
i=1

ai(Xi − EXi)
k∑
j=1

aj(Xj − EXj)

)

=
k∑
i=1

k∑
j=1

aiaj E(Xi − EXi)(Xj − EXj)

=
k∑
i=1

k∑
j=1

aiaj Cov(Xi, Xj) =
k∑
i=1

k∑
j=1

aiajΣij = a>Σa.

Exercise: Moment-generating function for N (µ,Σ). What is the moment generating
function for X ∼ N (µ,Σ),

M(t) = E e
∑k
i=1 tiXi

where t = (t1, · · · , tk)>? Hints: by definition, it holds

M(t) = E exp(t>X)

=
1

(
√

2π)n/2
√

det(Σ)

ˆ
Rn

exp

(
t>x− 1

2
(x− µ)>Σ−1(x− µ)

)
dx.

Let’s perform a change of variable: z = Σ−1/2(x− µ). Then

dx = d(Σ1/2z + µ) = | det(Σ1/2)| dz =
√

det(Σ) dz.

Then

M(t) =
1

(
√

2π)n/2
√

det(Σ)

ˆ
Rn

exp

(
t>(Σ1/2z + µ)− 1

2
z>z

)√
det(Σ) dz

=
exp(t>µ)

(
√

2π)n/2

ˆ
Rn

exp

(
t>Σ1/2z − 1

2
z>z

)
dz

= exp

(
t>µ+

1

2
t>Σt

)
· 1

(
√

2π)n/2

ˆ
Rn

exp

(
−1

2
(z −Σ1/2t)>(z −Σ1/2t)

)
dz

= exp

(
t>µ+

1

2
t>Σt

)
In fact, multivariate normal distribution is still multivariate norm under linear trans-
form.

Lemma 4.7.8. Suppose A is any deterministic matrix in Rl×k. Then

AX ∼ N (Aµ,AΣA>)

for X ∼ N (µ,Σ).

It suffices to compute the mean and covariance. Note that the ith entry of AX in
expectation is

E[AX]i = E
k∑
j=1

aijXj =
k∑
j=1

aij EXj =
k∑
j=1

aijµj = [Aµ]i, 1 ≤ i ≤ l.
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Thus EAX = A EX. For the covariance, by definition, we have

Cov(AX) = E(AX − EAX)(AX − EAX)>

= EA(X − EX)(X − EX)>A>

= AΣA>.

For a special case, if A is orthogonal, i.e. AA> = A>A = Ik, then for X ∼ N (0, Ik),
then

AX ∼ N (0,AIkA
>) = N (0, Ik).

Exercise: Show that the variance of a>X (subject to ‖a‖ = 1) is maximized if a is
leading eigenvector of Σ, and the variance is largest eigenvalue.

4.7.6 Independence between sample mean and variance

Recall that for X1, · · · , Xn ∼ N (µ, σ2)

√
n

[
µ̂− µ
σ̂2 − σ2

]
d−→ N

(
0,

[
σ2 0
0 2σ4

])
It seems that µ̂ = Xn and σ̂2 = n−1

∑n
i=1(Xi − Xn)2 are “near” independent. Is it

true?

Theorem 4.7.9. The sample mean µ̂ = Xn and variance σ̂2 = n−1
∑n

i=1(Xi −Xn)2 are
independent. Moreover,

nσ̂2 =
n∑
i=1

(Xi −Xn)2 ∼ σ2χ2
n−1.

But how to justify this theorem? Now we let X = (X1, · · · , Xn)> ∼ N (0, In), i.e.,

fX(x; 0, In) =
1

(2π)n/2

(
−1

2

n∑
i=1

x2
i

)
.

We define a vector v and a matrix P ∈ Rn×n:

v =

1
...
1

 ∈ Rn, P = In −
1

n
vv> =


n−1
n
− 1
n
· · · − 1

n

− 1
n

n−1
n
· · · − 1

n
...

...
. . .

...
− 1
n
− 1
n
· · · n−1

n

 .

Exercise: Show that Pv = 0 and P 2 = P . (P is called projection matrix).

Exercise: The eigenvalues of P is 1 with multiplicities n − 1 and 0 with multiplicity
1.
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With u and P , we have

Xn =
1

n
v>X =

1

n
X>v

σ̂2 =
1

n

n∑
i=1

(Xi −Xn)2

=
1

n

(
n∑
i=1

X2
i − nX

2

n

)

=
1

n

(
X>X − 1

n
X>vv>X

)
=

1

n
X>PX.

AssumeU ∈ Rn×(n−1) consists of n−1 orthonormal eigenvectors of P w.r.t. the eigenvalue
1. Then we know that U>v = 0 and moreover P = UU>, i.e.,

P =
n−1∑
i=1

uiu
>
i , ui ⊥ uj, i 6= j

where ui is the ith column of U . Also ui ⊥ v holds since they belong to eigenvectors
w.r.t. different eigenvectors.

Now

σ̂2 =
1

n
X>UU>X =

1

n
‖U>X‖2 =

1

2

n−1∑
i=1

|u>i X|2

where U>X ∈ Rn−1.

Key: If we are able to show that v>X and U>X are independent, then Xn and σ̂2 are
independent.

What is the joint distribution of v>X and U>X? Consider

Π =

[
n−1/2v>

U>

]
∈ Rn×n.

The term n−1/2 is to ensure that ‖n−1/2v‖ = 1. By linear invariance of normal distribution,
ΠX is also jointly normal. It is not hard to see that

ΠΠ> =

[
n−1v>v −n−1/2v>U
−n−1/2Uv> U>U

]
=

[
1 0
0 In−1

]
= In.

In other words, the covariance matrix of (n−1/2v>X,U>X) equals

ΣΠX = Π Cov(X)Π> = σ2ΠInΠ
> = σ2In.

which implies that v>X and U>X are independent. Now let’s look at the distribution
of [U>X]i = u>i X:

u>i X ∼ N (u>i · µv, σ2u>i Inui) = N (0, σ2)

where EX = µv and ui ⊥ v. Therefore, u>i X/σ are independent standard normal and
we have

X>PX =
n−1∑
i=1

[U>X]2i ∼ σ2χ2
n−1.
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Chapter 5

Hypothesis testing

5.1 Motivation

In many applications, we are often facing questions like these:

1. Motivation: In 1000 tosses of a coin, 560 heads and 440 tails appear. Is the coin
fair?

2. Whether two datasets come from the same distribution? Do the data satisfy normal
distribution?

3. Clinical trials: does the medicine work well for one certain type of disease?

These questions are called hypothesis testing problem.

5.1.1 Hypothesis

The first question is: what is a hypothesis?

Definition 5.1.1. A hypothesis is a statement about a population parameter.

For example, X1, · · · , Xn

The two complementary hypothesis in a hypothesis testing problem are

• the null hypothesis, denoted by H0

• the alternative hypothesis, denoted by H1

Example: Suppose X1, · · · , Xn ∼ N (µ, σ2) with known σ2. We are interested in testing
if µ = µ0. The hypothesis H0 : µ = µ0 is called the null hypothesis, i.e.,

H0 : µ = µ0, H1 : µ 6= µ0.

Example: Suppose X1, · · · , Xn are outcomes from Bernoulli(θ), which is a natural model
of coin tossing. If we want to know whether the coin is fair, we are essentially testing:

H0 : θ =
1

2
, H1 : θ 6= 1

2
.

In statistical practice, we usually treat these two hypotheses unequally. When we perform
a testing, we actually design a procedure to decide if we should reject the null hypothesis
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or retain (not to reject) the null hypothesis. It is important to note that rejecting the
null hypothesis does not mean we should accept the alternative hypothesis.

Now, let’s discuss how to design a test procedure. Apparently, this procedure will depend
on the observed data X1, · · · , Xn. We focus on the example in which X1, · · · , Xn ∼
N (µ, σ2) and want to test if µ = 0. Naturally, we can first obtain an estimator of µ
from the data and see if it is close to µ = 0 (compared with the standard deviation as
well).

1. Compute the sample average T (X) = Xn.

2. If T (X) is far away from µ = 0, we should reject H0; if T (X) is close to µ = 0, we
choose not to reject H0. Namely, we reject H0 if

|Xn − µ0| ≥ c

for some properly chosen c.

5.1.2 Test statistics and rejection region

This leads to two concepts: test statistics and rejection region. Let X1, · · · , Xn ∼ f(x; θ),
and T (X) is a statistic. Suppose we have designed a decision rule: reject the H0 if
T (X) ∈ R where R is a region, then T (X) is called the test statistic and R is the
rejection region.

Example: In the example of testing µ 6= 0 for X1, · · · , Xn ∼ N (µ, σ2),

T (X) = Xn, R = {x : |x− µ0| ≥ c}.

However, is it possible that T (X) and the choice of R give you a wrong answer?

5.1.3 Type I and II error

There are two types of errors, often called Type I and Ii error.

• Type I error: we reject H0 but H0 is the truth.

• Type II error: we retain H0 but H1 is the truth.

Table 5.1: Summary of outcomes of hypothesis testing
Retain Null H0 Reject Null H0

H0 true X Type I error
H1 true Type II error X

How to control the error level?

Definition 5.1.2. The power function of a test with rejection region R is

β(θ) = Pθ(T (X) ∈ R)

where X1, · · · , Xn are samples from f(x; θ).

Remark: The power function β(θ0) is the probability of rejecting θ = θ0.
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Example - continued: For X1, · · · , Xn ∼ N (µ, σ2) with unknown σ2. Let’s compute
the power function:

β(µ) = Pµ(|Xn − µ0| ≥ c)

= Pµ(Xn − µ0 ≥ c) + Pµ(Xn − µ0 ≤ −c)
= Pµ(Xn − µ ≥ c− µ+ µ0) + Pµ(Xn − µ ≤ −c− µ+ µ0)

= Pµ

(√
n(Xn − µ)

σ
≥
√
n(c− µ+ µ0)

σ

)
+ Pµ

(√
n(Xn − µ)

σ
≤
√
n(−c− µ+ µ0)

σ

)
= 1− Φ

(√
n(c− µ+ µ0)

σ

)
+ Φ

(√
n(−c− µ+ µ0)

σ

)
where Φ(·) is the cdf of standard normal distribution.

How to quantify Type-I error?

β(µ0) = 1− Φ

(√
nc

σ

)
+ Φ

(
−
√
nc

σ

)
= 2

(
1− Φ

(√
nc

σ

))
where Φ(x)+Φ(−x) = 1 for any x > 0. To make the Type-I error under α, we require

c =
z1−α/2σ√

n
.

How about Type-II error? By definition, Type-II error is the probability of retaining the
null (not rejecting the null, i.e., T (X) /∈ R) while the alternative is true. Suppose the
true parameter is µA 6= µ0, then

Type-II error at µA = 1− β(µA).

Is it possible to control both Type I and II error? It might be tricky sometimes. Here since
we don’t know the actual true parameter, the conservative way to control the Type-II
error is to find a uniform bound of the Type-II error for any µ 6= µ0:

sup
µ 6=µ0

(1− β(µ)) = 1− β(µ0)

which is actually given by µ = µ0. In other words, we cannot make both Type-I and
Type II simultaneously small in this case. In fact, in most testing problem, the asymmetry
between H0 and H1 is natural. We usually put a tighter control on the more serious error
such as Type-I error.

Exercise: Show that supµ6=µ0(1− β(µ)) = 1− β(µ0).

How to control the Type-I error? Sometimes, the parameter space Θ0 of H0 is not a
singleton (e.g. H0 : θ = θ0). To overcome this issue, we introduce the size of a test:

Definition 5.1.3 (Size of a test). The size of a test is defined to be

α = sup
θ∈Θ0

β(θ)

where Θ0 consists of all parameters in the null hypothesis.
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A test is said to have level α if its size is less than or equal to α.

• The size of a test is the maximal probability of rejecting the null hypothesis when
the null hypothesis is true.

• If the level α is small, it means type I error is small.

Example - continued: If Θ0 = {µ0}, then the size equals β(µ0). To make the size
smaller than a given α, we need to have

β(µ0) = 2

(
1− Φ

(√
nc

σ

))
= α

which gives √
nc

σ
= z1−α/2 ⇐⇒

√
nc = z1−α/2σ.

Given the number of samples n, σ, and size α, we can determine c such that the Type I
error is at most α :

c =
z1−α/2σ√

n
.

In other words, we reject the null hypothesis H0 : µ = µ0 if

|Xn − µ0| ≥
z1−α/2σ√

n
⇐⇒

√
n|Xm − µ0|

σ
≥ z1−α/2.

This is called z-test, a test for the mean of a distribution.

Example: t-test Consider X1, · · · , Xn are samples from N (µ, σ2) with unknown µ and
σ2. Consider

H0 : µ = µ0, H1 : µ 6= µ0.

We may choose the following estimator

T (X) =

√
n(Xn − µ0)

Sn

since it is asymptotically normal distribution if n is large and the null is true. The
rejection region could be

R = {X : |T (X)| ≥ z1−α/2}.

What if n is small? In fact, Tn(X) satisfies t-distribution of degree n− 1.

Student-t distribution: The following random variable

T =
Z√
Y/n

satisfies t-distribution of degree n if

• Z is a standard normal random variable;

• Y is a χ2
n random variable with degree n; if Y1, · · · , Yn are i.i.d. N (0, 1), then

Y =
∑n

i=1 Y
2
i is χ2

n, which is basically Γ(n/2, 1) distribution;

• Y and Z are independent.
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Figure 5.1: The pdf of Student-t distribution. Source: wikipedia

Exercise: Verify that

T (X) =

√
n(Xn − µ0)

Sn
satisfies tn−1.

What is the pdf of t-distribution of degree n?

fT (x) =
Γ(n+1

2
)

√
nπΓ(n

2
)

(
1 +

x2

n

)−n+1
2

where Γ(α) is called Gamma function:

Γ(α) =

ˆ ∞
0

xα−1e−x dx.

In particular, Γ(1/2) =
√
π. If α = n for some positive integer n, Γ(n) = (n− 1)!

• if n = 1, T is Cauchy distribution:

fT (x) =
1

π
· 1

1 + x2
.

• if n→∞, we have

fT (x) =
1√
2π
e−

x2

2 .

