
Differentiable solver for time-dependent deformation problems with
contact
ZIZHOU HUANG, New York University, New York, United States

DAVI COLLI TOZONI, New York University, New York, United States

ARVI GJOKA, New York University, New York, United States

ZACHARY FERGUSON, New York University, New York, United States

TESEO SCHNEIDER, Computer Science, University of Victoria, Victoria, Canada

DANIELE PANOZZO, Computer Science, New York University, New York, United States

DENIS ZORIN, New York University, New York, United States

Fig. 1. The direction and magnitude of the initial velocity of the yellow bunny is optimized to push, after contact, the blue bunny into the white circle

marker. The top row is the initial configuration, and the bottom row is our optimized result. This scene involves an elastodynamic simulation with a

non-linear material model with contact and friction forces.

Zizhou Huang and Davi Colli Tozoni contributed equally to this research.
This work was supported in part through the NYU IT High Performance Comput-
ing resources, services, and staff expertise. This work was also partially supported
by the NSF CAREER award under Grant No. 1652515, the NSF grants OAC-1835712,
CHS-1908767, CHS-1901091, IIS-2313156, a Sloan Fellowship, and a gift from Adobe
Research.
Authors’ Contact Information: Zizhou Huang, New York University, 60 5th ave, New
York NY, United States, 10011; e-mail: zizhou@nyu.edu; Davi Colli Tozoni, New York
University, 60 5th ave, New York NY, United States, 10011; e-mail: davi.tozoni@
nyu.edu; Arvi Gjoka, New York University, 60 5th ave, New York NY, United States,
10011; e-mail: ag4571@nyu.edu; Zachary Ferguson, New York University, 60 5th ave,
New York NY, United States, 10011; email: zfergus@nyu.edu; Teseo Schneider, Depart-
ment of Computer Science, University of Victoria, 3800 Finnerty Road, Engineering
& Computer Science Building, V8P 5C2 Victoria BC, Canada; e-mail: teseo@uvic.ca;
Daniele Panozzo, Computer Science, New York University, 60 5th ave, New York NY,
United States, 10011; e-mail: panozzo@nyu.edu; Denis Zorin, New York University,
60 5th ave, New York NY, United States, 10011; e-mail: dzorin@cs.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

We introduce a general differentiable solver for time-dependent deforma-

tion problems with contact and friction. Our approach uses a finite element

discretization with a high-order time integrator coupled with the recently

proposed incremental potential contact method for handling contact and

friction forces to solve ODE- and PDE-constrained optimization problems

on scenes with complex geometry. It supports static and dynamic prob-

lems and differentiation with respect to all physical parameters involved

in the physical problem description, which include shape, material param-

eters, friction parameters, and initial conditions. Our analytically derived

adjoint formulation is efficient, with a small overhead (typically less than

10% for nonlinear problems) over the forward simulation, and shares many

similarities with the forward problem, allowing the reuse of large parts of

existing forward simulator code.

We implement our approach on top of the open-source PolyFEM library

and demonstrate the applicability of our solver to shape design, initial con-

dition optimization, and material estimation on both simulated results and

physical validations.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 0730-0301/2024/05-ART31
https://doi.org/10.1145/3657648

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

HTTPS://ORCID.ORG/0009-0007-6529-4694
HTTPS://ORCID.ORG/0009-0005-7094-495X
HTTPS://ORCID.ORG/0009-0002-4666-8260
HTTPS://ORCID.ORG/0000-0003-2466-3768
HTTPS://ORCID.ORG/0000-0002-5969-636X
HTTPS://ORCID.ORG/0000-0003-1183-2454
HTTPS://ORCID.ORG/0000-0001-7733-5501
mailto:permissions@acm.org
https://doi.org/10.1145/3657648
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3657648&domain=pdf&date_stamp=2024-05-22

31:2 • Z. Huang et al.

CCS Concepts: • Computing methodologies→ Physical simulation;

Additional Key Words and Phrases: Differentiable simulation, finite ele-

ment method, elastodynamics, frictional contact

ACM Reference Format:

Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo

Schneider, Daniele Panozzo, and Denis Zorin. 2024. Differentiable solver

for time-dependent deformation problems with contact. ACM Trans. Graph.

43, 3, Article 31 (May 2024), 30 pages. https://doi.org/10.1145/3657648

1 INTRODUCTION

ODE- and PDE-constrained optimization problems, i.e., the min-

imization of a functional depending on the state of a physical

system modeled using a set of (partial) differential equations, ap-

pear in many application areas: optimized design in engineering

and architecture, metamaterial design in material science, inverse

problems in biomedical applications, controllable physically-based

modeling in computer graphics, control policy optimization, and

physical parameter estimation in robotics.

