Ranks n=2

Ranks of B2(G)

These are some tables of ranks of B2(G) for:
1. G=Zn+Zn, n<=40;
2. G=Zn, n<=100;
3. G=Zn+Zm, n,m<=20.

[B2 for Groups of rank 2 Zn+Zn]
[    n,    n,  Q-rank,      Fq-rank...    ]
[    0     0     0     2     3     5     7]
[    1     1     1     1     1     1     1]
[    2     2     0     2     0     0     0]
[    3     3     7     7     7     7     7]
[    4     4    11    12    11    11    11]
[    5     5    46    46    46    48    46]
[    6     6    25    26    26    25    25]
[    7     7   159   162   159   159   162]
[    8     8   114   116   114   114   114]
[    9     9   273   273   276   273   273]
[   10    10   194   196   196   196   194]
[   11    11   855   855   855   860   855]
[   12    12   290   292   292   290   290]
[   13    13  1602  1602  1602  1602  1608]
[   14    14   723   726   726   723   726]
[   15    15  1348  1352  1352  1352  1348]
[   16    16  1412  1416  1412  1412  1412]
[   17    17  4424  4432  4432  4424  4424]
[   18    18  1299  1302  1302  1299  1299]
[   19    19  6759  6759  6768  6768  6759]
[   20    20  2500  2504  2504  2504  2500]
[   21    21  5190  5196  5196  5190  5196]
[   22    22  4205  4210  4210  4210  4205]
[   23    23 14047 14058 14047 14047 14047]
[   24    24  3844  3848  3848  3844  3844]
[   25    25 15510 15510 15510 15520 15510]
[   26    26  8070  8076  8076  8070  8076]
[   27    27 16047 16047 16056 16047 16047]
[   28    28  9798  9804  9804  9798  9804]
[   29    29 34314 34314 34314 34328 34328]
[   30    30  6916  6920  6920  6920  6916]
[   31    31 44415 44430 44415 44430 44415]
[   32    32 19464 19472 19464 19464 19464]
[   33    33 31210 31220 31220 31220 31210]
[   34    34 23048 23056 23056 23048 23048]
[   35    35 47244 47256 47256 47256 47256]
[   36    36 18150 18156 18156 18150 18150]
[   37    37 88254 88254 88272 88254 88254]
[   38    38 35649 35658 35658 35658 35649]
[   39    39 60492 60504 60504 60492 60504]
[   40    40 35336 35344 35344 35344 35336]
[   41    41 131620 131620 131620 131620 131620]








[B2 for Cylic Groups Zn]
[  1,  n,Q-rank,Fq-rank...]
[  0   0   0   2   3   5]
[  1   1   1   1   1   1]
[  1   2   0   0   0   0]
[  1   3   1   1   1   1]
[  1   4   1   1   1   1]
[  1   5   2   2   2   2]
[  1   6   2   3   2   2]
[  1   7   3   4   3   3]
[  1   8   3   4   3   3]
[  1   9   5   5   6   5]
[  1  10   4   7   5   4]
[  1  11   6   6   6   7]
[  1  12   7   8   7   7]
[  1  13   8   8   8   8]
[  1  14   7  12   8   7]
[  1  15  13  14  13  13]
[  1  16  10  13  10  10]
[  1  17  13  14  14  13]
[  1  18  12  17  13  12]
[  1  19  16  16  17  17]
[  1  20  17  20  18  17]
[  1  21  23  24  23  23]
[  1  22  16  25  17  17]
[  1  23  23  24  23  23]
[  1  24  23  26  23  23]
[  1  25  30  30  30  31]
[  1  26  22  33  23  22]
[  1  27  34  34  35  34]
[  1  28  31  36  32  31]
[  1  29  36  36  36  37]
[  1  30  33  40  34  33]
[  1  31  41  44  41  42]
[  1  32  37  44  37  37]
[  1  33  51  52  51  52]
[  1  34  37  52  38  37]
[  1  35  61  62  62  61]
[  1  36  48  53  49  48]
[  1  37  58  58  59  58]
[  1  38  46  63  47  47]
[  1  39  69  70  69  69]
[  1  40  61  68  62  61]
[  1  41  71  72  71  72]
[  1  42  61  72  62  61]
[  1  43  78  80  78  78]
[  1  44  71  80  72  72]
[  1  45  93  94  94  93]
[  1  46  67  88  68  67]
[  1  47  93  94  93  93]
[  1  48  81  88  81  81]
[  1  49 108 109 108 108]
[  1  50  84 103  85  85]
[  1  51 113 115 114 113]
[  1  52  97 108  98  97]
[  1  53 118 118 119 118]
[  1  54  94 111  95  94]
[  1  55 141 142 142 142]
[  1  56 115 126 116 115]
[  1  57 139 140 140 140]
[  1  58 106 133 107 107]
[  1  59 146 146 146 147]
[  1  60 125 132 126 125]
[  1  61 156 156 156 157]
[  1  62 121 150 122 122]
[  1  63 175 178 176 175]
[  1  64 141 156 141 141]
[  1  65 193 196 194 193]
[  1  66 141 160 142 142]
[  1  67 188 188 188 188]
[  1  68 161 176 162 161]
[  1  69 199 200 199 199]
[  1  70 169 192 170 169]
[  1  71 211 212 212 212]
[  1  72 175 186 176 175]
[  1  73 223 227 224 223]
[  1  74 172 207 173 172]
[  1  75 237 238 237 238]
[  1  76 199 216 200 200]
[  1  77 271 272 272 272]
[  1  78 193 216 194 193]
[  1  79 261 262 261 262]
[  1  80 225 240 226 225]
[  1  81 271 271 272 271]
[  1  82 211 250 212 212]
[  1  83 288 288 288 288]
[  1  84 235 246 236 235]
[  1  85 321 325 322 321]
[  1  86 232 273 233 232]
[  1  87 309 310 309 310]
[  1  88 271 290 272 272]
[  1  89 331 335 332 332]
[  1  90 257 280 258 257]
[  1  91 373 376 374 373]
[  1  92 287 308 288 287]
[  1  93 351 354 351 352]
[  1  94 277 322 278 277]
[  1  95 397 398 398 398]
[  1  96 297 312 297 297]
[  1  97 393 394 393 393]
[  1  98 313 354 314 313]
[  1  99 411 412 412 412]
[  1 100 341 360 342 342]