Exercise: Show that as n→∞,

tn
d→ N (0, 1) : lim

n→∞

Γ(n+1
2

)
√
nπΓ(n

2
)

(
1 +

x2

n

)−n+1
2

=
1√
2π
e−x

2/2.

It is an interpolation between Cauchy and Gaussian distribution.

Thus we can reject H0 : θ = θ0

|Tn(X)| > tn−1,1−α/2

with size α (type-I error) where tn−1,1−α/2 is the 1−α/2 quantile of Student-t distribution
of degree n− 1.
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5.2 More on hypothesis testing

5.2.1 Composite hypothesis testing

So far, we have discussed simple null hypothesis, i.e., |Θ0| = 1. On the other hand, we
often encounter composite hypothesis, the parameter space Θ0 contains multiple or even
infinitely many parameters.

Example: Let X1, · · · , Xn ∼ N (µ, σ2) where σ is known. We want to test

H0 : µ ≤ µ0, H1 : µ > µ0

Hence
Θ0 = (−∞, µ0] versus Θ1 = (µ0,∞).

Note that
T (X) = Xn

is the MLE of µ. We reject H0 if T (X) > c where c is a number.

We reject H0 if T (X) > c. The power function is

β(µ) = Pµ(T (X) > c) = Pµ(Xn > c)

= Pµ

(√
n(Xn − µ)

σ
>

√
n(c− µ)

σ

)
= 1− Φ

(√
n(c− µ)

σ

)
What is the size? Note that β(µ) is increasing!

sup
µ≤µ0

β(µ) = β(µ0) = 1− Φ

(√
n(c− µ0)

σ

)
.

To have a size α test, we set β(µ0) = α:

c = µ0 +
σz1−α√

n
.

In other words, the Type-I error is at most α if we reject Xn ≥ µ0 + σz1−α√
n
.

5.2.2 Wald test

Consider testing
H0 : θ = θ0 versus H1 : θ 6= θ0.

Assume that θ̂n is a consistent estimator of θ and is asymptotically normal:

W :=
θ̂n − θ0

ŝe(θ̂n)
∼ N (0, 1)

where θ0 is the true parameter and ŝe(θ̂n) is an estimation of the standard deviation of

θ̂n. Then a size-α Wald test is: reject H0 if |W | ≥ z1−α
2
.

This can be extended to one-sided hypothesis as well:
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1. For H0 : θ < θ0 and H1 : θ ≥ θ0, we reject the null hypothesis if

θ̂n − θ0

ŝe(θ̂n)
> z1−α

2. For H0 : θ > θ0 and H1 : θ ≤ θ0, we reject the null hypothesis if

θ̂n − θ0

ŝe(θ̂n)
< −z1−α

Exercise: Show that the size is approximately α for the two one-sided hypothesis testing
problems above.

Why? Let’s focus on the first one-sided hypothesis. We reject the null hypothesis if
θ̂n > c for some c. How to compute its power function?

β(θ) = Pθ
(
θ̂n ≥ c

)
= Pθ

(
θ̂n − θ
ŝe(θ̂n)

≥ c− θ
ŝe(θ̂n)

)

≈ 1− Φ

(
c− θ
ŝe(θ̂n)

)
.

Note that the power function is an increasing function of θ; thus the maximum is assumed
when θ = θ0.

sup
θ∈Θ0

β(θ) = 1− Φ

(
c− θ0

ŝe(θ̂n)

)
= α

which gives
c = θ0 + z1−αŝe(θ̂n).

Thus we reject H0 if

θ̂n ≥ c⇐⇒ θ̂n − θ0

ŝe(θ̂n)
> z1−α.

Example: Suppose X1, · · · , Xn are samples from Bernoulli(θ). We want to test if

H0 : θ = θ0 H1 : θ 6= θ0.

Equivalently, we reject H0 : θ = θ0 if∣∣∣∣∣∣ xn − θ0√
θ0(1−θ0)

n

∣∣∣∣∣∣ > z1−α
2
.

where xn is the observed value of Xn.

First, the MLE of θ is Xn. Suppose θ0 is the true parameter, then by CLT, we have

√
n(Xn − θ0)√
θ0(1− θ0)

d−→ N (0, 1).
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We reject the null hypothesis if ∣∣∣∣∣
√
n(Xn − θ0)√
θ0(1− θ0)

∣∣∣∣∣ >1−α/2 .

Another alternative test statistic is

T (X) =

√
n(Xn − θ0)√
Xn(1−Xn)

,

and we reject the null if |T (X)| > z1−α/2.

Recall the example: if we observe 560 heads and 440 tails, is the coin fair?

In this case, we let θ0 = 1
2
, n = 1000, α = 0.05, and z0.975 = 1.96. Suppose the null is

true, then

T1(X) =

√
n(Xn − θ0)√
θ0(1− θ0)

= 3.7947 > z0.975 = 1.96.

We can conclude that with size 0.05, we reject the null hypothesis. If we choose the
alternative statistics, the same conclusion holds

√
n(Xn − θ0)√
Xn(1−Xn)

= 3.8224 > z0.975.

Question: What is the connection between confidence interval and rejection region?

The confidence interval is closely related to the rejection region. The size-α Wald test
rejects H0 : θ = θ0 v.s. H1 : θ 6= θ0 if and only if θ0 /∈ C where

C =
(
θ̂n − z1−α

2
· ŝe(θ̂n), θ̂n + z1−α

2
· ŝe(θ̂n)

)
.

which is equivalent to
|θ̂n − θ0| ≥ z1−α

2
· ŝe(θ̂n).

Thus, testing the null hypothesis is equivalent to checking whether the null value is in
the confidence interval for this simple hypothesis. When we reject H0, we say that the
result is statistically significant.

5.2.3 p-value

What is p-value? Let’s first give the formal definition of p-value and then discuss its
meaning.

Definition 5.2.1 (p-value). Suppose that for every α ∈ (0, 1), we have a size α test with
rejection region Rα. Then

p-value = inf{α : T (x) ∈ Rα}

where T (x) is the observed value of T (X). The p-value is the smallest level at which we
can reject H0. The smaller α is, the smaller the rejection region is.
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The definition of p-value does not look obvious at the first glance. We try to do a concrete
example.

Example: Suppose X1, · · · , Xn ∼ N (µ, σ2). Consider the testing problem H0 : µ = µ0

v.s. H1 : µ 6= µ0. We reject the null hypothesis with size α if∣∣∣∣√n(Xn − µ0)

σ

∣∣∣∣ > z1−α/2 ⇐⇒ |Xn − µ0| >
z1−α/2σ√

n
.

As we can see that, if α decreases, then z1−α/2 increases to infinity and the rejection region
shrinks. Now suppose we observe the data and calculate the test statistic: T (x) = xn. We
try to find the smallest possibly α∗ such that the rejection region includes xn, i.e.,

|xn − µ0| =
z1−α∗/2σ√

n

which means

Φ

(√
n|xn − µ0|

σ

)
= 1− α∗

2
⇐⇒ α∗ = 2

(
1− Φ

(√
n|xn − µ0|

σ

))
.

This gives an example of how to compute the p-value (i.e., equal to the value of α∗ by
definition) for an outcome of the statistic T (x) = xn. But what does it mean? It becomes
more clear if we write this α∗ in another form:

p-value = α∗

= Pµ0

(∣∣∣∣√n(Xn − µ0)

σ

∣∣∣∣ ≥ ∣∣∣∣√n(xn − µ0)

σ

∣∣∣∣)
= Pµ0

(∣∣Xn − µ0

∣∣ ≥ |xn − µ0|
)
.

In other words, p-value equals the probability under H0 of observing a value of the test
statistic the same as or more extreme than what was actually observed.

What is the point of computing p-value? If p-value is small, say smaller than 0.05, we
say the result is significant: the evidence is strong against H0 and we should reject the
null hypothesis.
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p-value evidence
< 0.01 very strong evidence against H0

[0.01, 0.05] strong evidence against H0

[0.05, 0.1] weak evidence against H0

> 0.1 little or no evidence against H0

Example: How to compute the p-value for general tests, e.g.,

H0 : θ ∈ Θ0 v.s. H1 : θ /∈ Θ0.

Suppose that a size-α test is of the form

reject H0 : θ ∈ Θ0 if and only if T (X) ≥ cα

where cα depends on α and cα increases as α decreases since the rejection region shrink
as the size/level α decreases.

For the observed data x, we find the smallest α∗ such that

T (x) = cα∗

where the rejection region is Rα = [cα,∞).

Then
p-value = α∗ = sup

θ∈Θ0

Pθ(T (X) ≥ cα∗) = sup
θ∈Θ0

Pθ(T (X) ≥ T (x))

where x is the observed value of X. In particular, if Θ0 = {θ0}, then

p-value = Pθ0(T (X) ≥ T (x)).

Example: The p-value of Wald statistics. Suppose

T (x) =

∣∣∣∣∣ θ̂(x)− θ0

ŝe(x)

∣∣∣∣∣ = |W (x)|

denotes the observed absolute value of the Wald statistics W (X). Then p-value is given
by

p-value = Pθ0(|W (X)| ≥ |W (x)|) ≈ P(|Z| ≥ |w|) = 2Φ(−|w|)

where Z ∼ N (0, 1). In other words, |w| = z1−α∗/2 and α∗ is the p-value.

For example, in the coin tossing example,

W (x) =
θ̂(x)− θ0

ŝe(x)
=

0.56− 0.5√
0.56(1−0.56)

1000

= 3.8224

and the p-value is equal to P(|Z| ≥ 3.8224) which is approximately 0.0001 ¡ 0.01. In other
words, the observed data are strongly against the null hypothesis H0 : θ = 1/2 and we
should reject the null.
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5.3 Likelihood ratio test

We have spent a lot of time discussing the basics of hypothesis testing. You may have
realized that the key components in hypothesis testing are: (a) find a proper testing
statistic; (b) identify the rejection region with a given size/level α. In all the examples
we have covered so far, the construction of the rejection region and testing statistics rely
on our intuition. In this lecture, we will introduce a systematic way to tackle the two
aforementioned problems, which is based on the likelihood function.

Now let’s consider the following testing problem:

H0 : θ ∈ Θ0 versus H1 : θ /∈ Θ0.

Suppose we observe samples X1, · · · , Xn from f(X; θ). We define the likelihood ratio
statistic as

λ(X) = 2 log

(
supθ∈Θ L(θ)

supθ∈Θ0
L(θ)

)
= 2(`(θ̂)− `(θ̂0))

where θ̂ is the MLE, θ̂0 is the MLE when θ is restricted to Θ0, and `(θ) = logL(θ) is the
log-likelihood function.

What properties does λ(X) satisfy?

1. Since Θ (the natural parameter space) contains Θ0, thus supθ∈Θ L(θ) ≥ supθ∈Θ0
L(θ),

implying that λ(X) ≥ 0.

2. Suppose H0 is true, then the MLE is likely to fall into Θ0 if n is sufficiently large
because of the consistency of MLE.

Therefore, we can use λ(X) as a testing statistic: if λ(x1, · · · , xn) is close to 0, we should
retain H0; if λ(x1, · · · , xn) is large, we reject H0.

Example: Testing of normal mean with known variance. SupposeX1, · · · , Xn ∼ N (µ, σ2)
and we want to test

H0 : µ = µ0 v.s. H1 : µ 6= µ0.

Now we consider the likelihood ratio statistics. Note that the likelihood function is

`(µ, σ2) = − 1

2σ2

n∑
i=1

(Xi − µ)2 + C

where C is a scalar which does not depend on µ. There is no need to take σ2 into
consideration since it is assumed known.

Next, we compute the MLE of `(µ, σ2) on Θ0 and Θ:

Θ0 := {µ : µ = µ0}, Θ = {µ : µ ∈ R}.

On the Θ0, the maximum is simply

`(µ0) = − 1

2σ2

n∑
i=1

(Xi − µ0)2

and on the Θ, the maximum is attained when µ = Xn:

`(µ̂) = − 1

2σ2

n∑
i=1

(Xi −Xn)2.
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Note that
n∑
i=1

(Xi − µ0)2 =
n∑
i=1

(Xi −Xn)2 + n(Xn − µ0)2.

Thus

λ(X) =
1

σ2

(
n∑
i=1

(Xi − µ0)2 −
n∑
i=1

(Xi −Xn)2

)
=
n(Xn − µ0)2

σ2
.

Since we reject the null hypothesis if λ(X) is large, it is equivalent to rejecting the null
if |Xn − µ0| is large which matches our previous discussion. Now, how to evaluate this
test? What is the power function?

β(µ) = Pµ(λ(X) > c)

for some c. Under the null hypothesis, λ(X) ∼ χ2
1 since

√
n(Xn − µ0)

σ
∼ N (0, 1).

Therefore, we reject the null hypothesis if

λ(X) > χ2
1,1−α

where χ2
1−α is the (1− α)-quantile of χ2

1 distribution.

Exercise: Derive the one-sided test for the mean from normal data with known mean,
using likelihood ratio statistics.

Exercise: Derive the one-sided test for the mean from normal data with unknown mean,
using likelihood ratio statistics.

Example: Binomial likelihood ratio test. Recall the coin tossing problem:

H0 : θ =
1

2
v.s. H1 : θ 6= 1

2
.

We observe xn = 0.56 (560 heads plus 440 tails out of n = 1000 trials).

The likelihood function for X1, · · · , Xn ∼Bernoulli(θ) is

L(θ) = θ
∑n
i=1Xi(1− θ)n−

∑n
i=1Xi = θnXn(1− θ)n(1−Xn)

and L(θ) is maximized by Xn.

λ(X) = 2 log

(
supθ∈[0,1] L(θ)

supθ∈Θ0
L(θ)

)
= 2 log

(
X
nXn

n (1−Xn)n(1−Xn)

2−n

)

Simplify the expression and we have

λ(X) = 2n
(
log 2 +Xn logXn + (1−Xn) log(1−Xn)

)
.

For xn = 0.56, the value of the statistic is λ(x) = 14.4348.

However, it is unclear what the distribution of λ(X) is.
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5.3.1 Asymptotics of LRT

Theorem 5.3.1 (Asymptotic behavior). For simple test H0 : θ = θ0 versus H1 : θ 6= θ0.