A common family of PDE-constrained optimization problems

in graphics, robotics, and engineering involves static or time-

dependent elastic deforming objects interacting with each other

via contact and friction forces. A significant number of approaches

have been proposed to tackle PDE-constrained optimization prob-

lems of this type (Section 2).

However, these approaches often make application-specific as-

sumptions aimed at simplifying the differentiable simulator, often

sacrificing generality (e.g., handling contact only with simple rigid

obstacles or differentiating with respect to material parameters

only), robustness (e.g., using a contact model that requires per-

scene parameter tuning to prevent failure), accuracy (e.g., using

approximate spatial discretizations, or non-physical material and

friction models), or scalability (e.g., restricting the number of sys-

tem parameters with respect to which it can be optimized).

Building on and integrating a broad range of previous work on

PDE-constrained optimization, including shape optimization, ma-

terial property estimation, and trajectory control, we develop a dif-

ferentiable solver that eliminates or reduces these shortcomings.

Our solver has the following characteristics:

(1) Maximally general differentiability: we support differentia-

tion with respect to all physical parameters (Section 8) in-

volved in the physical problem description: shape, material

parameters, friction parameters, and initial conditions. The

user can pick an arbitrary subset of these parameters to use

in objective functions (Section 9.1), differently from previ-

ous works which limit this selection (Table 1).

(2) Our contact/friction formulation builds upon the recently

proposed Incremental Potential Contact (Section 8.2) ap-

proach [Li et al. 2020]. Our differentiable simulator supports

complex geometry, is automatic and robust (with only two

main parameters controlling the accuracy of the spatial and

temporal discretizations), and guarantees physically valid

configurations at all timesteps, without intersections nor

inverted elements. Many previous works instead use a re-

stricted set of contact scenarios (Table 1).

(3) We use discretizations of arbitrary order (Section 10), both

in space and time with general non-linear elasticity material

models, ensuring accuracy. Many competing works instead

rely on linear time and spatial discretization and often use

simplified material models, leading to lower accuracy solu-

tions (Section 2).

(4) Our formulation supports both static and dynamic problems

in a unified framework (Section 4).

(5) Our differentiation approach is low cost. The computation of

the derivatives for one PDE-constrained optimization step is

at most as expensive as a forward evaluation of the underly-

ing forward simulation of the physical systems (Section 4.3,

Table 4), and, for nonlinear problems, we observe that the

differentiability adds at most 10% to the cost.

While individually most of these features appeared in previous

works in some form, they have never been combined in a unified

formulation and algorithm for accurately solving inverse problems

in elastodynamics with contact. The foundation of our approach is

the adjoint method, which we systematically apply to obtain deriva-

tives with respect to all parameters in a unified and general way,

while achieving high efficiency. We discuss our design choices and

compare to alternatives in Section 2.1.

We demonstrate the effectiveness of our approach on a set of ex-

amples involving multiple objectives and optimizing for the shape,

material parameters, friction parameters, and initial conditions.

2 RELATED WORK

We summarize the most relevant simulation frameworks, primar-

ily focusing on those supporting differentiable simulations of elas-

tic deformable objects.

For the works closer to our targeted applications, we provide

an explicit breakdown of which subset of the characteristics of

our solver they support (Table 1). We also highlight the generality

of our solver by explicitly identifying which solvers cannot repro-

duce the examples in our paper (Table 2). While implementing

additional derivatives with respect to parameters already present

in one of these codes is easy in some cases, other features are

harder to add, e.g., contact between soft bodies or self-collisions.

The reasons why specific solvers cannot handle certain problems

are included in the caption of Table 2. We note that prior works in

Tables 1 and 2 can solve problems that our method cannot handle,

e.g., the application in visuomotor control tasks in Jatavallabhula

et al. [2021] is not included in this work.

Differentiable deformable object simulators. Numerous

differentiable elastic body simulators have been developed for

applications in optimal design of shapes [Ly et al. 2018; Panetta

et al. 2017, 2015; Tozoni et al. 2020], actuators [Chen et al. 2020;

Maloisel et al. 2021; Skouras et al. 2013], sensors [Tapia et al. 2020],

material characterization [Hahn et al. 2019; Schumacher et al.

2020], and robotic control [Bern et al. 2019; Hoshyari et al. 2019].