[B2(Zm+Zn)]
[   m,   n, Q-rank,Fq-rank...]
[   0    0    0    2    3    5]
[   1    1    1    1    1    1]
[   1    2    0    0    0    0]
[   1    3    1    1    1    1]
[   1    4    1    1    1    1]
[   1    5    2    2    2    2]
[   1    6    2    3    2    2]
[   1    7    3    4    3    3]
[   1    8    3    4    3    3]
[   1    9    5    5    6    5]
[   1   10    4    7    5    4]
[   1   11    6    6    6    7]
[   1   12    7    8    7    7]
[   1   13    8    8    8    8]
[   1   14    7   12    8    7]
[   1   15   13   14   13   13]
[   1   16   10   13   10   10]
[   1   17   13   14   14   13]
[   1   18   12   17   13   12]
[   1   19   16   16   17   17]
[   1   20   17   20   18   17]
[   2    2    0    2    0    0]
[   2    4    2    5    2    2]
[   2    6    3    8    3    3]
[   2    8    6   13    6    6]
[   2   10    7   18    8    7]
[   2   11   16   25   17   17]
[   2   12   13   20   13   13]
[   2   13   22   33   23   22]
[   2   14   13   30   14   13]
[   2   15   33   40   34   33]
[   2   16   21   36   21   21]
[   2   17   37   52   38   37]
[   2   18   22   39   23   22]
[   2   19   46   63   47   47]
[   2   20   33   48   34   33]
[   3    3    7    7    7    7]
[   3    6   15   15   16   15]
[   3    7   23   24   23   23]
[   3    8   23   26   23   23]
[   3    9   37   37   38   37]
[   3   10   33   40   34   33]
[   3   11   51   52   51   52]
[   3   12   45   46   46   45]
[   3   13   69   70   69   69]
[   3   14   61   72   62   61]
[   3   15   81   82   82   81]
[   3   16   81   88   81   81]
[   3   17  113  115  114  113]
[   3   18   91   91   92   91]
[   3   19  139  140  140  140]
[   3   20  125  132  126  125]
[   4    4   11   12   11   11]
[   4    7   31   36   32   31]
[   4    8   33   34   33   33]
[   4    9   48   53   49   48]
[   4   11   71   80   72   72]
[   4   12   57   58   57   57]
[   4   13   97  108   98   97]
[   4   14   61   84   62   61]
[   4   15  125  132  126  125]
[   4   16  105  106  105  105]
[   4   17  161  176  162  161]
[   4   18   93  116   94   93]
[   4   19  199  216  200  200]
[   4   20  145  146  146  145]
[   5    5   46   46   46   48]
[   5    6   33   40   34   33]
[   5    7   61   62   62   61]
[   5    8   61   68   62   61]
[   5    9   93   94   94   93]
[   5   10  110  110  112  112]
[   5   11  141  142  142  142]
[   5   12  125  132  126  125]
[   5   13  193  196  194  193]
[   5   14  169  192  170  169]
[   5   15  258  260  258  260]
[   5   16  225  240  226  225]
[   5   17  321  325  322  321]
[   5   18  257  280  258  257]
[   5   19  397  398  398  398]
[   5   20  362  364  364  364]
[   6    6   25   26   26   25]
[   6    7   61   72   62   61]
[   6    8   45   60   45   45]
[   6   10   61   84   62   61]
[   6   11  141  160  142  142]
[   6   12   81   82   82   81]
[   6   13  193  216  194  193]
[   6   14  115  150  116  115]
[   6   15  209  210  210  209]
[   6   16  161  192  161  161]
[   6   17  321  352  322  321]
[   6   18  163  164  164  163]
[   6   19  397  432  398  398]
[   6   20  241  272  242  241]
[   7    7  159  162  159  159]
[   7    8  115  126  116  115]
[   7    9  175  178  176  175]
[   7   10  169  192  170  169]
[   7   11  271  272  272  272]
[   7   12  235  246  236  235]
[   7   13  373  376  374  373]
[   7   14  399  402  402  399]
[   7   15  457  459  458  457]
[   7   16  433  456  434  433]
[   7   17  625  627  626  625]
[   7   18  493  528  494  493]
[   7   19  775  778  776  776]
[   7   20  661  684  662  661]
[   8    8  114  116  114  114]
[   8    9  175  186  176  175]
[   8   10  121  152  122  121]
[   8   11  271  290  272  272]
[   8   12  193  194  193  193]
[   8   13  373  396  374  373]
[   8   14  229  276  230  229]
[   8   15  457  472  458  457]
[   8   16  386  388  386  386]
[   8   17  625  656  626  625]
[   8   18  345  392  346  345]
[   8   19  775  810  776  776]
[   8   20  513  514  514  513]
[   9    9  273  273  276  273]
[   9   10  257  280  258  257]
[   9   11  411  412  412  412]
[   9   12  307  308  308  307]
[   9   13  565  568  566  565]
[   9   14  493  528  494  493]
[   9   15  577  578  578  577]
[   9   16  653  676  654  653]
[   9   17  945  947  946  945]
[   9   18  705  705  708  705]
[   9   19 1171 1176 1172 1172]
[   9   20  989 1012  990  989]
[  10   10  194  196  196  196]
[  10   11  401  440  402  402]
[  10   12  241  272  242  241]
[  10   13  553  600  554  553]
[  10   14  325  396  326  325]
[  10   15  674  676  676  676]
[  10   16  449  512  450  449]
[  10   17  929  992  930  929]
[  10   18  493  564  494  493]
[  10   19 1153 1224 1154 1154]
[  10   20  674  676  676  676]
[  11   11  855  855  855  860]
[  11   12  551  570  552  552]
[  11   13  901  902  902  902]
[  11   14  781  840  782  782]
[  11   15 1081 1083 1082 1082]
[  11   16 1041 1080 1042 1042]
[  11   17 1521 1523 1522 1522]
[  11   18 1181 1240 1182 1182]
[  11   19 1891 1892 1892 1892]
[  11   20 1581 1620 1582 1582]
[  12   12  290  292  292  290]
[  12   13  757  780  758  757]
[  12   14  457  504  458  457]
[  12   15  737  738  738  737]
[  12   16  673  674  673  673]
[  12   17 1265 1296 1266 1265]
[  12   18  577  578  578  577]
[  12   19 1567 1602 1568 1568]
[  12   20  961  962  962  961]
[  13   13 1602 1602 1602 1602]
[  13   14 1081 1152 1082 1081]
[  13   15 1489 1493 1490 1489]
[  13   16 1441 1488 1442 1441]
[  13   17 2113 2117 2114 2113]
[  13   18 1633 1704 1634 1633]
[  13   19 2629 2632 2630 2630]
[  13   20 2185 2232 2186 2185]
[  14   14  723  726  726  723]
[  14   15 1297 1344 1298 1297]
[  14   16  865  960  866  865]
[  14   17 1825 1920 1826 1825]
[  14   18  955 1062  956  955]
[  14   19 2269 2376 2270 2270]
[  14   20 1297 1392 1298 1297]
[  15   15 1348 1352 1352 1352]
[  15   16 1713 1744 1714 1713]
[  15   17 2497 2505 2498 2497]
[  15   18 1585 1586 1586 1585]
[  15   19 3097 3099 3098 3098]
[  15   20 2402 2404 2404 2404]
[  16   16 1412 1416 1412 1412]
[  16   17 2433 2496 2434 2433]
[  16   18 1297 1392 1298 1297]
[  16   19 3025 3096 3026 3026]
[  16   20 1857 1858 1858 1857]
[  17   17 4424 4432 4432 4424]
[  17   18 2753 2848 2754 2753]
[  17   19 4465 4467 4466 4466]
[  17   20 3681 3744 3682 3681]
[  18   18 1299 1302 1302 1299]
[  18   19 3421 3528 3422 3422]
[  18   20 1937 2032 1938 1937]
[  19   19 6759 6759 6768 6768]
[  19   20 4573 4644 4574 4574]
[  20   20 2500 2504 2504 2504]