Suppose X1, · · · , Xn are i.i.d. f(x; θ) and θ̂ is the MLE of θ. Under H0, as n→∞,

λ(X)
d−→ χ2

1

in distribution. The p-value is given by P(χ2
1 ≥ λ(X)).

Proof: Let θ̂n be the MLE and θ0 is the parameter under null hypothesis:

`(θ0)− `(θ̂n) = `′(θ̂n)(θ0 − θ̂n) +
`′′(θ̂n)

2
(θ̂n − θ0)2 + remainder.

Note that `′(θ̂n) = 0. Thus

λ(X) = 2(`(θ̂n)− `(θ0)) ≈ −`′′(θ̂n)(θ̂n − θ0)2

= −`
′′(θ̂n)

n
· [
√
n(θ̂n − θ0)]2

If the null is true, `′′(θ̂n) ≈ −nI(θ0) where I(θ0) is Fisher information. By asymptotical

normality of MLE,
√
n(θ̂n − θ0) → N (0, 1/I(θ0)). Therefore, by Slutsky’s theorem, it

holds that λ(X)
d−→ χ2

1 in distribution.

Therefore, a size-α test is: reject H0 if

λ(X) > χ2
1,1−α

where χ2
1,1−α is the (1− α)-quantile of χ2

1.

How to compute the p-value? Note that p-value equals the probability of observing a
new value which is equal to or more extreme than the observed one. Thus

p-value = P(χ2
1 ≥ λ(x1, · · · , xn))

where λ(x1, · · · , xn) is the observed value of the likelihood ratio statistic. Or we can
follow another definition: p-value is the smallest size/level at which we reject the null
hypothesis. Thus the p-value equals α∗ which satisfies

λ(x1, · · · , xn) = χ2
1,1−α∗

since the rejection region is
Rα = (χ2

1,1−α,∞).

In other words,

1− α∗ = P(χ2
1 ≤ λ(x1, · · · , xn))⇐⇒ α∗ = P(χ2

1 ≥ λ(x1, · · · , xn)).

In the previous example where λ(x1, · · · , xn) = 14.4348, the p-value is

P(χ2
1 ≥ 14.4348) ≈ 0.0001.

So we reject the null hypothesis since the evidence is very strong against the null hypoth-
esis.
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5.3.2 General LRT and asymptotics

Theorem 5.3.2. Under certain regularity condition for the pdf/pmf of the sample (X1, · · · , Xn),
it holds that under H0 : θ ∈ Θ0,

λ(X)
d−→ χ2

r−q

in distribution as n→∞ where

• r is the number of free parameters specified by θ ∈ Θ;

• q is the number of free parameter specified by θ ∈ Θ0

Example: Suppose θ = (θ1, · · · , θq, θq+1, · · · , θr) ⊆ Rr. Let

Θ0 = {θ ∈ Rr : (θq+1, · · · , θr) = (θq+1,0, · · · , θr,0)}

which means the degree of freedom of Θ0 is q. Then under H0, it holds that

λ(X)→ χ2
r−q.

Question: How to calculating the degree of freedom? Suppose the parameter space Θ
contains an open subset in Rr and Θ0 contains an open subset in Rq. Then r − q is the
degree of freedom for the test statistic.

We reject H0 at the size α if
λ(X) > χ2

r−q,1−α

where χ2
r−q,1−α is 1− α quantile of χ2

r−q distribution.

The p-value is calculated via

p-value = Pθ0(χ
2
r−q ≥ λ(x))

where λ(x) is the observed data.

Example: Mendel’s pea. Mendel bred peas with round yellow and wrinkled green
seeds. The progeny has four possible outcomes:

{Yellow, Green} × {Wrinkled, Round}

His theory of inheritance implies that P(Yellow) = 3/4, P(Green) = 1/4, P(Round) = 3/4,
and P(Wrinkled) = 1/4:

p0 =

(
9

16
,

3

16
,

3

16
,

1

16

)
.

What he observed in the trials are X = (315, 101, 108, 32) with n = 556.

We want to test if Mendel’s conjecture is valid:

H0 : p = p0, H1 : p 6= p0.

It means:

Θ = {p : p ≥ 0,
4∑
i=1

pi = 1}, Θ0 := {p : p = p0}.

The number of each type follows multinomial distribution. The multinomial distribution
has its pmf as

f(x1, · · · , xk|p) =

(
n

x1, · · · , xk

)
px11 · · · p

xk
k , xi ∈ Z+,

k∑
i=1

xi = n,

k∑
i=1

pi = 1.

72



• Suppose there are k different types of coupons. The probability of getting coupon
i is pi. Collect n coupons and ask what is the distribution for the count of each
coupon Xi?

• It satisfies the multinomial distribution with parameter n and p, denoted byM(n,p).

• It is a generalization of binomial distribution.

What is the MLE of p? We have shown in the homework that

p̂i =
xi
n
.

Therefore,
p̂ = (0.5665, 0.1817, 0.1942, 0.0576).

Consider the LRT:

λ(X) = 2 log
supp:p≥0,

∑
i pi=1 L(p)

supp:p=p0 L(p)

= 2 log

∏k
i=1 p̂

xi
i∏k

i=1 p
xi
0i

= 2
k∑
i=1

xi log
p̂i
p0i

If the null is true, then it holds that λ(X)
d−→ χ2

(4−1)−0 = χ2
3. In this case, λ(X) = 0.4754

and p-value is
Pp0(χ

2
3 ≥ 0.4754) = 0.9243

which is not significant. Thus we retain the null hypothesis.

5.4 Goodness-of-fit test

Recall that when we discuss the parametric inference, we assume the data are drawn
from a certain family of distribution. One hidden unanswered question is: are the data
indeed samples from a specific distribution? More precisely, suppose we observe a set of
samples X1, · · · , Xn, we ask if the underlying population distribution equals to another
F0. This is a quite fundamental problem since it will provide an approach to verify if our
assumption on the family of distribution is valid. This is actually a hypothesis testing
problem: we want to know if

H0 : FX = F0 versus H0 : FX 6= F0

where F0 is the cdf of a specific distribution. This problem gives rise to an important
topic in hypothesis testing: Goodness-of-fit test. In this lecture, we will discuss a few
approaches to test the goodness-of-fit.

5.4.1 Likelihood ratio tests

In fact, likelihood ratio tests can be smartly used in goodness-of-fit tests. Suppose
X1, · · · , Xn are samples from FX . We first divide the range of the data into k disjoint
subintervals:

Ii = (ai, ai+1], 1 ≤ i ≤ k, R = ∪ki=1Ii
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where a0 and ak+1 are −∞ and ∞ respectively. Then we count

ni = |{Xk : Xk ∈ (ai, ai+1], 1 ≤ k ≤ n}|, n =
k∑
i=1

ni.

Note that the probability of a random variable taking value Ii equals

pi = P(X ∈ Ii) = FX(ai+1)− FX(ai).

Then the random variable (n1, · · · , nk) is actually Multinomial distribution M(n,p)
where p = (p1, · · · , pk)> is a nonnegative vector with

∑k
i=1 pi = 1. Now how to use

this fact to do the following testing problem

H0 : FX = F0 versus H1 : FX 6= F0.

One natural way is to first compute pi0 = F0(ai+1)− F0(ai), 1 ≤ i ≤ k; then test if

H0 : pi = pi0, ∀1 ≤ i ≤ k versus H1 : pi 6= pi0 for some i,

where H0 : pi = pi0 is a necessary condition of FX = F0.

This is similar to the example we have covered before. We can use likelihood ratio test
which is equal to

λ(X) = 2
k∑
i=1

ni log
p̂i
pi0

= 2n
k∑
i=1

p̂i log
p̂i
pi0

where p̂i = ni/n. If the null is true, then

λ(X)
d−→ χ2

k−1, n→∞.

Therefore, we can reject the null hypothesis at level α if the observed value λ(x) of LRT
is too large:

λ(x) > χ2
k−1,1−α.

Exercise: Verify that the LRT is

λ(X) = 2n
k∑
i=1

p̂i log
p̂i
pi0
.

In fact, we have derived it in the example of Mendel’s peas.

Remember that the LRT is actually depending on how we partition the data. In practice,
we usually perform the partitioning such that each interval has a substantial amount of
data (say 10∼20) or each interval contains an approximately same amount of data.

5.4.2 Pearson χ2-test

Another famous and commonly-used test for the goodness-of-fit is the Pearson χ2-test.
Let’s first state the main idea. Similar to our previous discussion, instead of testing
FX = F0 directly, we put the data points into several categories and then test H0 : pi = p̂i0
for all 1 ≤ i ≤ k where

pi = FX(ai+1)− FX(ai), pi0 = F0(ai+1)− F0(ai).
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Let Oi = np̂i be the number of observed samples in the ith category and Ei = npi is the
expected number of samples in the ith category. The Pearson χ2-test uses the following
statistic:

χ2 =
k∑
i=1

(Oi − Ei)2

Ei
= n

k∑
i=1

(p̂i − pi)2

pi
.

Now the question is: what is the distribution of χ2 if the null is true?

Theorem 5.4.1. Under null hypothesis, it holds that

χ2 = n

k∑
i=1

(p̂i − pi0)2

pi0

d−→ χ2
k−1.

Example: Mendel’s peas. The observed number of four possible outcomes is x =
(316, 101, 108, 32) and

p̂ = (0.5665, 0.1817, 0.1942, 0.0576)

and

p0 =

(
9

16
,

3

16
,

3

16
,

1

16

)
.

The χ2-statistic is

χ2 = n
4∑
i=1

(p̂i − pi0)2

pi0
= 0.4849

where n = 556. The p-value is

p− value = P(χ2
3 > 0.4849) = 0.9222.

The result is not significant enough to reject the null hypothesis.

Question: Can we provide a justification for this theorem? In fact, the proof simply
follows from our homework and multivariate normal distribution. Suppose (X1, · · · , Xk)
is a random variable of multinomial distributionM(n,p). Then the MLE p̂i of pi = Xi/n.
Recall that the MLE satisfies asymptotic normality:

√
n(p̂− p)

d−→ N (0,Σ) , Σij =

{
pi(1− pi), i = j,

−pipj, i 6= j.

In fact, the covariance matrix is equivalent to the following form

Σ = diag(p)− pp>

Note that this covariance matrix is not strictly positive semidefinite since one eigenvalue
is zero. It is called the degenerate multivariate normal distribution, i.e., one coordinate
in the random vector can be represented as a linear combination of other coordinates.
Now let’s study why

χ2 =
k∑
i=1

(p̂i − pi)2

pi
∼ χ2

k−1

holds. First of all, χ2-statistic can be written as the squared norm of a vector:

χ2 = ‖
√
n diag(p)−1/2(p̂− p)‖2
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where diag(p) is a diagonal matrix whose diagonal entries are given by p.

What is the distribution of
√
n[diag(p)]−1/2(p̂ − p)? Since

√
n(p̂ − p) is asymptotically

normal, so is
√
n[diag(p)]−1/2(p̂− p). Its covariance matrix is given by

Cov(
√
n[diag(p)]−1/2(p̂− p)) = [diag(p)]−1/2Σ[diag(p)]−1/2 = Ik −

√
p
√
p>.

Thus √
n[diag(p)]−1/2(p̂− p)

d−→ N (0, Ik −
√
p
√
p>).

Now we can see that Ik−
√
p
√
p> is actually a projection matrix. Since it is a projection

matrix of rank k−1, we can find a matrixU (eigenvectors of Ik−
√
p
√
p> w.r.t. eigenvalue

1) of size k × (k − 1) such that Ik −
√
p
√
p> = UU> and U>U = Ik−1.

Exercise: Show that Ik −
√
p
√
p> is an orthogonal projection matrix and compute its

eigenvalues (with multiplicities). Remember that
∑k

i=1 pi = 1.

Suppose Z is N (0, Ik−1). Then

UZ ∼ N (0,UU>)

which matches the asymptotic distribution of
√
n[diag(p)]−1/2(p̂ − p). Therefore, its

squared Euclidean norm is chi-squared distribution with degree of freedom k − 1.

5.4.3 Test on Independence

Suppose (Xi, Yi), 1 ≤ i ≤ n are i.i.d. samples from FX,Y . Can we design a procedure
to test if X and Y are independent? In fact, we can use χ2 Pearson test and likelihood
ratio test. How? We still start with discretization by partitioning the range of X and Y
respectively:

Range(X) =
r⋃
i=1

Ai, Range(Y ) =
c⋃
j=1

Bj

where {Ai}ri=1 and {Bj}cj=1 are partitions of Range(X) and Range(Y ) respectively (mu-
tually disjoint).

Denote
pi = P(X ∈ Ai), qj = P(Y ∈ Bj), θij = P(X ∈ Ai, Y ∈ Bj).

To test the independence, we are actually interested in testing the following hypothe-
sis

H0 : θij = piqj, ∀i, j, versus H1 : θij 6= piqj, for some i, j.

The null hypothesis H0 is a necessary condition for the independence of X and Y.

How to construct a testing statistic? We can first use LRT. Note that {nij}1≤i≤r,1≤j≤c
satisfies multinomial distribution M(n, {θij}1≤i≤r,1≤j≤c), whose pmf is

f(n11, n12, · · · , nrc;n, θij) =

(
n

n11, n12, · · · , nrc

) r∏
i=1

c∏
j=1

θ
nij
ij

where n =
∑

i,j nij.

Exercise: Show the MLE for p and q under H0 : θij = piqj is given by

p̂i =
1

n

c∑
j=1

nij, q̂j =
1

n

r∑
i=1

nij.
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Exercise: Show the likelihood ratio statistic for this hypothesis testing problem is

λ(X) = 2
r∑
i=1

c∑
j=1

nij log
θ̂ij
p̂iq̂j

= 2n
r∑
i=1

c∑
j=1

θ̂ij log
θ̂ij
p̂iq̂j

.

What is the asymptotic distribution of λ(X) under null hypothesis?