Ranks of B2^-(G)

These are some tables of ranks of B_2^-(G) for:
1. G=Zn+Zn, n<=100
2. G=Zn, n<=100
3. G=Zn+Zm, n,m<=10


[B2^- for Groups of rank 2]
[ n, n,Q-rank,Fq-rank...]
[    0     0     0     2     3     5]
[    1     1     0     1     0     0]
[    2     2     0     2     0     0]
[    3     3     3     3     3     3]
[    4     4     5     5     5     5]
[    5     5    22    22    22    22]
[    6     6    13    13    13    13]
[    7     7    87    87    87    87]
[    8     8    66    66    66    66]
[    9     9   165   165   165   165]
[   10    10   122   122   122   122]
[   11    11   555   555   555   555]
[   12    12   194   194   194   194]
[   13    13  1098  1098  1098  1098]
[   14    14   507   507   507   507]
[   15    15   964   964   964   964]
[   16    16  1028  1028  1028  1028]
[   17    17  3272  3272  3272  3272]
[   18    18   975   975   975   975]
[   19    19  5139  5139  5139  5139]
[   20    20  1924  1924  1924  1924]
[   21    21  4038  4038  4038  4038]
[   22    22  3305  3305  3305  3305]
[   23    23 11143 11143 11143 11143]
[   24    24  3076  3076  3076  3076]
[   25    25 12510 12510 12510 12510]
[   26    26  6558  6558  6558  6558]
[   27    27 13131 13131 13131 13131]
[   28    28  8070  8070  8070  8070]
[   29    29 28434 28434 28434 28434]
[   30    30  5764  5764  5764  5764]
[   31    31 37215 37215 37215 37215]
[   32    32 16392 16392 16392 16392]
[   33    33 26410 26410 26410 26410]
[   34    34 19592 19592 19592 19592]
[   35    35 40332 40332 40332 40332]
[   36    36 15558 15558 15558 15558]
[   37    37 75942 75942 75942 75942]
[   38    38 30789 30789 30789 30789]
[   39    39 52428 52428 52428 52428]
[   40    40 30728 30728 30728 30728]
[   41    41 114820 114820 114820 114820]
[   42    42 24198 24198 24198 24198]
[   43    43 139083 139083 139083 139083]
[   44    44 52810 52810 52810 52810]
[   45    45 77772 77772 77772 77772]
[   46    46 66803 66803 66803 66803]
[   47    47 198927 198927 198927 198927]
[   48    48 49160 49160 49160 49160]
[   49    49 201705 201705 201705 201705]
[   50    50 75010 75010 75010 75010]
[   51    51 156688 156688 156688 156688]
52
[104844 104844 104844 104844]
53
[322478 322478 322478 322478]
54
[78741 78741 78741 78741]
55
[264020 264020 264020 264020]
56
[129036 129036 129036 129036]
57
[246258 246258 246258 246258]
58
[170534 170534 170534 170534]
59
[496219 496219 496219 496219]
60
[92168 92168 92168 92168]
61
[567330 567330 567330 567330]
62
[223215 223215 223215 223215]
63
[326610 326610 326610 326610]
64
[262160 262160 262160 262160]
65
[524184 524184 524184 524184]
66
[158410 158410 158410 158410]
67
[826947 826947 826947 826947]
68
[313360 313360 313360 313360]
69
[534358 534358 534358 534358]
70
[241932 241932 241932 241932]
71
[1043735 1043735 1043735 1043735]
72
[248844 248844 248844 248844]
73
[1166868 1166868 1166868 1166868]
74
[455562 455562 455562 455562]
75
[600020 600020 600020 600020]
76
[492498 492498 492498 492498]
77
[1108830 1108830 1108830 1108830]
78
[314508 314508 314508 314508]
79
[1602159 1602159 1602159 1602159]
80
[491536 491536 491536 491536]
81
[1062909 1062909 1062909 1062909]
82
[688820 688820 688820 688820]
83
[1953363 1953363 1953363 1953363]
84
[387084 387084 387084 387084]
85
[1566752 1566752 1566752 1566752]
86
[834393 834393 834393 834393]
87
[1364188 1364188 1364188 1364188]
88
[844820 844820 844820 844820]
89
[2584604 2584604 2584604 2584604]
90
[466572 466572 466572 466572]
91
[2201508 2201508 2201508 2201508]
92
[1068694 1068694 1068694 1068694]
93
[1785630 1785630 1785630 1785630]
94
[1193447 1193447 1193447 1193447]
95
[2462436 2462436 2462436 2462436]
96
[786448 786448 786448 786448]
98
[1210125 1210125 1210125 1210125]
99
[2138430 2138430 2138430 2138430]
100
[1200020 1200020 1200020 1200020]







[B2^- for Cylic Groups]
[ 1, n,Q-rank,Fq-rank...]
[ 0  0  0  2  3  5]
[ 1  1  0  1  0  0]
[ 1  2  0  0  0  0]
[ 1  3  0  0  0  0]
[ 1  4  0  1  0  0]
[ 1  5  0  1  0  0]
[ 1  6  0  2  0  0]
[ 1  7  0  2  0  0]
[ 1  8  0  3  0  0]
[ 1  9  1  3  1  1]
[ 1 10  0  5  0  0]
[ 1 11  1  5  1  1]
[ 1 12  2  5  2  2]
[ 1 13  2  7  2  2]
[ 1 14  1  9  1  1]
[ 1 15  5  8  5  5]
[ 1 16  3 10  3  3]
[ 1 17  5 12  5  5]
[ 1 18  4 12  4  4]
[ 1 19  7 15  7  7]
[ 1 20  7 14  7  7]
[ 1 21 11 16 11 11]
[ 1 22  6 20  6  6]
[ 1 23 12 22 12 12]
[ 1 24 11 18 11 11]
[ 1 25 16 25 16 16]
[ 1 26 10 27 10 10]
[ 1 27 19 27 19 19]
[ 1 28 16 27 16 16]
[ 1 29 22 35 22 22]
[ 1 30 17 28 17 17]
[ 1 31 26 40 26 26]
[ 1 32 21 36 21 21]
[ 1 33 31 40 31 31]
[ 1 34 21 44 21 21]
[ 1 35 37 48 37 37]
[ 1 36 28 39 28 28]
[ 1 37 40 57 40 40]
[ 1 38 28 54 28 28]
[ 1 39 45 56 45 45]
[ 1 40 37 52 37 37]
[  1  41  51  70  51  51]
[  1  42  37  54  37  37]
[  1  43  57  77  57  57]
[  1  44  46  65  46  46]
[  1  45  61  72  61  61]
[  1  46  45  77  45  45]
[  1  47  70  92  70  70]
[  1  48  53  68  53  53]
[  1  49  78  98  78  78]
[  1  50  56  85  56  56]
[  1  51  81  96  81  81]
[  1  52  67  90  67  67]
[  1  53  92 117  92  92]
[  1  54  64  90  64  64]
[  1  55 101 120 101 101]
[  1  56  79 102  79  79]
[  1  57 103 120 103 103]
[  1  58  78 119  78  78]
[  1  59 117 145 117 117]
[  1  60  85 100  85  85]
[  1  61 126 155 126 126]
[  1  62  91 135  91  91]
[  1  63 127 144 127 127]
[  1  64 105 136 105 105]
[  1  65 145 168 145 145]
[  1  66 101 130 101 101]
[  1  67 155 187 155 155]
[  1  68 121 152 121 121]
[  1  69 155 176 155 155]
[  1  70 121 156 121 121]
[  1  71 176 210 176 176]
[  1  72 127 150 127 127]
[  1  73 187 222 187 187]
[  1  74 136 189 136 136]
[  1  75 181 200 181 181]
[  1  76 154 189 154 154]
[  1  77 211 240 211 211]
[  1  78 145 180 145 145]
[  1  79 222 260 222 222]
[  1  80 169 200 169 169]
[  1  81 217 243 217 217]
[  1  82 171 230 171 171]
[  1  83 247 287 247 247]
[  1  84 175 198 175 175]
[  1  85 257 288 257 257]
[  1  86 190 252 190 190]
[  1  87 253 280 253 253]
[  1  88 211 250 211 211]
[  1  89 287 330 287 287]
[  1  90 193 228 193 193]
[  1  91 301 336 301 301]
[  1  92 232 275 232 232]
[  1  93 291 320 291 291]
[  1  94 231 299 231 231]
[  1  95 325 360 325 325]
[  1  96 233 264 233 233]
[  1  97 345 392 345 345]
[  1  98 253 315 253 253]
[  1  99 331 360 331 331]
[  1 100 271 310 271 271]