First note that we don’t know pi, qj, and θij since the joint distribution FX,Y is unknown.
Therefore, we need to estimate these parameters:

p̂i =
ni·
n

=
1

n

c∑
j=1

nij, q̂j =
n·j
n

=
1

n

r∑
i=1

nij, θ̂ij =
nij
n

where

ni· = |{k : Xk ∈ Ai}|, n·j = |{k : Yk ∈ Bj}|, nij = |{k : (Xk, Yk) ∈ Ai ×Bj}|

is the number of observed samples belonging to Ai ×Bj. This gives a contingency table:

B1 B2 · · · Bc Row total
A1 n11 n12 · · · n1c n1·
A2 n21 n22 · · · n2c n2·
...

...
...

. . .
...

...
Ar nr1 nr2 · · · nrc nr·

Column total n·1 n·2 · · · n·c n

Table 5.2: Contingency table

If θ̂ij deviates from p̂iq̂j by a large margin, we are likely to reject the null hypothesis.
Therefore, we introduce the following χ2-statistic:

χ2 = n
r∑
i=1

c∑
j=1

(θ̂ij − p̂iq̂j)2

p̂iq̂j

Exercise: Show that χ2 statistic is approximately equal to likelihood ratio statistic (Hint:
use Taylor approximation).

How to construct a rejection region? To do that, we need to know the asymptotic
distribution of χ2 under the null.

Theorem 5.4.2. Under the null hypothesis,

χ2 d−→ χ2
(r−1)(c−1).

As a result, we reject the null at size α if χ2 > χ2
(r−1)(c−1),1−α.

How to understand this degree of freedom in the chi-squared distribution? The degree of
freedom of Θ0 is

(r − 1) + (c− 1) = r + c− 2

since
∑r

i=1 pi =
∑c

j=1 qj = 1. The degree of freedom of Θ is rc − 1. Thus the difference
is

rc− 1− (r + c− 2) = rc− r − c+ 1 = (r − 1)(c− 1).
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Example: (DeGroot and Schervish, Ex. 10.3.5 ) Suppose that 300 persons are selected
at random from a large population, and each person in the sample is classified according
to blood type, O, A, B, or AB, and also according to Rh (Rhesus, a type of protein
on the surface of red blood cells. Positive is the most common blood type), positive or
negative. The observed numbers are given in Table 10.18. Test the hypothesis that the
two classifications of blood types are independent.

Table 5.3: Data for the two classifications of blood types
O A B AB Total

Rh positive 82 89 54 19 244
Rh negative 13 27 7 9 56

Total 95 116 61 28 300

Here we have n = 300, and we compute p̂i, q̂i, and θ̂ij: and

Table 5.4: Estimation of θij, pi, and qj
θ̂ij O A B AB p̂i

Rh positive 0.2733 0.2967 0.1800 0.0633 0.8133
Rh negative 0.0433 0.0900 0.0233 0.0300 0.1867

q̂j 0.3167 0.3867 0.2033 0.0933 1

Table 5.5: Estimation of piqj
p̂iq̂j O A B AB

Rh positive 0.2576 0.3145 0.1654 0.0759
Rh negative 0.0591 0.0722 0.0380 0.0174

The result is χ2 = 8.6037. Under the null hypothesis, χ2 ∼ χ2
3, with r = 4 and c = 2.

The p-value is
P(χ2

3 > 8.6037) = 0.0351

We reject the null hypothesis that Rh factor and ABO system are independent at the
level 0.05.

Exercise: Perform the independence test by using LRT and show if you can get a similar
result.

5.5 Kolmogorov-Smirnov test

All the tests described above rely on discretization. Is it possible to use the cdf to
construct a testing statistic? At the beginning of the course, we focus a lot on the
properties of empirical cdf and we know the empirical cdf is a consistent estimator of the
population cdf.

5.5.1 KS test for Goodness-of-fit

Now suppose we observe Xi, 1 ≤ i ≤ n and want to test if the data come from F0.

H0 : FX = F0, H1 : FX 6= F0
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Can we design a testing procedure purely based on the empirical cdf? Recall that the
empirical cdf equals:

Fn(x) =
1

n

n∑
i=1

1{Xi ≤ x}.

Under the null hypothesis, we know that Fn(x) converges to F0(x) for any fixed x as
n→∞, even uniformly, as implied by Glivenko-Cantelli theorem.

Therefore, if Fn(x) is far away from F0(x), we are more likely to reject the null hypothesis.
One intuitive way to measure the difference between Fn(x) and F0 is to use the supremum
of |Fn(x)− F0(x)|, i.e., Kolmogorov-Smirnov statistic:

TKS = sup
x∈R
|Fn(x)− F0(x)|.

If TKS is large, we are likely to reject the null hypothesis. The tricky part is: what is the
distribution of TKS under the null?
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Figure 5.2: Left: empirical cdf v.s. population cdf; Right: cdf of Kolmogorov distribution

Under null hypothesis, K =
√
nTKS satisfies the Kolmogorov distribution

P(K ≤ x) = 1− 2
∞∑
k=1

(−1)k−1e−2k2x2 .

We reject the null hypothesis if √
nTKS > K1−α,

where K1−α is the (1− α) quantile of Kolmogorov distribution.

5.5.2 Two-sample test

Let X1, · · · , Xn ∼ FX and Y1, · · · , Ym ∼ FY . Can we test H0 : FX = FY ?

H0 : FX = FY , H1 : FX 6= FY .

We construct the KS statistic as

TKS = sup
x∈R
|FX,n(x)− FY,m(x)|
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We reject the null hypothesis if √
mn

m+ n
TKS > K1−α

where
√

mn
m+n

TKS satisfies the Kolmogorov distribution under H0.

Exercise: Under null hypothesis, show that

Var

(
mn

m+ n
(FX,n − FY,m)

)
= FX(1− FX).
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Chapter 6

Linear and logistic regression

6.1 What is regression?

Suppose we observe a set of data (Xi, Yi), 1 ≤ i ≤ n. They are not necessarily identically
distributed. Now we ask this question: assume you are given a new data point Xnew, can
you make a prediction of Xnew? This is actually the core problem in machine learning:
learn a model from the data and use the model to make predictions.

• Image classification

• Credit card fraud detection

• Life expectancy prediction based on health data (blood pressure, age, weight,
height, location, diet, etc)

Here Xi is called the predictor and Yi is the response. In most cases, Xi can be a vector
consisting of many different features. How is it related to statistics? Let’s first look at a
simple case in which (Xi, Yi) is a 2D vector. Using the probabilistic assumption, we treat
the observed data as realizations of a bivariate joint distribution fX,Y (x, y) of (X, Y ).
Our goal is to make a prediction of Y based on X. Mathematically, this prediction is a
function of X, say, g(X).

How to evaluate the quality of this prediction f(X)? We hope to have a prediction f(X)
such that it is close to Y . Their “distance” function is often measured by using a loss
function. Some common loss functions include

• Quadratic loss (`2-loss): `(x, y) = (x− y)2

• Absolute loss (`1-loss): `(x, y) = |x− y|

• Logistic loss, hinge loss, KL divergence, Wasserstein distance, etc

Different loss functions may lead to vastly different results. Choosing a proper func-
tion often heavily relies on specific applications and there is no universally prefect loss
function.

6.1.1 Global minimizer under quadratic loss

Let’s focus on the most widely used `2-loss function. Note that X and Y are both
random variables. Therefore, it is natural to find out a prediction function g(·) such that
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the average loss, i.e., risk function, is as small as possible:

min
g

E(X,Y )∼fX,Y (X − g(X))2

Can we find the global minimizer to this risk function? If so, what is it? Surprisingly,
the global minimizer is the conditional expectation of Y given X, i.e., the optimal choice
of g is

g(x) = E(Y |X = x) =

ˆ
R
fY |X(y|x) dy

where f(y|x) denotes the condition pdf of Y given X,

fY |X(y|x) =
fX,Y (x, y)

fX(x)
.

Here E(Y |X) is called the regression of Y on X, the “best” predictor of Y conditioned
on X, which is also a function of X. We provide the proof to justify why conditional
expectation is the best predictor of Y under quadratic loss function.

Theorem 6.1.1. Suppose the random vector (X, Y ) has finite second moments, then

E(Y |X) = argming E(X,Y )∼fX,Y (Y − g(X))2

Proof: The proof follows from the property of conditional expectation:

EX,Y (Y − g(X))2 − EX,Y (Y − E(Y |X))2

=EX,Y [(2Y − g(X)− E(Y |X))(E(Y |X)− g(X))]

=EX EY
(

[(2Y − g(X)− E(Y |X))(E(Y |X)− g(X))]
∣∣∣X)

Note that given X, E(Y |X) and g(X) are both known. Thus

EY
(

[(2Y − g(X)− E(Y |X))(E(Y |X)− g(X))]
∣∣∣X)

= (E(Y |X)− g(X))EY
(

(2Y − g(X)− E(Y |X))
∣∣∣X)

= (E(Y |X)− g(X))(2E(Y |X)− g(X)− E(Y |X))

= (E(Y |X)− g(X))2 ≥ 0.

Therefore, E(Y |X) is the global minimizer as it holds that

EX,Y (Y − g(X))2 ≥ EX,Y (Y − E(Y |X))2.

It seems that we have already found the solution to the aforementioned prediction prob-
lem: the answer is conditional expectation. However, the reality is not so easy. What is
the main issue here? Apparently, in practice, we do not know the actual population dis-
tribution fX,Y directly. Instead, we only have an access to a set of n data points (Xi, Yi),
which can be viewed as a realization from a bivariate distribution. Therefore, we cannot
write down the loss function explicitly since it involves an expectation taken w.r.t. the
joint distribution fX,Y .
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6.1.2 Empirical risk minimization

How to resolve this problem? Recall that in bootstrap, we replace the population cdf by
the empirical cdf. It seems that we can follow a similar idea here:

E(X,Y )∼Fn(x,y) E(Y − g(X))2.

Note that the empirical cdf Fn(x, y) equals

Fn(x, y) =
1

n

n∑
i=1

1{Xi ≤ x, Yi ≤ y}

whose corresponding pmf is P(X∗ = Xi, Y
∗ = Yi) = 1/n.

Then the expectation is taken w.r.t. this discrete distribution

`(g) = E(X,Y )∼Fn(Y − g(X))2 =
n∑
i=1

(Yi − g(Xi))
2.

It suffices to minimize this loss function by a proper function g. The value of this loss
function is called training error and `(g) is called the empirical loss (risk) function. How-
ever, this cannot work directly. Why? In fact, there are infinitely many ways to minimize
this loss function. Let’s look at a simple case: suppose (Xi, Yi) are mutually different, we
can always find a curve (a function g) going through all the observed data.

6.1.3 Occam’s razor and bias-variance tradeoff

From our discussion in the previous section, we have seen that without any constraints
on g(·), it is easy to make the training error become zero. However, this does not provide
a meaningful result since it will create overfitting issue. Suppose (X, Y ) is a new sample
from fX,Y , then the generalization error associated to ĝn (the trained function from data
(Xi, Yi), 1 ≤ i ≤ n) is

E(X,Y )∼fX,Y (Y − ĝn(X))2 =

ˆ
R2

(y − ĝn(x))2f(x, y) dx dy.

can be large.

Therefore, in practice, we usually would restrict g to a class of functions. For example,
the function class G could be

• Polynomial: G = {anxn + · · ·+ a1x+ a0|ai ∈ R};

• Logistic function:

G =

{
1

exp(θx) + 1

∣∣∣θ ∈ R

}
• Neural network with multiple layers and nodes

Ideally, we would like to keep this class of functions as simple as possible, by following
Occam’s razor. What is Occam’s razor? It is the principle that states a preference for
simple theories, or “accept the simplest explanation that fits the data”. The simplest
class of function is linear function. In other words, we assume E(Y |X) as a function of
X, i.e.,

E(Y |X = x) = αx+ β
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or
G = {g(x) = αx+ β : α, β ∈ R}.

If G is linear function, we say the regressor is linear, which is the focus of this chap-
ter linear regression. You may ask what is the point of studying linear regression? Linear
regression is seemingly too naive. In fact, linear regression is extremely useful in statis-
tics. Statisticians have developed comprehensive theory for linear models. In practice,
linear models have already provided a satisfactory explanation for many datasets. More-
over, for data which are close to multivariate normal distribution, using linear model is
sufficient.

Exercise: For (X, Y ) ∼ N (µX , µY , σ
2
X , σ

2
Y , ρ), E(Y |X) is a linear function of X.

6.2 Simple linear regression

6.2.1 Data fitting using LS estimator

Starting from this lecture, we will study simple linear regression in which we have a single
predictor and the expected response given the predictor is a linear function

E(Yi|Xi = xi) = β0 + β1xi,

or we often use another equivalent form:

Yi = β0 + β1Xi + εi

where εi is the noise term.

Now suppose observe a set of data samples (Xi, Yi), how to find (β0, β1) such that the
model fits the data? Recalling in our last lecture, we use the quadratic loss function to
fit the data by empirical risk minimization:

min
g∈G

n∑
i=1

(g(Xi)− Yi)2 = min
β0,β1

n∑
i=1

(β0 + β1Xi − Yi)2

where
G = {g(x) : g(x) = β0 + β1x, β0, β1 ∈ R}.

This approach is the well-known l inear least squares method. The minimizers are called
linear least squares estimator.

Definition 6.2.1 (The least squares estimates). The least squares estimates are the

values (β̂0, β̂1) such that the residual sum of squares or RSS is minimized, i.e.,

(β̂0, β̂1) = argminβ0,β1

n∑
i=1

(Yi − (β0 + β1Xi))
2.

Exercise: The empirical risk function R(β0, β1) =
∑n

i=1(Yi − (β0 + β1Xi))
2 is a convex

function of β0 and β1.

Lemma 6.2.1. The least squares estimator is given by

β̂0 = Y n − β̂1Xn, β̂1 =

∑
iXiYi − nXnY n∑

iX
2
i − nX

2

n

=

∑
i(Xi −Xn)(Yi − Y n)∑

i(Xi −Xn)2
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Proof: Define R(β0, β1) =
∑n

i=1(Yi − (β0 + β1Xi))
2.