[B^2-]
[ m, n,Q-rank,Fq-rank...]
[  0   0   0   2   3   5]
[  1   1   0   1   0   0]
[  1   2   0   0   0   0]
[  1   3   0   0   0   0]
[  1   4   0   1   0   0]
[  1   5   0   1   0   0]
[  1   6   0   2   0   0]
[  1   7   0   2   0   0]
[  1   8   0   3   0   0]
[  1   9   1   3   1   1]
[  1  10   0   5   0   0]
[  2   2   0   2   0   0]
[  2   4   0   3   0   0]
[  2   6   0   5   0   0]
[  2   7   1   9   1   1]
[  2   8   1   8   1   1]
[  2   9   4  12   4   4]
[  2  10   1  12   1   1]
[  3   3   3   3   3   3]
[  3   4   2   5   2   2]
[  3   5   5   8   5   5]
[  3   6   7   7   7   7]
[  3   7  11  16  11  11]
[  3   8  11  18  11  11]
[  3   9  19  19  19  19]
[  3  10  17  28  17  17]
[  4   4   5   5   5   5]
[  4   5   7  14   7   7]
[  4   6   5  12   5   5]
[  4   7  16  27  16  16]
[  4   8  17  17  17  17]
[  4   9  28  39  28  28]
[  4  10  17  32  17  17]
[  5   5  22  22  22  22]
[  5   6  17  28  17  17]
[  5   7  37  48  37  37]
[  5   8  37  52  37  37]
[  5   9  61  72  61  61]
[  5  10  62  62  62  62]
[  6   6  13  13  13  13]
[  6   7  37  54  37  37]
[  6   8  25  40  25  25]
[  6   9  55  55  55  55]
[  6  10  37  60  37  37]
[  7   7  87  87  87  87]
[  7   8  79 102  79  79]
[  7   9 127 144 127 127]
[  7  10 121 156 121 121]
[  8   8  66  66  66  66]
[  8   9 127 150 127 127]
[  8  10  81 112  81  81]
[  9   9 165 165 165 165]
[  9  10 193 228 193 193]
[ 10  10 122 122 122 122]



Ranks of M2(G)

These are some tables of ranks of M2(G) for:
1. G=Zn+Zn, n<=40
2. G=Zn, n<=100
3. G=Zn+Zm, n,m<=20

[M2 for Groups of rank 2]
[ n, n,Q-rank,Fq-rank...]
[    0     0     0     2     3     5]
[    1     1     0     0     0     0]
[    2     2     0     2     0     0]
[    3     3     7     7     7     7]
[    4     4    11    12    11    11]
[    5     5    46    46    46    48]
[    6     6    25    26    26    25]
[    7     7   159   162   159   159]
[    8     8   114   116   114   114]
[    9     9   273   273   276   273]
[   10    10   194   196   196   196]
[   11    11   855   855   855   860]
[   12    12   290   292   292   290]
[   13    13  1602  1602  1602  1602]
[   14    14   723   726   726   723]
[   15    15  1348  1352  1352  1352]
[   16    16  1412  1416  1412  1412]
[   17    17  4424  4432  4432  4424]
[   18    18  1299  1302  1302  1299]
[   19    19  6759  6759  6768  6768]
[   20    20  2500  2504  2504  2504]
[   21    21  5190  5196  5196  5190]
[   22    22  4205  4210  4210  4210]
[   23    23 14047 14058 14047 14047]
[   24    24  3844  3848  3848  3844]
[   25    25 15510 15510 15510 15520]
[   26    26  8070  8076  8076  8070]
[   27    27 16047 16047 16056 16047]
[   28    28  9798  9804  9804  9798]
[   29    29 34314 34314 34314 34328]
[   30    30  6916  6920  6920  6920]
[   31    31 44415 44430 44415 44430]
[   32    32 19464 19472 19464 19464]
[   33    33 31210 31220 31220 31220]
[   34    34 23048 23056 23056 23048]
[   35    35 47244 47256 47256 47256]
[   36    36 18150 18156 18156 18150]
[   37    37 88254 88254 88272 88254]
[   38    38 35649 35658 35658 35658]
[   39    39 60492 60504 60504 60492]
[   40    40 35336 35344 35344 35344]




[M2 for Cylic Groups]
[ 1, n,Q-rank,Fq-rank...]
[  0   0   0   2   3   5]
[  1   1   0   0   0   0]
[  1   2   0   1   0   0]
[  1   3   1   2   1   1]
[  1   4   1   3   1   1]
[  1   5   2   5   2   2]
[  1   6   2   5   2   2]
[  1   7   3   8   3   3]
[  1   8   3   8   3   3]
[  1   9   5  10   6   5]
[  1  10   4  11   5   4]
[  1  11   6  15   6   7]
[  1  12   7  12   7   7]
[  1  13   8  19   8   8]
[  1  14   7  18   8   7]
[  1  15  13  20  13  13]
[  1  16  10  21  10  10]
[  1  17  13  28  14  13]
[  1  18  12  23  13  12]
[  1  19  16  33  17  17]
[  1  20  17  28  18  17]
[  1  21  23  34  23  23]
[  1  22  16  35  17  17]
[  1  23  23  44  23  23]
[  1  24  23  34  23  23]
[  1  25  30  49  30  31]
[  1  26  22  45  23  22]
[  1  27  34  51  35  34]
[  1  28  31  48  32  31]
[  1  29  36  63  36  37]
[  1  30  33  48  34  33]
[  1  31  41  70  41  42]
[  1  32  37  60  37  37]
[  1  33  51  70  51  52]
[  1  34  37  68  38  37]
[  1  35  61  84  62  61]
[  1  36  48  65  49  48]
[  1  37  58  93  59  58]
[  1  38  46  81  47  47]
[  1  39  69  92  69  69]
[  1  40  61  84  62  61]
[  1  41  71 110  71  72]
[  1  42  61  84  62  61]
[  1  43  78 119  78  78]
[  1  44  71 100  72  72]
[  1  45  93 116  94  93]
[  1  46  67 110  68  67]
[  1  47  93 138  93  93]
[  1  48  81 104  81  81]
[  1  49 108 149 108 108]
[  1  50  84 123  85  85]
[  1  51 113 144 114 113]
[  1  52  97 132  98  97]
[  1  53 118 169 119 118]
[  1  54  94 129  95  94]
[  1  55 141 180 142 142]
[  1  56 115 150 116 115]
[  1  57 139 174 140 140]
[  1  58 106 161 107 107]
[  1  59 146 203 146 147]
[  1  60 125 148 126 125]
[  1  61 156 215 156 157]
[  1  62 121 180 122 122]
[  1  63 175 210 176 175]
[  1  64 141 188 141 141]
[  1  65 193 240 194 193]
[  1  66 141 180 142 142]
[  1  67 188 253 188 188]
[  1  68 161 208 162 161]
[  1  69 199 242 199 199]
[  1  70 169 216 170 169]
[  1  71 211 280 212 212]
[  1  72 175 210 176 175]
[  1  73 223 294 224 223]
[  1  74 172 243 173 172]
[  1  75 237 276 237 238]
[  1  76 199 252 200 200]
[  1  77 271 330 272 272]
[  1  78 193 240 194 193]
[  1  79 261 338 261 262]
[  1  80 225 272 226 225]
[  1  81 271 324 272 271]
[  1  82 211 290 212 212]
[  1  83 288 369 288 288]
[  1  84 235 270 236 235]
[  1  85 321 384 322 321]
[  1  86 232 315 233 232]
[  1  87 309 364 309 310]
[  1  88 271 330 272 272]
[  1  89 331 418 332 332]
[  1  90 257 304 258 257]
[  1  91 373 444 374 373]
[  1  92 287 352 288 287]
[  1  93 351 410 351 352]
[  1  94 277 368 278 277]
[  1  95 397 468 398 398]
[  1  96 297 344 297 297]
[  1  97 393 488 393 393]
[  1  98 313 396 314 313]
[  1  99 411 470 412 412]
[  1 100 341 400 342 342]





[M2 for Zm+Zn]
[ m, n,Q-rank,Fq-rank...]
[   0    0    0    2    3    5]
[   1    1    0    0    0    0]
[   1    2    0    1    0    0]
[   1    3    1    2    1    1]
[   1    4    1    3    1    1]
[   1    5    2    5    2    2]
[   1    6    2    5    2    2]
[   1    7    3    8    3    3]
[   1    8    3    8    3    3]
[   1    9    5   10    6    5]
[   1   10    4   11    5    4]
[   1   11    6   15    6    7]
[   1   12    7   12    7    7]
[   1   13    8   19    8    8]
[   1   14    7   18    8    7]
[   1   15   13   20   13   13]
[   1   16   10   21   10   10]
[   1   17   13   28   14   13]
[   1   18   12   23   13   12]
[   1   19   16   33   17   17]
[   1   20   17   28   18   17]
[   2    2    0    2    0    0]
[   2    4    2    5    2    2]
[   2    6    3    8    3    3]
[   2    8    6   13    6    6]
[   2   10    7   18    8    7]
[   2   11   16   35   17   17]
[   2   12   13   20   13   13]
[   2   13   22   45   23   22]
[   2   14   13   30   14   13]
[   2   15   33   48   34   33]
[   2   16   21   36   21   21]
[   2   17   37   68   38   37]
[   2   18   22   39   23   22]
[   2   19   46   81   47   47]
[   2   20   33   48   34   33]
[   3    3    7    7    7    7]
[   3    6   15   15   16   15]
[   3    7   23   34   23   23]
[   3    8   23   34   23   23]
[   3    9   37   37   38   37]
[   3   10   33   48   34   33]
[   3   11   51   70   51   52]
[   3   12   45   46   46   45]
[   3   13   69   92   69   69]
[   3   14   61   84   62   61]
[   3   15   81   82   82   81]
[   3   16   81  104   81   81]
[   3   17  113  144  114  113]
[   3   18   91   91   92   91]
[   3   19  139  174  140  140]
[   3   20  125  148  126  125]
[   4    4   11   12   11   11]
[   4    7   31   48   32   31]
[   4    8   33   34   33   33]
[   4    9   48   65   49   48]
[   4   11   71  100   72   72]
[   4   12   57   58   57   57]
[   4   13   97  132   98   97]
[   4   14   61   84   62   61]
[   4   15  125  148  126  125]
[   4   16  105  106  105  105]
[   4   17  161  208  162  161]
[   4   18   93  116   94   93]
[   4   19  199  252  200  200]
[   4   20  145  146  146  145]
[   5    5   46   46   46   48]
[   5    6   33   48   34   33]
[   5    7   61   84   62   61]
[   5    8   61   84   62   61]
[   5    9   93  116   94   93]
[   5   10  110  110  112  112]
[   5   11  141  180  142  142]
[   5   12  125  148  126  125]
[   5   13  193  240  194  193]
[   5   14  169  216  170  169]
[   5   15  258  260  258  260]
[   5   16  225  272  226  225]
[   5   17  321  384  322  321]
[   5   18  257  304  258  257]
[   5   19  397  468  398  398]
[   5   20  362  364  364  364]
[   6    6   25   26   26   25]
[   6    7   61   84   62   61]
[   6    8   45   60   45   45]
[   6   10   61   84   62   61]
[   6   11  141  180  142  142]
[   6   12   81   82   82   81]
[   6   13  193  240  194  193]
[   6   14  115  150  116  115]
[   6   15  209  210  210  209]
[   6   16  161  192  161  161]
[   6   17  321  384  322  321]
[   6   18  163  164  164  163]
[   6   19  397  468  398  398]
[   6   20  241  272  242  241]
[   7    7  159  162  159  159]
[   7    8  115  150  116  115]
[   7    9  175  210  176  175]
[   7   10  169  216  170  169]
[   7   11  271  330  272  272]
[   7   12  235  270  236  235]
[   7   13  373  444  374  373]
[   7   14  399  402  402  399]
[   7   15  457  504  458  457]
[   7   16  433  504  434  433]
[   7   17  625  720  626  625]
[   7   18  493  564  494  493]
[   7   19  775  882  776  776]
[   7   20  661  732  662  661]
[   8    8  114  116  114  114]
[   8    9  175  210  176  175]
[   8   10  121  152  122  121]
[   8   11  271  330  272  272]
[   8   12  193  194  193  193]
[   8   13  373  444  374  373]
[   8   14  229  276  230  229]
[   8   15  457  504  458  457]
[   8   16  386  388  386  386]
[   8   17  625  720  626  625]
[   8   18  345  392  346  345]
[   8   19  775  882  776  776]
[   8   20  513  514  514  513]
[   9    9  273  273  276  273]
[   9   10  257  304  258  257]
[   9   11  411  470  412  412]
[   9   12  307  308  308  307]
[   9   13  565  636  566  565]
[   9   14  493  564  494  493]
[   9   15  577  578  578  577]
[   9   16  653  724  654  653]
[   9   17  945 1040  946  945]
[   9   18  705  705  708  705]
[   9   19 1171 1278 1172 1172]
[   9   20  989 1060  990  989]
[  10   10  194  196  196  196]
[  10   11  401  480  402  402]
[  10   12  241  272  242  241]
[  10   13  553  648  554  553]
[  10   14  325  396  326  325]
[  10   15  674  676  676  676]
[  10   16  449  512  450  449]
[  10   17  929 1056  930  929]
[  10   18  493  564  494  493]
[  10   19 1153 1296 1154 1154]
[  10   20  674  676  676  676]
[  11   11  855  855  855  860]
[  11   12  551  610  552  552]
[  11   13  901 1020  902  902]
[  11   14  781  900  782  782]
[  11   15 1081 1160 1082 1082]
[  11   16 1041 1160 1042 1042]
[  11   17 1521 1680 1522 1522]
[  11   18 1181 1300 1182 1182]
[  11   19 1891 2070 1892 1892]
[  11   20 1581 1700 1582 1582]
[  12   12  290  292  292  290]
[  12   13  757  828  758  757]
[  12   14  457  504  458  457]
[  12   15  737  738  738  737]
[  12   16  673  674  673  673]
[  12   17 1265 1360 1266 1265]
[  12   18  577  578  578  577]
[  12   19 1567 1674 1568 1568]
[  12   20  961  962  962  961]
[  13   13 1602 1602 1602 1602]
[  13   14 1081 1224 1082 1081]
[  13   15 1489 1584 1490 1489]
[  13   16 1441 1584 1442 1441]
[  13   17 2113 2304 2114 2113]
[  13   18 1633 1776 1634 1633]
[  13   19 2629 2844 2630 2630]
[  13   20 2185 2328 2186 2185]
[  14   14  723  726  726  723]
[  14   15 1297 1392 1298 1297]
[  14   16  865  960  866  865]
[  14   17 1825 2016 1826 1825]
[  14   18  955 1062  956  955]
[  14   19 2269 2484 2270 2270]
[  14   20 1297 1392 1298 1297]
[  15   15 1348 1352 1352 1352]
[  15   16 1713 1808 1714 1713]
[  15   17 2497 2624 2498 2497]
[  15   18 1585 1586 1586 1585]
[  15   19 3097 3240 3098 3098]
[  15   20 2402 2404 2404 2404]
[  16   16 1412 1416 1412 1412]
[  16   17 2433 2624 2434 2433]
[  16   18 1297 1392 1298 1297]
[  16   19 3025 3240 3026 3026]
[  16   20 1857 1858 1858 1857]
[  17   17 4424 4432 4432 4424]
[  17   18 2753 2944 2754 2753]
[  17   19 4465 4752 4466 4466]
[  17   20 3681 3872 3682 3681]
[  18   18 1299 1302 1302 1299]
[  18   19 3421 3636 3422 3422]
[  18   20 1937 2032 1938 1937]
[  19   19 6759 6759 6768 6768]
[  19   20 4573 4788 4574 4574]
[  20   20 2500 2504 2504 2504]