∂R

∂β0

= 2
n∑
i=1

(β0 + β1Xi − Yi) = 0,
∂R

∂β1

= 2
n∑
i=1

Xi(β0 + β1Xi − Yi) = 0

Simplifying the equations:

β0 + β1Xn = Y n, β0nXn + β1

n∑
i=1

X2
i =

n∑
i=1

XiYi (6.2.1)

Solving for (α, β) gives the linear squares estimator. Substitute β0 = Y n−β1Xn into the
second equation:

n(Y n − β1Xn)Xn + β1

n∑
i=1

X2
i =

n∑
i=1

XiYi

It gives(
n∑
i=1

X2
i − nX

2

n

)
β1 =

n∑
i=1

XiYi − nXnY n ⇐⇒ β̂1 =

∑
i(Xi −Xn)(Yi − Y n)∑

i(Xi −Xn)2

Then β̂0 = Y n − β̂1Xn, which finishes the proof.

Suppose we have a set of (β̂0, β̂1). The predicted value at Xi is given by

Ŷi = β̂0 + β̂1Xi,

where

• β̂0 is related to the sample mean of Xi and Yi.

• β̂1 is the ratio of sample covariance of (Xi, Yi) over the sample variance of Xi.

The residuals (prediction error) are

ε̂i = Yi − Ŷi = Yi − (β̂0 + β̂1Xi)

In other words, the least squares approach aims to minimize the sum of squares of the
prediction error.

Example: Predict grape crops: the grape vines produce clusters of berries and a count
of these clusters can be used to predict the final crop yield at harvest time.

• Predictor: cluster count, {Xi}ni=1

• Response: yields {Yi}ni=1

The LS estimator of (β0, β1) is

β̂0 = −1.0279, β̂1 = 0.0514
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Year Cluster count (X) Yields (Y )
1971 116.37 5.6
1973 82.77 3.2
1974 110.68 4.5
1975 97.5 4.2
1976 115.88 5.2
1977 80.19 2.7
1978 125.24 4.8
1979 116.15 4.9
1980 117.36 4.7
1981 93.31 4.1
1982 107.46 4.4
1983 122.3 5.4

Table 6.1: Data source: [Casella, Berger, 2001]. The data in 1972 is missing due to
Hurricane.
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6.2.2 Best linear unbiased estimator

All the analyses so far do not involve any statistical noise. Here we ask such a question: is
the least squares estimator optimal under statistical models? Here we introduce a fairly
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general model. Consider Yi is the value of the response variable in the ith case and Xi is
the value of the predictor variable. We assume that

Yi = β0 + β1Xi + εi, 1 ≤ i ≤ n

where εi are uncorrelated, zero-mean, and equal variance random variables:

E(εi) = 0, Var(εi) = σ2, 1 ≤ i ≤ n

and
Cov(εi, εj) = 0, 1 ≤ i 6= j ≤ n.

The following parameters are unknown and to be estimated:

• β0: intercept

• β1: slope

• σ2: unknown variance

An estimator of β is essentially a function of the response Y1, · · · , Yn. Now let’s only
focus on a small set of estimators: the linear estimators of (β0, β1), i.e., these estimators
of the following form {

n∑
i=1

αiYi : αi ∈ R, 1 ≤ i ≤ n

}
.

In other words, we are looking at the estimators which are given by the linear combination
of Yi where the coefficients αi are to be determined. In particular, we are interested in
finding an unbiased linear estimator for (β0, β1) with the smallest variance. What is
it?

We take β1 as an example as the same argument applies to β0 accordingly. In order to
ensure unbiasedness of the estimator, we need to have

E

(
n∑
i=1

αiYi

)
=

n∑
i=1

αi EYi =
n∑
i=1

αi(β0 + β1Xi)

= β0

n∑
i=1

αi + β1

n∑
i=1

αiXi = β1.

This gives
n∑
i=1

αi = 0,
n∑
i=1

αiXi = 1.

What is the variance of
∑n

i=1 αiYi? Note that Yi are uncorrelated and then

Var

(
n∑
i=1

αiYi

)
=

n∑
i=1

α2
i Var(Yi) +

∑
i<j

αiαj Cov(Yi, Yj) = σ2

n∑
i=1

α2
i .

Now to find the best linear unbiased estimator (BLUE), it suffices to minimize:

min
αi

1

2

n∑
i=1

α2
i s.t.

n∑
i=1

αi = 0,
n∑
i=1

αiXi = 1.
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We resort to the method of Lagrangian multiplier to find the optimal αi. Let λ and µ be
the multiplier, and then

L(αi, λ, µ) =
1

2

n∑
i=1

α2
i − λ

n∑
i=1

αi − µ

(
n∑
i=1

αiXi − 1

)
.

The optimal solution satisfies:

∂L

∂αi
= αi − λ− µXi = 0, 1 ≤ i ≤ n,

n∑
i=1

αi = 0,

n∑
i=1

αiXi = 1.

Substituting αi = λ+ µXi into the second and third equations:

λ+Xnµ = 0,

nXnλ+
n∑
i=1

X2
i µ = 1.

Solving the equation gives:

µ =
1∑n

i=1X
2
i − nX

2

n

, λ = − Xn∑n
i=1 X

2
i − nX

2

n

.

Now we have the BLUE:

β̂1 =
n∑
i=1

αiYi =
n∑
i=1

(µXi + λ)Yi

=
1

Sxx

n∑
i=1

(Xi −Xn)Yi

=
1

Sxx

n∑
i=1

(Xi −Xn)(Yi − Y n) = β̂1,LS

where
∑n

i=1(Xi−Xn)Y n = 0. In other words, the least squares estimator is the BLUE!

Exercise: Find the mean and variance of β̂0 and β̂1. Are β̂0 and β̂1 uncorrelated?

6.2.3 Matrix form

We have derived the LS estimator of β0 and β1. Now we incorporate linear algebra into
LS estimation, which will be very useful for our future study. First, we let

X =

1 X1
...

...
1 Xn

 , Y =

Y1
...
Yn

 , ε =

ε1...
εn

 , β =

[
β0

β1

]

Then the data equation becomes

Y = Xβ + ε.
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Recall that the least squares estimator of β0 and β1 satisfy (6.2.1)

β0 + β1Xn = Y n, β0nXn + β1

n∑
i=1

X2
i =

n∑
i=1

XiYi

Rewriting them into matrix form, we have[
n

∑n
i=1 Xi∑n

i=1Xi

∑n
i=1X

2
i

] [
β0

β1

]
=

[ ∑n
i=1 Yi∑n

i=1XiYi

]
⇐⇒X>Xβ = X>Y .

Therefore, we have

β̂ = (X>X)−1X>Y =
1

n
∑n

i=1X
2
i − (

∑
iXi)2

[ ∑n
i=1X

2
i −

∑n
i=1Xi

−
∑n

i=1Xi n

] [ ∑n
i=1 Yi∑n

i=1 XiYi

]
.

Exercise: Verify that β̂ above matches our previous derivation.

Question: What is the mean and covariance of β̂?

Lemma 6.2.2. Under the assumption of simple linear regression, i.e., εi are uncorrelated,
equal variance, and zero-mean random variables. The LS estimator β̂ has mean and
variance as follows:

E(β̂) = β, Cov(β̂) = σ2(X>X)−1 =
σ2

n

1∑
iX

2
i − nX

2

n

[∑
iX

2
i −nXn

−nXn n

]
.

Proof: Note that the LS estimator is

β̂ = (X>X)−1X>Y = (X>X)−1X>(Xβ + ε) = β + (X>X)−1X>ε.

By linearity of expectation, E β̂ = β since E ε = 0. For its covariance, we know that the
covariance equals

Cov(β̂) = E(β̂ − β)(β̂ − β)>

= E(X>X)−1X>εε>X(X>X)−1

= (X>X)−1X> E(εε>)X(X>X)−1

= σ2(X>X)−1X>X(X>X)−1

= σ2(X>X)−1.

6.3 Simple linear regression under normal error model

Recall the data of old faithful geyser. We want to understand the relation between
eruption and waiting time.

Using the formula discussed before, it is easy to fit a linear model to the data, using
R.

> data

eruptions waiting

1 3.600 79

2 1.800 54
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3 3.333 74

4 2.283 62

> lmfit <- lm(eruptions~waiting, data = data)

> lmfit$coefficients

(Intercept) waiting

-1.87401599 0.07562795

We obtain β̂0 = −1.874 and β̂1 = 0.0756. Then we have a linear model:

Y = −1.874 + 0.0756X + ε

where ε is the error.

Now we ask the following questions: suppose we observe the waiting time is X = 70, what
is the predicted value of the eruption time? Can you construct a confidence interval? Or
can we perform a hypothesis testing such as whether β1 = 0 or not?

To construct a confidence interval, we need to assume more on the linear model, especially
the distribution of the error. From now on, we will discuss a commonly-used model in
linear regression: normal error model.

Under normal error model, we are assuming that each response Yi given the predictor Xi

is a normal random variable:

Yi = β0 + β1Xi + εi, 1 ≤ i ≤ n

where εi ∼ N (0, σ2) are i.i.d. normal random variables with unknown σ2. In other words,
Yi ∼ N (β0+β1Xi, σ

2) are independent random variables with equal variance. Apparently,
the least squares estimator in this case is the BLUE, i.e., best linear unbiased estimator.
The reason is simple: all the noise εi are i.i.d., and thus their covariance satisfies:

E εiεj =

{
0, i 6= j,

σ2, i = j,
⇐⇒ E εε> = σ2In.
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6.3.1 MLE under normal error model

Since we observe a set of random variables Yi with unknown parameters β0, β1, and σ2,
it is natural to use maximal likelihood estimation to estimate the parameter.

Lemma 6.3.1. The MLE of β = (β0, β1)> matches the least square estimators. The
MLE of σ2 is

σ̂2
MLE =

1

n

n∑
i=1

ε̂2i =
1

n

n∑
i=1

(Yi − β̂0 − β̂1Xi)
2

where ε̂i = Yi − Ŷi = Yi − β̂0 − β̂1Xi.

Proof: Because of the independence among Yi, the likelihood function is

L(β0, β1, σ
2) =

n∏
i=1

1√
2πσ2

exp

(
−(Yi − (β0 + β1Xi))

2

2σ2

)

The log-likelihood function is

`(β0, β1, σ
2) = −n

2
log σ2 − 1

2σ2

n∑
i=1

(Yi − (β0 + β1Xi))
2.

To maximize the log-likelihood function, we first maximize over β0 and β1 whose maxi-
mizer equals the minimizer to the least squares risk function:

(β̂0, β̂1) = argmin(β0,β1)

n∑
i=1

(Yi − (β0 + β1Xi))
2

How about the MLE of σ2? Once β is fixed, we just need to take the derivative w.r.t.
σ2:

∂`

∂σ2
= − n

2σ2
+

1

2σ4

n∑
i=1

(Yi − β̂0 − β̂1Xi)
2 = 0

and the MLE of σ2 is

σ̂2
MLE =

1

n

n∑
i=1

(Yi − (β̂0 + β̂1Xi))
2 =

1

n

n∑
i=1

ε̂2i .

Question: What is the distribution of β̂ = (β̂0, β̂1)>?

Knowing its distribution is crucial in constructing a confidence interval. Note that the
least squares estimator β̂ is obtained by solving a linear equation X>Xβ = X>Y .

β̂ = (X>X)−1X>Y

= (X>X)−1(X>Xβ +X>ε)

= β + (X>X)−1X>ε

where

X>X =

[
n

∑n
i=1Xi∑n

i=1Xi

∑n
i=1 X

2
i

]
, X>Y =

[ ∑n
i=1 Yi∑n

i=1XiYi

]
.
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Note that ε ∼ N (0, σ2In) is a normal random vector in Rn. By linearity of multivariate

normal distribution, β̂ is also multivariate normal, with mean and variance:

E β̂ = β,

Cov(β̂) = E(β̂ − β)(β̂ − β)>

= E(X>X)−1X>εε>X(X>X)−1

= σ2(X>X)−1.

As a result, β̂ ∼ N (β, σ2(X>X)−1) holds where

(X>X)−1 =

[
n

∑n
i=1Xi∑n

i=1Xi

∑n
i=1X

2
i

]−1

=
1

n

1∑
iX

2
i − nX

2

n

[∑
iX

2
i −nXn

−nXn n

]

From the result above, we have

β̂0 ∼ N

(
β0,

σ2
∑n

i=1 X
2
i /n∑n

i=1X
2
i − nX

2

n

)
, β̂1 ∼ N

(
β1,

σ2∑n
i=1X

2
i − nX

2

n

)
.

Now, can we construct a confidence interval for β0 and β1? The parameter σ2 is unknown.
We could replace the unknown σ2 by its MLE σ̂2 = n−1

∑n
i=1 ε̂

2
i . Is the MLE an unbiased

and consistent estimator of σ2?

Definition 6.3.1. The error sum of squares is

SSE =
n∑
i=1

ε̂2i

where ε̂i = Yi − (β̂0 + β̂1Xi) are the residuals. The mean squared error (MSE) is

MSE =
SSE

n− 2

Theorem 6.3.2. Under normal error model, the error sum of squares SSE satisfies

• SSE/σ2 ∼ χ2
n−2.

• SSE is independent of β̂.

As a result, MSE is a consistent and unbiased estimator of σ2:

σ̂2 =
1

n− 2

n∑
i=1

ε̂2i

since
∑n

i=1 ε̂
2
i ∼ χ2

n−2 and the consistency follows from law of large number.

Proof: Now let’s prove the theorem. The proof is very straightforward. Note that

ε̂ = Y − Ŷ = Y −Xβ̂
= Y −X(X>X)−1X>Y

= (In −X(X>X)−1X>)(Xβ + ε)

= (In −X(X>X)−1X>)ε

92



where (In −X(X>X)−1X>)X = 0 and Ŷ = Xβ̂.

In fact, the matrix P = In −X(X>X)−1X> is a projection matrix with rank n − 2.
Therefore,

SSE = ε̂>ε̂ = ε>(In −X(X>X)−1X>)ε ∼ σ2χ2
n−2.