Ranks of M2^-(G)

These are some tables of ranks of M_2^-(G) for:
1. G=Zn+Zn, n<=40
2. G=Zn, n<=100
3. G=Zn+Zm, n,m<=10


[M2^- for Groups of rank 2]
[ n, n,Q-rank,Fq-rank...]
[    0     0     0     2     3     5]
[    1     1     0     0     0     0]
[    2     2     0     2     0     0]
[    3     3     3     3     3     3]
[    4     4     5     5     5     5]
[    5     5    22    22    22    22]
[    6     6    13    13    13    13]
[    7     7    87    87    87    87]
[    8     8    66    66    66    66]
[    9     9   165   165   165   165]
[   10    10   122   122   122   122]
[   11    11   555   555   555   555]
[   12    12   194   194   194   194]
[   13    13  1098  1098  1098  1098]
[   14    14   507   507   507   507]
[   15    15   964   964   964   964]
[   16    16  1028  1028  1028  1028]
[   17    17  3272  3272  3272  3272]
[   18    18   975   975   975   975]
[   19    19  5139  5139  5139  5139]
[   20    20  1924  1924  1924  1924]
[   21    21  4038  4038  4038  4038]
[   22    22  3305  3305  3305  3305]
[   23    23 11143 11143 11143 11143]
[   24    24  3076  3076  3076  3076]
[   25    25 12510 12510 12510 12510]
[   26    26  6558  6558  6558  6558]
[   27    27 13131 13131 13131 13131]
[   28    28  8070  8070  8070  8070]
[   29    29 28434 28434 28434 28434]
[   30    30  5764  5764  5764  5764]
[   31    31 37215 37215 37215 37215]
[   32    32 16392 16392 16392 16392]
[   33    33 26410 26410 26410 26410]
[   34    34 19592 19592 19592 19592]
[   35    35 40332 40332 40332 40332]
[   36    36 15558 15558 15558 15558]
[   37    37 75942 75942 75942 75942]
[   38    38 30789 30789 30789 30789]
[   39    39 52428 52428 52428 52428]
[   40    40 30728 30728 30728 30728]