We leave it as an exercise to show P is a projection matrix. The rank of P follows from

Tr(P ) = Tr(In−X(X>X)−1X>) = Tr(In)−Tr((X>X)−1X>X) = n−Tr(I2) = n−2

where (X>X)−1X>X is a 2 by 2 identity matrix. Why SSE is independent of β̂? This
is because

β̂ = β + (X>X)−1X>ε

and we can show that β̂ is uncorrelated with ε̂.

Cov(β̂, ε̂) = E(β̂ − β)ε̂>

= E(X>X)−1X>εε>(In −X(X>X)−1X>)

= σ2(X>X)−1X>(In −X(X>X)−1X>) = 0.

For two random Gaussian vectors which are uncorrelated, they are independent.

Exercise: Show that P is a symmetric projection matrix, i.e., P 2 = P with rank
n− 2.

Exercise: Show that (In −X(X>X)−1X>)X = 0.

6.3.2 Confidence interval

Note that MSE is a consistent estimator of σ2. Therefore, after replacing σ2 with MSE,
we have

β̂0 − β0 ∼ N
(

0,
MSE

n

∑
iX

2
i

Sxx

)
, β̂1 − β1 ∼ N

(
0,
MSE

Sxx

)
where Sxx =

∑n
i=1 X

2
i − nX

2

n.

Note that an estimation of the standard deviation se(β̂0) and se(β̂1) is

ŝe(β̂0) =

√
MSE

∑n
i=1X

2
i

nSxx
, ŝe(β̂0) =

√
MSE

Sxx
.

Then we have the following result.

Lemma 6.3.3. Under normal error model, the LS estimator β̂ satisfies

β̂0 − β0

ŝe(β̂0)
∼ tn−2,

β̂1 − β1

ŝe(β̂0)
∼ tn−2.

Proof: We just prove for β̂0 since the justification applies to β̂1 similarly.

β̂0 − β0

ŝe(β̂0)
=

(
β̂0 − β0

se(β̂0)

)
/

(
ŝe(β̂0)

se(β̂0)

)
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where

β̂0 − β0

se(β̂0)
∼ N (0, 1),

ŝe(β̂0)

se(β̂0)
=

√
MSE

σ2
=

√
SSE

(n− 2)σ2
,

SSE

σ2
∼ χ2

n−2.

By definition of Student t-distribution, i.e., tν = Z√
χ2
ν/ν
, where Z ∼ N (0, 1) is independent

of χ2
ν , we have our result.

Theorem 6.3.4 (Hypothesis testing for β). Under normal error model, we have

• (1− α) confidence interval for β0 and β1 is

β̂0 ± tn−2,1−α
2
ŝe(β̂0), β̂1 ± tn−2,1−α

2
ŝe(β̂1)

• Test H0 : β1 = 0 v.s. H1 : β1 6= 0. A test of size α is to reject H0 if

|w| =

∣∣∣∣∣ β̂1

ŝe(β̂1)

∣∣∣∣∣ > tn−2,1−α
2

The p-value is P(|tn−2| > |w|) where tn−2 is a Student-t distribution of degree n− 2.

If n is large, we have

β̂0 − β0

ŝe(β̂0)
∼ N (0, 1),

β̂1 − β1

ŝe(β̂0)
∼ N (0, 1)

Thus with large samples, it is safe to replace tn−2 byN (0, 1) (e.g. tn−2,1−α
2

by z1−α
2
.)

6.3.3 Prediction interval of the mean response

Note that if we have β̂, we can predict the mean response value Y∗ for a newly given
X∗. The population expected mean response is Y∗ = β0 + β1X∗ and a natural choice of
predicted value of Y∗ is given by

Ŷ∗ = β̂0 + β̂1X∗

How to get a confidence interval for Y∗?

The mean of Ŷ∗ is
E(Ŷ∗) = β0 + β1X∗.

For the variance, we have

Var(Ŷ∗) = Var(β̂0) +X2
∗ Var(β̂1) + 2X∗Cov(β̂0, β̂1)

=
σ2

n(
∑

iX
2
i − nX

2

n)

(∑
i

X2
i + nX2

∗ − 2nX∗Xn

)

=
σ2

n(
∑

iX
2
i − nX

2

n)

(∑
i

X2
i − nX

2

n + nX
2

n + nX2
∗ − 2nX∗Xn

)

= σ2

(
1

n
+

(Xn −X∗)2∑
iX

2
i − nX

2

n

)
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What is the distribution of Ŷ∗?

Ŷ∗ ∼ N
(
Y∗,Var(Ŷ∗)

)
.

Replacing σ2 by σ̂2 in Var(Ŷ∗), we have

Ŷ∗ − Y ∗

ŝe(Ŷ∗)
∼ tn−2.

where

ŝe(Ŷ∗) =
√
MSE

√
1

n
+

(Xn −X∗)2∑
iX

2
i − nX

2

n

Therefore, an approximate 1− α confidence interval of the mean response value is

(Ŷ∗ − tn−2,1−α
2
ŝe(Ŷ∗), Ŷ∗ + tn−2,1−α

2
ŝe(Ŷ∗))

6.4 Multiple regression

Simple linear regression only involves only one predictor. In practice, we often have
multiple features to predict a response. If we want to predict a person’s weight, we can
use his/her height, gender, diet, age, etc. Here we generalize simple linear regression to
multiple linear regression with more than one variables.

Definition 6.4.1 (Multiple linear regression model).

Yi = β0 + β1Xi1 + · · · βp−1Xi,p−1 + εi,

where

• Yi: value of the response variable Y in the ith case

• Xi1, · · · , Xi,p−1 : values of the variables X1, · · · , Xp−1

• β0, · · · , βp−1 : regression coefficients. p: the number of regression coefficients; in
simple regression p = 2

• Error term: E(εi) = 0, Var(εi) = σ2 and Cov(εi, εj) = 0

The mean response is

E(Y |X1, · · · , Xp) = β0 + β1X1 + · · ·+ βp−1Xp.

The model equation can be written into

Y︸︷︷︸
n×1

= X︸︷︷︸
n×p

β︸︷︷︸
p×1

+ ε︸︷︷︸
n×1

where

X :=


1 X11 X12 · · · X1,p−1
...

...
... · · · ...

1 Xi1 Xi2 · · · Xi,p−1
...

...
... · · · ...

1 Xn1 Xn2 · · · Xn,p−1

 , β :=


β0

β1
...

βp−1


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Under model assumption:

E(ε) = 0, Cov(ε) = E(εε>) = σ2In.

Now let’s consider the least squares estimator for the multiple regression. The LS esti-
mator is given by

β̂LS = argminβ∈Rp ‖Xβ − Y ‖2

where ‖Xβ − Y ‖2 = (Xβ − Y )>(Xβ − Y ).

How to find the global minimizer to this program? A few facts on how to take gradients
of vector-valued functions:

Lemma 6.4.1. Let 〈x,v〉 = v>x denote the inner product between two column vectors
x and v and A is a symmetric matrix:

f1(x) = x>v,
∂f1

∂x
= v,

f2(x) = x>x,
∂f2

∂x
= 2x,

f3(x) = x>Ax,
∂f3

∂x
= 2Ax,

∂2f3

∂x2
= 2A.

Proof: For f1(x), we know f1(x) =
∑n

i=1 vixi is a linear function of x:

∂f1

∂xi
= vi,

∂f1

∂x
=

v1
...
vn

 = v.

For f2(x), f2(x) =
∑n

i=1 x
2
i is a quadratic function.

∂f2

∂xi
= 2xi,

∂f2

∂x
=

2x1
...

2xn

 = 2x.

For f3(x), f3(x) = x>Ax =
∑

i,j aijxixj.

∂f3

∂xi
=

∂

∂xi

(
n∑
j 6=i

aijxj +
n∑
j 6=i

ajixj + aiix
2
i

)
xi

=
n∑
j 6=i

aijxj +
n∑
j 6=i

ajixj + 2aiixi

= 2
n∑
j=1

aijxj = 2[Ax]i,

where aij = aji follows from symmetry of A.

Therefore,
∂f3

∂x
= 2Ax.
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The Hessian of f3 is defined by

∇2f3 =

[
∂2f3

∂xi∂xj

]
1≤i,j≤n

.

Then
∂2f3

∂xi∂xj
=

∂

∂xj

∂f3

∂xi
=

∂

∂xj

(
2

n∑
j=1

aijxj

)
= 2aij.

Theorem 6.4.2. Suppose X is of rank p, i.e., all the columns are linearly independent,
then the least squares estimator is

β̂LS = (X>X)−1X>Y .

Proof: Define f(β) = ‖Xβ − Y ‖2 = β>X>Xβ − 2β>X>Y + ‖Y ‖2:

∂f

∂β
= 2(X>Xβ −X>Y ) = 0

which gives
X>Xβ = X>Y .

Suppose X ∈ Rn×p is of rank p, then X>X ∈ Rp×p is also rank p and invertible. Thus
the LS estimator is

β̂ = (X>X)−1X>Y

given that the rank of X equals p. Now let’s check its optimality:

∂2f

∂β2
= 2X>X � 0.

Why X>X � 0? Its quadratic form v>X>Xv = ‖Xv‖2 > 0 for any v 6= 0.

Example: Polynomial regression. Given a set of distinct samples (Xi, Yi), 1 ≤ i ≤ n, we
are seeking for a polynomial f(x) = βpx

p + · · ·+ β1x+ β0 of degree p that fits the data.
We want to find a curve such that the squared distance from each point to the curve is
minimized:

min
βk,0≤k≤p

n∑
i=1

(Yi − f(Xi))
2

How is it related to linear least squares estimation? If p + 1 < n, it is impossible to
find a curve to go through every sample point. Therefore, we allow some error for each
Xi,

Yi =

p∑
k=0

βkX
k
i + εi.

This fits into the framework of multiple linear regression. Define

X =


1 X1 · · · Xp

1

1 X2 · · · Xp
2

...
...

. . .
...

1 Xn · · · Xp
n

 ∈ Rn×(p+1)
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and
Y = Xβ + ε, β ∈ Rp+1.

From the result discussed before, we know that the least-squares estimator for β is

β̂ = (X>X)−1X>Y .

Why is X>X invertible? X is called Vandermonde matrix and is full rank as long as
there are p+ 1 distinct value of Xi.

6.4.1 Statistical properties of LS estimator

Under the multiple linear regression with uncorrelated noise of equal variance, i.e.,

Cov(εi, εj) =

{
σ2, i = j,

0, i 6= j,

we have the famous Gauss-Markov theorem. Here we explain it informally. It is a
generalization of the scenario we discussed in the simple linear regression. Consider all
the linear estimator of β:

β̂C = CY

where C is a matrix of size p×n. Now we are looking for unbiased estimator with smallest
variance for β, i.e., requiring C such that C EY = β and ensure Var(CY ) is as small as
possible. We need to generalize the “order” for positive semidefinite covariance matrix.
We say two positive semidefinite matrix A and B satisfies A � B if A −B � 0. The
Gauss-Markov theorem tells us that this is given by the least squares estimator, i.e.,

Ĉ = (X>X)−1X>,

satisfies
Var(ĈY ) = Ĉ Cov(Y )Ĉ> � C Cov(Y )C> = Var(CY )

for any C such that C EY = β.

In practice, we often use the multiple regression model under normal error, i.e.,

Y = Xβ + ε

where ε ∼ N (0, σ2In).

Lemma 6.4.3. Under the assumption that ε ∼ N (0, σ2In), it holds that

β̂ ∼ N (β, σ2(X>X)−1).

Proof: Suppose ε ∼ N (0, σ2In). Note that Y = Xβ + ε.

E β̂ = (X>X)−1X> E(Y ) = (X>X)−1X>Xβ = β.

What is the covariance of β̂?

Var(β̂) = (X>X)−1X> E(εε>)X(X>X)−1

= σ2(X>X)−1X>X(X>X)−1 = σ2(X>X)−1

where E(εε>) = σ2Ip. Therefore,

β̂ ∼ N (β, σ2(X>X)−1)
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6.4.2 Geometric meaning of least squares estimator

Here we assume X ∈ Rn×p is rank-p, i.e., all the columns are linear independent. We
want to under understand what least squares mean geometrically?

Let’s first understand the meaning of minimizing ‖Xβ − Y ‖2 mean.

• Find a vector in the range of X such that its distance to Y is minimized

• Equivalent to projecting Y onto the linear subspace spanned by the columns of X.

• The residue ε̂ = Y −Xβ̂ is perpendicular to any vectors in the column space of
X, i.e., X>ε̂ = 0⇐⇒X>Xβ̂ = X>Y .

Projection matrix

Note that β̂LS = (X>X)−1X>Y . The fitted value Ŷ is

Ŷ = Xβ̂LS = X(X>X)−1X>Y

The matrix H := X(X>X)−1X> is called hat matrix, i.e., projection matrix. The
projection matrix H (projection onto the column (range) space of X) has the following
properties:

• Symmetric: H> = H

• Idempotent: H2 = H . Applying the projection twice won’t change the outcome.

• All of its eigenvalues are either 0 (multiplicity n− p) or 1 (multiplicity p)

Exercise: show that I −H is also a projection matrix.

Question: how to representing fitted value and residuals by using H?

• The fitted data Ŷ is the projection of Y on the range of X, i.e.,

Ŷ = HY = X(X>X)−1X>Y

• The residue ε̂ is equal to

ε̂ = Y − Ŷ = (I −H)Y = (I −H)ε

which is the projection of Y on the complement of Ran(X).
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6.4.3 Inference under normal error bound

Question: how to representing SSE and MSE by using H?

The SSE and MSE are defined by

SSE :=
n∑
i=1

ε̂2i = ‖ε̂‖2 = ‖(I −H)ε‖2

= ε>(I −H)(I −H)ε = ε>(I −H)ε,

MSE :=
SSE

n− p
,

where In −H is a projection matrix.

Question: What is E(SSE) and E(MSE) under normal error model, i.e., εi ∼ N (0, σ2)?

In this part, we use the fact that all eigenvalues of projection matrices are either 0 or 1,
and its trace is

Tr(H) = Tr(X(X>X)−1X>) = Tr(X>X(X>X)−1) = Tr(Ip) = p.

E(SSE) = E ε>(I −H)ε = ETr((I −H)εε>)

= Tr((I −H)E εε>) = σ2Tr(I −H) = σ2(n− p).

Therefore, E(MSE) = σ2 is an unbiased estimator of σ2.

Lemma 6.4.4. Under normal error model, the distribution of SSE is

SSE ∼ σ2χ2
n−p

and is independent of β̂.

Proof: Note that
SSE = ε>(I −H)ε, ε ∼ N (0, σ2In).

Applying spectral decomposition to I−H = UU> whereU ∈ Rn×(n−p) andU>U = In−p
(identity matrix of size n− p). Thus

SSE = ε>UU>ε = ‖U>ε‖2

Note that U>ε is N (0, σ2In−p). Therefore, SSE/σ2 is the sum of n − p independent
squared standard normal random variables, i.e., χ2

n−p.

On the other hand,

β̂ = (X>X)−1X>Y = (X>X)−1X>(Xβ + ε)

= β + (X>X)−1X>ε.

We can see that ε̂ = (I −H)ε and β̂ are jointly normal. Why? Simply speaking, ε̂ and

β̂ can be obtained by applying a linear transform to ε:[
ε̂

β̂

]
=

[
(I −H)

(X>X)−1X>

]
ε+

[
0
β

]
By the invariance of normal random vectors under linear transform, we know that ε̂ and
β̂ are jointly normal.
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Moreover, they are independent since they are uncorrelated:

Cov(ε̂, β̂) = E ε̂(β̂ − β)>

= E(I −H)εε>X(X>X)−1

= σ2(I −H)X(X>X)−1 = 0.

Exercise: Are ε̂i mutually independent?

Note that under normal error model, MSE is an unbiased and consistent estimator of
σ2. Therefore, we can have the following asymptotic distribution of β̂.

Lemma 6.4.5. Under normal error model, it holds approximately that

β̂ ∼ N (β,MSE(X>X)−1).

For each β̂i, we can derive a similar result for the distribution of each β̂i:

β̂i − βi√
MSE[(X>X)−1]ii

∼ tn−p.

Proof: We will use a similar argument as the scenario for p = 2 :

β̂i − βi√
MSE[(X>X)−1]ii

=
(β̂i − βi)/

√
σ2[X>X]−1

ii√
MSE[(X>X)−1]ii/

√
σ2[(X>X)−1]ii

=
(β̂i − βi)/

√
σ2[X>X]−1

ii√
MSE/σ2

=
(β̂i − βi)/

√
σ2[X>X]−1

ii√
SSE/(n− p)σ2

Note that SSE is independent of β̂ and SSE ∼ σ2χ2
n−p. By definition of Student t-

distribution,

β̂i − βi√
MSE[(X>X)−1]ii

∼ tn−p.

With that, we are able to construct confidence interval for βi and perform hypothesis
testing.

• An approximately 1− α confidence interval of each βi is(
β̂i − tn−p,1−α

2

√
MSE(X>X)−1

ii , β̂i + tn−p,1−α
2

√
MSE(X>X)−1

ii

)

• A test of size α for H0 : βi = 0 v.s. H1 : βi 6= 0 is to reject H0 if∣∣∣∣∣ β̂i√
MSE[(X>X)−1]ii

∣∣∣∣∣ > tn−p,1−α
2
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6.5 Model diagnostics

We have discussed statistical inferences for linear models: perform interval estimation and
hypothesis testing for coefficients. The key ingredient is that we assume the underlying
model is a linear model with normal error. Let’s recall the simple linear model with
normal error:

Yi = β0 + β1Xi + εi, εi
i.i.d.∼ N (0, σ2), 1 ≤ i ≤ n.

All stated assumptions are crucial: linear regression relation and i.i.d. normal error.
However, in practice, the data are unlikely to satisfy these assumptions which may cause
inaccuracy in our inference. This is the reason why we need to consider model diagnostics
and come up with remedies to solve these issues.

There are a few typical violations for the simple linear model with normal error.

• Nonlinearity of the regression relation

• Nonconstant variance of the error terms

• Non-normality of the error terms

• Independence of the error terms

• Existence of outliers

In this lecture, we will briefly discuss model diagnostics by using residual plots. Due to
the time limitation, we will focus on the first three issues and propose solutions. We will
not discuss how to handle outliers and influential cases, which are also very important in
practice.

6.5.1 Nonlinearity in the regression relation:

Let’s consider a synthetic data:

Yi = 10Xi + 0.2X2
i + εi, 1 ≤ i ≤ 100 (6.5.1)

where
Xi ∼ N (10, 1), εi ∼ N (0, 1)

If we simply look at Figure 6.1, the scatterplot of (Xi, Yi), it seems linear model is quite
adequate. Let’s fit a linear model to the data. Under the simple regression with normal
error, the residuals ε̂i = Yi − Ŷi are multivariate normal and independent of the fitted
value Ŷi,

ε̂ = (I −H)ε, Ŷ = Xβ̂.

Therefore, the residuals v.s. fitted values plot should have no distinct patterns, i.e.,
residuals should spread equally around a horizontal line.

What do we observe in Figure 6.2? We can see a nonlinear pattern between the residuals
and fitted values, which is not captured by a linear model. Therefore, one needs to
take nonlinearity into consideration, such as adding nonlinear predictor, i.e., consider
polynomial regression,

Yi = β0 + β1Xi + · · · βpXp
i + εi, 1 ≤ i ≤ n,

which is an important example of multiple regression.

Adding the extra quadratic term to the simple linear model indeed makes the pattern
disappear, i.e., the red line becomes horizontal and the residuals spread equally around
the fitted values.
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Figure 6.1: Scatterplot for (Xi, Yi) drawn from Yi = 10Xi + 0.2X2
i + εi
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Figure 6.2: Residuals v.s. fitted values for Yi = 10Xi + 0.2X2
i + εi. Left: without adding

quadratic term; right: after adding quadratic term

6.5.2 Error terms with non-constant variance

Consider another synthetic data model:

Yi = 2 + 3Xi + e0.1+0.2Xεi (6.5.2)

where εi ∼ N (0, 1). In the simulation, we let Xi ∼Unif[0,10]. We first obtain the scatter-
plot in Figure 6.3, and also fit a linear model and get the residuals v.s. fitted plot. We

103



can see that the residuals are spreading out more as the fitted value increases.
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Figure 6.3: Scatterplot for Yi = 2 + 3Xi + e0.1+0.2Xεi

6.5.3 QQ-plot: Non-normality of error terms

How to verify if the error terms are normal? A direct way is to look at the residuals:
if the error terms are i.i.d. normal, then the residuals are “close” to “i.i.d.” normal.
In practice, we simply test if the residuals are samples from normal distributions. In
hypothesis testing, we actually have learnt how to test the normality of a given dataset,
such as Kolmogorov-Smirnov tests, goodness-of-fit χ2 tests, and likelihood ratio tests.
These tests are of course applicable to our setting. In practice, one would simply use the
normal quantile plot, also known as QQ-plot, to test if the residuals are normal.

• Suppose we observe {xi}ni=1 and sort them in an increasing order,

x(1) ≤ x(2) ≤ · · · ≤ x(n).

Moreover, we standardize them by updating each xi with (xi − xn)/Sn.

• An approximation of the expected value for the k-th smallest x(k) (order statistics)
under N (0, σ̂2) is approximately

z(k) = Φ−1

(
k

n+ 1

)
, k = 1, 2, · · · , n,

where Φ−1(α) is the α-quantile of N (0, 1) distribution.

• Then plot (z(k), x(k)), 1 ≤ k ≤ n.

If the data are indeed normal, the plot should be close to a straight line y = x, see
Figure 6.4. Why? Since if {xk} are samples from standard normal, then

x(k) = Φ−1
n

(
k

n

)
where Φn is the empirical cdf of {xk}nk=1. Note that Φn converges to Φ in probability. As
a result, x(k) should be very close to z(k) and thus (z(k), x(k)) is approximately on the line
y = x.
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To test the normality of error terms in the linear models, we can simply obtain the
residuals and plot their QQ-plot. The line in the QQ-plot passes the first and third
quartiles.
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Figure 6.4: QQ-plot for normal data and for the residuals in Model 6.5.2

Question: How to read QQ-plots?

Let’s investigate four common distributions and their corresponding QQ plots.
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• Student-t: heavy-tailed

• χ2
3− 3: right skewed, the right tail is longer; the mass of the distribution is concen-

trated on the left of the figure

• 3−χ2
3: left skewed, the left tail is longer; the mass of the distribution is concentrated

on the right of the figure.

• N (0, 1): standard normal distribution.
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QQ-plot Example 1:
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QQ Plot of Sample Data versus Standard Normal

Figure 6.5: QQ plot for Student t distribution

QQ plot shows more probabilities in the tails than a normal distribution. It is student-t
distribution.

QQ-plot Example 2:
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QQ Plot of Sample Data versus Standard Normal

Figure 6.6: QQ plot for χ2
3 − 3
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QQ Plot of Sample Data versus Standard Normal

Figure 6.7: QQ plot for 3− χ2
3

Figure 6.6 left: QQ plot shows more probabilities in the right tail and less probabilities in
the left tail. It is χ2

3−3 distribution; Figure 6.7 right: Q-Q plot shows more probabilities
in the left tail and less probabilities in the right tail. It is 3− χ2

3 distribution.

6.5.4 Box-Cox transform

Question: How to solve the issue of non-constant and non-normal error?

In applied statistics, the Box-Cox procedure, a.k.a. power transformation, provides a
family of transformations on the response variable Y (also may apply to the predictors)
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such that the resulting model is close to a linear model with normal error. More precisely,
we perform a power transform on the response Yi using the following form:

Y ′ = Y λ

where λ is a parameter to be determined. Here we first assume the response is positive
for simplicity. In particular, if λ = 0, Y ′ = log(Y ).

The normal error regression model with the response variable a member of the family of
power transformations becomes:

Y λ
i = β0 + β1Xi + εi.

Essentially, we treat λ as an additional variable and hope to identify the best λ (as well
as β and σ2) such that the model fits the data.

Question: How to identify a suitable λ?

Denote Yi(λ) = Y λ
i . Then under the normal error model, the joint pdf for Yi(λ) is

fY (λ)(Yi(λ);β, λ, σ2) =
1

(2πσ2)n/2

(
− 1

2σ2
(β0 + β1Xi − Yi(λ))2

)
.

Recall that we only observe Yi instead of Yi(λ); to derive a likelihood function based on
Yi, we need to perform a change of variable, i.e., obtaining the joint pdf of Yi. This can
be done by introducing a Jacobian factor.

fY (Yi;β, λ, σ
2) = fY (λ)(Yi(λ);β, λ, σ2) ·

n∏
i=1

dYi(λ)

dYi

=
1

(2πσ2)n/2

(
− 1

2σ2
(β0 + β1Xi − Yi(λ))2

) n∏
i=1

λY λ−1
i

where
dYi(λ)

dYi
=

d

dYi
Y λ
i = λY λ−1

i .

Denote K = (
∏

i Yi)
1/n as the geometric mean of {Yi}ni=1. The log-likelihood function

is

`(λ,β, σ2) = −n
2

log σ2 − 1

2σ2
‖Xβ − Y (λ)‖2 + n log(Kλ−1λ).

Note that the MLE for β is (X>X)−1X>Y (λ) and the MLE for σ2 is

σ̂2(λ) =
1

n
‖(In −H)Y (λ)‖2.

Therefore, we have

`(λ) := sup
β,σ2

`(λ,β, σ2)

= −n
2

log ‖(In −H)Y (λ)‖2 − 1

2σ̂2(λ)
‖(In −H)Y (λ)‖2 + n log(Kλ−1λ)

= −n
2

log ‖(In −H)Y (λ)‖2 + n log(Kλ−1λ) + C

= −n
2

log

∥∥∥∥(In −H)Y (λ)

Kλ−1λ

∥∥∥∥2
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where C is a constant. For each λ, the log-likelihood function equals to

`(λ) = −n
2

logSSE(λ)

where

SSE(λ) =

∥∥∥∥(In −H)Y (λ)

Kλ−1λ

∥∥∥∥2

.

If we choose to normalize Y λ
i via

Y ′i (λ) =

{
K1−λ(Y λ

i − 1)/λ, λ 6= 0,

K log(Yi), λ = 0,

where K = (
∏

i Yi)
1/n is the geometric mean of {Yi}ni=1. Then we try to identify a suitable

λ such that the SSE associated with Y ′i (λ), i.e., SSE(λ), is the smallest.

Many statistical packages provides existing built-in function to compute this likelihood
function w.r.t. λ. In R, the function is boxCox().

Example: A marketing researcher studied annual sales of a product that had been
introduced 10 years ago. If we fit a linear model, we may feel that a linear model is quite

Year 0 1 2 3 4 5 6 7 8 9
Sales (thousands of unit) 98 135 162 178 221 232 283 300 374 395

adequate for the data. Now let’s perform model diagnostics by plotting its residuals v.s.
fitted and QQ plot.
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What do you observe? There is a pattern (nonlinearity) in the residuals v.s. fitted plot.
How to deal with it? We perform a box-cox transform.

Figure 6.10 indicates λ = 1/2 is the best choice. We use λ = 1/2, i.e., Y ′ =
√
Y and use

the following new model: √
Yi = β0 + β1Xi + εi.
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Figure 6.8: Residuals v.s. fitted

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

2.
0

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm(Y_sales ~ X_year)

Normal Q−Q

9

6
8

Figure 6.9: QQ plot
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Figure 6.10: Log-likelihood function `(λ)

Written in the original form, the response Yi satisfies

Yi = (β0 + β1Xi + εi)
2.

We fit the model again and perform a model diagnostic. Figure 6.11 implies that the
model fits the data well: the residuals are approximately normal and also spread equally
around the fitted values.

Finally, we briefly discuss what if some of the data Yi are negative. In fact, a more general
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Figure 6.11: Residuals v.s. fitted and QQ plot for the transformed model

version of Box-Cox transform involves one more shift parameter:

Y ′ = (Y + λ2)λ1 ,

which is a family of transform with two parameters. Then we can follow the similar
procedure to obtain (λ1, λ2) which maximizes the likelihood function, and use them to
transform the response.