[[M2^- for Cyclic Groups]
[ 1, n,Q-rank,Fq-rank...]
[  0   0   0   2   3   5]
[  1   1   0   0   0   0]
[  1   2   0   1   0   0]
[  1   3   0   1   0   0]
[  1   4   0   2   0   0]
[  1   5   0   3   0   0]
[  1   6   0   3   0   0]
[  1   7   0   5   0   0]
[  1   8   0   5   0   0]
[  1   9   1   6   1   1]
[  1  10   0   7   0   0]
[  1  11   1  10   1   1]
[  1  12   2   7   2   2]
[  1  13   2  13   2   2]
[  1  14   1  12   1   1]
[  1  15   5  12   5   5]
[  1  16   3  14   3   3]
[  1  17   5  20   5   5]
[  1  18   4  15   4   4]
[  1  19   7  24   7   7]
[  1  20   7  18   7   7]
[  1  21  11  22  11  11]
[  1  22   6  25   6   6]
[  1  23  12  33  12  12]
[  1  24  11  22  11  11]
[  1  25  16  35  16  16]
[  1  26  10  33  10  10]
[  1  27  19  36  19  19]
[  1  28  16  33  16  16]
[  1  29  22  49  22  22]
[  1  30  17  32  17  17]
[  1  31  26  55  26  26]
[  1  32  21  44  21  21]
[  1  33  31  50  31  31]
[  1  34  21  52  21  21]
[  1  35  37  60  37  37]
[  1  36  28  45  28  28]
[  1  37  40  75  40  40]
[  1  38  28  63  28  28]
[  1  39  45  68  45  45]
[  1  40  37  60  37  37]
[  1  41  51  90  51  51]
[  1  42  37  60  37  37]
[  1  43  57  98  57  57]
[  1  44  46  75  46  46]
[  1  45  61  84  61  61]
[  1  46  45  88  45  45]
[  1  47  70 115  70  70]
[  1  48  53  76  53  53]
[  1  49  78 119  78  78]
[  1  50  56  95  56  56]
[  1  51  81 112  81  81]
[  1  52  67 102  67  67]
[  1  53  92 143  92  92]
[  1  54  64  99  64  64]
[  1  55 101 140 101 101]
[  1  56  79 114  79  79]
[  1  57 103 138 103 103]
[  1  58  78 133  78  78]
[  1  59 117 174 117 117]
[  1  60  85 108  85  85]
[  1  61 126 185 126 126]
[  1  62  91 150  91  91]
[  1  63 127 162 127 127]
[  1  64 105 152 105 105]
[  1  65 145 192 145 145]
[  1  66 101 140 101 101]
[  1  67 155 220 155 155]
[  1  68 121 168 121 121]
[  1  69 155 198 155 155]
[  1  70 121 168 121 121]
[  1  71 176 245 176 176]
[  1  72 127 162 127 127]
[  1  73 187 258 187 187]
[  1  74 136 207 136 136]
[  1  75 181 220 181 181]
[  1  76 154 207 154 154]
[  1  77 211 270 211 211]
[  1  78 145 192 145 145]
[  1  79 222 299 222 222]
[  1  80 169 216 169 169]
[  1  81 217 270 217 217]
[  1  82 171 250 171 171]
[  1  83 247 328 247 247]
[  1  84 175 210 175 175]
[  1  85 257 320 257 257]
[  1  86 190 273 190 190]
[  1  87 253 308 253 253]
[  1  88 211 270 211 211]
[  1  89 287 374 287 287]
[  1  90 193 240 193 193]
[  1  91 301 372 301 301]
[  1  92 232 297 232 232]
[  1  93 291 350 291 291]
[  1  94 231 322 231 231]
[  1  95 325 396 325 325]
[  1  96 233 280 233 233]
[  1  97 345 440 345 345]
[  1  98 253 336 253 253]
[  1  99 331 390 331 331]
[  1 100 271 330 271 271]





[M2^-]
[ m, n,Q-rank,Fq-rank...]
[  0   0   0   2   3   5]
[  1   1   0   0   0   0]
[  1   2   0   1   0   0]
[  1   3   0   1   0   0]
[  1   4   0   2   0   0]
[  1   5   0   3   0   0]
[  1   6   0   3   0   0]
[  1   7   0   5   0   0]
[  1   8   0   5   0   0]
[  1   9   1   6   1   1]
[  1  10   0   7   0   0]
[  2   2   0   2   0   0]
[  2   4   0   3   0   0]
[  2   6   0   5   0   0]
[  2   7   1  12   1   1]
[  2   8   1   8   1   1]
[  2   9   4  15   4   4]
[  2  10   1  12   1   1]
[  3   3   3   3   3   3]
[  3   4   2   7   2   2]
[  3   5   5  12   5   5]
[  3   6   7   7   7   7]
[  3   7  11  22  11  11]
[  3   8  11  22  11  11]
[  3   9  19  19  19  19]
[  3  10  17  32  17  17]
[  4   4   5   5   5   5]
[  4   5   7  18   7   7]
[  4   6   5  12   5   5]
[  4   7  16  33  16  16]
[  4   8  17  17  17  17]
[  4   9  28  45  28  28]
[  4  10  17  32  17  17]
[  5   5  22  22  22  22]
[  5   6  17  32  17  17]
[  5   7  37  60  37  37]
[  5   8  37  60  37  37]
[  5   9  61  84  61  61]
[  5  10  62  62  62  62]
[  6   6  13  13  13  13]
[  6   7  37  60  37  37]
[  6   8  25  40  25  25]
[  6   9  55  55  55  55]
[  6  10  37  60  37  37]
[  7   7  87  87  87  87]
[  7   8  79 114  79  79]
[  7   9 127 162 127 127]
[  7  10 121 168 121 121]
[  8   8  66  66  66  66]
[  8   9 127 162 127 127]
[  8  10  81 112  81  81]
[  9   9 165 165 165 165]
[  9  10 193 240 193 193]
[ 10  10 122 122 122 122]