6.6 Logistic regression

In 1986, the space shuttle Challenger exploded during take off, killing seven astronauts
aboard. The explosion was the result of an O-ring failure, a splitting of a ring of rubber
that seals the parts of the ship together. It is believed that the failure of the rubber
depends on the temperature.

Figure 6.12: Data from Example 1.13 [Robert, Casella, 2004]: 1 stands for failure, 0 for
success.

Goal: What is the relationship between the predictor and response?

• The accident was believed to be caused by the cold weather at the time of launch

• The probability of failure increases as the temperature decreases

Question: Can we use linear regression? No, the response is discrete. However, we
believe that the probability of failure may be a linear function of temperature Xi.

Suppose we observe (Xi, Yi), 1 ≤ i ≤ n with binary response Yi is 0 or 1. The logistic

110



55 60 65 70 75 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X

Y

Figure 6.13: Plot of failure v.s. temperature

regression is: the response is a binary random variable depending on the predictor,

P(Yi = 1|Xi) =
eβ0+β1Xi

1 + eβ0+β1Xi
,

P(Yi = 0|Xi) =
1

1 + eβ0+β1Xi
.

What does it mean? The distribution of Y given X is Bernoulli(p) where

p(X) =
eβ0+β1X

1 + eβ0+β1X

The following function is called logistic function:

f(x) =
ex

1 + ex

In other words, p(X) = f(β0 + β1X). How does f(x) look like?

• f(x) is increasing,

• f(x) takes value between 0 and 1.

Logistic regression is an example of generalized linear model :

β0 + β1Xi = log

(
pi

1− pi

)
= logit(pi)

where

logit(x) = log

(
x

1− x

)
, 0 < x < 1

is called logit function, which is a canonical link function for binary response.
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Figure 6.14: Logistic function

6.6.1 Maximum likelihood estimation

Suppose we observe Yi ∼Bernoulli(pi) where logit(pi) = β0 + β1Xi, how to obtain an
estimation of β? The common approach is the maximum likelihood estimation. The
joint distribution of Yi under (β0, β1) is

f(Y ; β0, β1) =
n∏
i=1

pYii (1− pi)1−Yi , pi =
eβ0+β1Xi

1 + eβ0+β1Xi

The log-likelihood function is

`(β0, β1) =
n∑
i=1

Yi log pi + (1− Yi) log(1− pi)

=
n∑
i=1

Yi log
eβ0+β1Xi

1 + eβ0+β1Xi
+ (1− Yi) log

1

1 + eβ0+β1Xi

=
n∑
i=1

Yi(β0 + β1Xi)− log(1 + eβ0+β1Xi)

The MLE is the maximizer to `(β0, β1):

β̂MLE = argmax
β∈R2 `(β), β = [β0, β1]>.

Question: Can we find the global maximizer to `(β)?

The log-likelihood function `(β) is concave. It is very straightforward to verify the con-
cavity of `(β). The gradient is

∂`

∂β0

=
n∑
i=1

(
Yi − 1 +

1

1 + eβ0+β1Xi

)
,

∂`

∂β1

=
n∑
i=1

(
Yi − 1 +

1

1 + eβ0+β1Xi

)
Xi
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For the Hessian matrix, we have

∂2`

∂β2
0

= −
n∑
i=1

eβ0+β1Xi

(1 + eβ0+β1Xi)2
,

∂2`

∂β2
1

= −
n∑
i=1

eβ0+β1Xi

(1 + eβ0+β1Xi)2
X2
i

and
∂2`

∂β0∂β1

= −
n∑
i=1

eβ0+β1Xi

(1 + eβ0+β1Xi)2
Xi

Therefore, the Hessian matrix equals

∇2` = −
[ ∑n

i=1 pi(1− pi)
∑n

i=1 pi(1− pi)Xi∑n
i=1 pi(1− pi)Xi

∑n
i=1 pi(1− pi)X2

i

]
Exercise: Show that the Hessian is negative semidefinite.

Question: How to optimize this function? One can use Newton’s method:

β(t+1) = β(t) − [∇2`(β(t))]−1∇`(β(t))

Stop until β(t) stablizes.
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Most programs have build-in packages to get an estimation of β. Call the “glm” function
in R.

glm_fit <- glm(Y~X, data = data, family = binomial)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 15.0429 7.3786 2.039 0.0415 *

X -0.2322 0.1082 -2.145 0.0320 *

The estimated coefficients of Challenger data are

β̂0 = 15.0429, β̂1 = −0.2322.

The predicted value of probability pi at Xi is

p̂i =
eβ̂0+β̂1Xi

1 + eβ̂0+β̂1Xi
.
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Figure 6.15: Fitted value v.s. predictor Xi

We plot (Xi, p̂i) in Figure 6.15 where p̂i is the fitted value of probability and the curve
“decreases” as X gets larger.

How to interpret β0 and β1? The odds is given by

odds(X) =
p(X)

1− p(X)
= eβ0+β1X .

Now let’s consider

odds(X + 1)

odds(X)
=

p(X+1)
1−p(X+1)

p(X)
1−p(X)

=
eβ0+β1(X+1)

eβ0+β1X
= eβ1 .

In other words, the odds at X + 1 is about eβ1 times the odds at X. In the example of
Shuttle Challenger, β̂1 is −0.232 and

eβ̂1 = e−0.232 ≈ 0.793.

The odds decreases by a factor of 0.793 when the temperature increases by 1 oF .

6.6.2 Inference in logistic regression

Question: Can we conclude that a decreased temperature leads to higher failure proba-
bility? This leads to a hypothesis testing problem:

H0 : β1 < 0 versus H1 : β1 ≥ 0.

To derive the rejection region, we need to know the distribution of the MLE.

Theorem 6.6.1. The MLE enjoys
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• consistency: as n→∞,
β̂n

p−→ β

where β is the underlying parameter.

• asymptotic normality:

β̂n − β
d−→ N (0, [I(β)]−1)

where I(β) is the Fisher information.

The Fisher information matrix is the negative inverse of the second order derivative of
log-likelihood function evaluated at β, i.e.,

I(β) = −E∇2`(β) = −∇2`(β)

where

∇2`(β) = −
[ ∑n

i=1 pi(1− pi)
∑n

i=1 pi(1− pi)Xi∑n
i=1 pi(1− pi)Xi

∑n
i=1 pi(1− pi)X2

i

]
and pi = eβ0+β1Xi

1+eβ0+β1Xi
. However, the exact value of β = [β0, β1]> is unknown. In practice,

we can approximate β via β̂ and get an estimate of the information matrix:

I(β̂) =

[ ∑n
i=1 p̂i(1− p̂i)

∑n
i=1 p̂i(1− p̂i)Xi∑n

i=1 p̂i(1− p̂i)Xi

∑n
i=1 p̂i(1− p̂i)X2

i

]
where p̂i = eβ̂0+β̂1Xi

1+eβ̂0+β̂1Xi
.

Question: How to obtain a confidence interval for β?

The standard deviation of β̂0 and β̂1 are

ŝe(β̂0) = [I(β̂)−1]11, ŝe(β̂1) = [I(β̂)−1]22

The asymptotic distribution of β0 and β1 is

β̂0 − β0

ŝe(β̂0)
∼ N (0, 1),

β̂1 − β1

ŝe(β̂1)
∼ N (0, 1).

An approximate 95% confidence interval of β0 and β1 are

β̂i ± 1.96 · ŝe(β̂i), i = 0, 1, 1.96 ≈ z0.975.

Return to the example of Shuttle Challenger,

∇2`(β̂) =

[
−3.26 −221.80
−221.80 −15163.10

]
, [I(β̂)]−1 =

[
54.44 −0.80
−0.80 0.0117

]
An estimation of standard deviation is

ŝe(β̂0) = 7.3786, ŝe(β̂1) = 0.108.

The confidence interval for β1 is

β̂i ± 1.96 · ŝe(β̂i)⇐⇒ −0.2322± 1.96 · 0.108 =⇒ (−0.44,−0.02)

Therefore, the confidence interval supports the conclusion that β1 < 0.
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6.6.3 Hypothesis testing

Question: How to perform hypothesis testing?

z-test: Consider the hypothesis testing problem,

H0 : βi = 0 v.s. H1 : βi 6= 0.

For each i, we define the z-value as

z =
β̂i

ŝe(β̂i)

Why do we use z-value? The z-value is used as a test statistic: recall under H0,

z =
β̂i

ŝe(β̂i)
∼ N (0, 1), i = 0 or 1

Let’s compute the z-value:

z =
β̂1

ŝe(β̂1)
=
−0.2322

0.1082
= −2.144

What is the p-value? We reject the null if |z| is too large, the p-value equals

P(|Z| ≥ |z|) = 0.032 < 0.05.

We reject the null hypothesis H0 : β1 = 0.

Likelihood ratio test: The other alternative way to perform testing is to use LRT. Still
we consider

H0 : β1 = 0 v.s. H1 : β1 6= 0.

as an example. Under null hypothesis, it holds that

λ(X) = 2(sup
β0,β1

`(β0, β1)− sup
β0,β1=0

`(β0, 0))→ χ2
1

The log-likelihood under full model is

`(β̂0, β̂1) = −10.16, `(β̂0, 0) = −14.78.

Therefore,
λ(X) = 2(−10.16 + 14.13) = 7.95.

The p-value is
P(χ2

1 ≥ 7.95) = 0.005 < 0.05.

Therefore, we should reject the H0.

6.6.4 Repeated observations - Binomial outcomes

Motivation: in some experiments, a number of repeat observations are obtained at
several levels of the predictor variable X.

By computing the proportion of coupons redeemed, we have

p̂ = (0.15, 0.275, 0.345, 0.5, 0.6875)>.
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Level i Price reduction Xi # of households ni # of coupons redeemed
1 5 100 15
2 10 120 33
3 15 110 38
4 20 200 100
5 30 160 110
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Figure 6.16: p̂i v.s. Xi

We plot p̂i w.r.t. Xi:

Observation: It seems that log(pi/(1− pi)) depends linearly on Xi.

Question: can we fit a logistic regression model to this dataset?

Let Yij be the jth case at the level i, 1 ≤ j ≤ ni.

Yij ∼ Bernoulli

(
eβ0+β1Xi

1 + eβ0+β1Xi

)
and we only observe

∑ni
j=1 Yij and ni.
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First, let’s derive the log-likelihood function:

`(β) = log
m∏
i=1

ni∏
j=1

p
Yij
i (1− pi)1−Yij

=
m∑
i=1

(
ni∑
j=1

Yij log pi + (1− Yij) log(1− pi)

)

=
m∑
i=1

(
ni∑
j=1

Yij log pi +

(
ni −

ni∑
j=1

Yij

)
log(1− pi)

)

=
m∑
i=1

ni(p̂i log(pi) + (1− p̂i) log(1− pi))

where

p̂i =

∑ni
j=1 Yij

ni
.

Call:

glm(formula = cbind(N_s, N_f) ~ X, family = "binomial", data = mydata)

Deviance Residuals:

1 2 3 4 5

-0.7105 0.4334 -0.3098 0.6766 -0.4593

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.02150 0.20908 -9.669 <2e-16 ***

X 0.09629 0.01046 9.203 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

fitted.values(glm_fit)

The estimation β̂ of β is
β̂0 = −2.02, β̂1 = 0.096

Price reduction Xi p̂i fitted pi
5 0.15 0.1765
10 0.275 0.2575
15 0.345 0.3595
20 0.5 0.4761
30 0.6875 0.7041

The Y -axis is log
(

p
1−p

)
, i.e., the log of odds. It is almost linear w.r.t. Xi.

6.6.5 General logistic regression

Suppose we have predictors Xij: 1 ≤ i ≤ n, 0 ≤ j ≤ p−1. The outcome Yi is 0 or 1.

• Xij: ith case of predictor j;

• Yi is binary
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Figure 6.17: p̂i v.s. fitted value pi

A commonly-used model is called logistic regression

P(Yi = 1|Xi) =
eX
>
i β

1 + eX
>
i β

P(Yi = 0|Xi) =
1

1 + eX
>
i β

where Xi is the i-th case:

Xi = (Xi0, · · · , Xi,p−1)> ∈ Rp, β = (β0, β1, · · · , βp−1)> ∈ Rp.

Let f(x) = ex

1+ex
be the logistic function, then

Yi ∼ Bernoulli(f(X>i β)).

In other words, the sampling probability pi of Yi is

logit(pi) = log

(
pi

1− pi

)
= X>i β, pi =

eX
>
i β

1 + eX
>
i β

To estimate β, we maximize the likelihood function:

L(β) =
n∏
i=1

pYii (1− pi)1−Yi .

The log-likelihood function is

`(β) =
n∑
i=1

Yi log pi + (1− Yi) log(1− pi).

119



Recall the likelihood function is

`(β) =
n∑
i=1

Yi log
eX
>
i β

1 + eX
>
i β

+ (1− Yi) log
1

1 + eX
>
i β

=
n∑
i=1

(
X>i β · Yi − log(1 + eX

>
i β)
)

How to find out the minimizer of this program?

∂`

∂β
=

n∑
i=1

(
YiXi −

eX
>
i β

1 + eX
>
i β
Xi

)
=

n∑
i=1

(Yi − 1)Xi +
1

1 + eX
>
i β
Xi

and
∂2`

∂β∂β>
= −

n∑
i=1

eX
>
i β

(1 + eX
>
i β)2

XiX
>
i � 0

This is actually a concave function.

Example: Continuation of Shuttle Challenger data. We want to see if adding
more predictors helps fit the data better. Now we consider

Yi ∼ Bernoulli

(
eβ0+β1Xi+β2X

2
i

1 + eβ0+β1Xi+β2X2
i

)
.

Consider the testing problem:

H0 : β2 = 0 v.s. H1 : β2 6= 0.

Under the full model (including three parameters) and the null hypothesis, the log-
likelihood value is

`(β̂0, β̂1, β̂2) = −9.694, `(β̂0, β̂1) = −10.158

λ(X) = 2(`(β̂0, β̂1, β̂2)− `(β̂0, β̂1)) = 2(−9.694 + 10.158) = 0.9266.

Compute the p-value,
P(χ2

1 ≥ 0.9266) = 0.336.

It is not significant enough to reject H0. We retain the null hypothesis.
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