Differentiable simulators are also developed for fluid simulations

in Li et al. [2023b], McNamara et al. [2004], and Schenck and Fox

[2018]. These simulators broadly fit into three categories: (i) those

employing analytic derivatives computed using sensitivity anal-

ysis; (ii) those using automatic differentiation libraries [Heiden

et al. 2020; Hu et al. 2019a] based on overloading, or algorithmic

differentiation, and (iii) neural surrogate models replacing the

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

https://doi.org/10.1145/3657648

Differentiable solver for time-dependent deformation problems with contact • 31:3

Table 1. The Table Columns Correspond to Five Comparison Characteristics

Method (1) HO (2) Parameters (3) Collisions (4) Static and Dynamic (5) Differentiation

Elastic Texture [Panetta et al. 2015] Yes Shape No support Static-Only Adjoint

CB-Assemblies [Tozoni et al. 2021] Yes Shape Static and Prescribed Static-Only Adjoint

ADD [Geilinger et al. 2020] No Material, Initial Only planes or SDF, no self-collisions Dynamic-Only Adjoint

GradSim [Jatavallabhula et al. 2021] No Material, Initial Only planes, no self-collisions Dynamic-Only Code transformation

DiSECt [Heiden et al. 2021] No Material Only planes or SDF, no friction Dynamic-Only Code transformation/autodiff

NeuralSim [Heiden et al. 2020] No Material, Initial Only rigid-bodies Dynamic-Only Code transformation/autodiff

DiffPD [Du et al. 2021] No Material, Initial Only planes or SDF Dynamic-Only Adjoint

Ours Yes Shape, Material, Initial No restrictions Static and Dynamic Adjoint

(1) High-order Space and Time Discretization, (2) Supported Optimization Parameters, (3) Support for Complex Contacts between Arbitrary Surfaces, including Self-collision,
(4) Support for Static and Dynamic Simulations, and (5) Method for the Derivatives Computation. No Existing Differentiable Solver Supports all Features of Our Solver
Simultaneously; in Particular, Most do not Support Differentiating with Respect to the Shape of the Domain.

Table 2. To Clarify the Differences between Our Approach and Other Differentiable Simulators, we show which Simulators Support the Features

Needed for Each Experiment in Our Paper. The Figure Captions Provide More Details for Each Experiment; Most Significantly, Almost no other

Simulators Support Shape Optimization (Figures 5–13), and the Ones that do Lack Support for Dynamic. From Left to Right: Figures 1 and 22 Require

Contact Handling between Soft Bodies; Figures 5–13 Require Shape Optimization; Figure 16–17 Require Material Distribution Optimization; and

Figures 19 and 21 Require Self-collision Handling

Method Figure 1 Figures 5–10 Figures 11–13 Figure 14 Figures 16–17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23

Elastic Texture [Panetta et al. 2015] Y

CB-Assemblies [Tozoni et al. 2021] Y

ADD [Geilinger et al. 2020] Y Y Y Y

GradSim [Jatavallabhula et al. 2021] Y Y Y Y

DiSECt [Heiden et al. 2021] Y Y Y

NeuralSim [Heiden et al. 2020]

DiffPD [Du et al. 2021] Y Y Y Y Y

Ours Y Y Y Y Y Y Y Y Y Y Y

entire simulation with a differentiable neural network [Baque

et al. 2018; Bern et al. 2020; Chang et al. 2016; Zhang et al. 2016].

Our method belongs to the first category: analytic sensitivity

analysis generally requires manual differentiation of the physics

equations, but allows one to reuse existing solvers most easily; di-

rect differentiation is feasible only if the number of parameters

is very small; a large number of parameters requires construc-

tion of the adjoint equations for specific functionals [Bern et al.

2019; Du et al. 2021; Li et al. 2022; Liang et al. 2019; Ly et al.

2018; Qiao et al. 2020; Rojas et al. 2021], and is more efficient

than all other approaches. One exception is Dolphin-Adjoint [Mi-

tusch et al. 2019], which automatically and robustly derives ad-

joint models for models written in the finite element software

FEniCS [Alnaes et al. 2015]. Automatic differentiation methods

are most general but require existing simulators to be rewritten

using data structures required for gradients and Hessians, and

typically incur a significant performance penalty. Surrogate mod-

els, though enabling dramatic speedups in some cases, require

huge training sets and long training times for even simple design

spaces [Gavriil et al. 2020], and currently are unsuitable for high-

precision applications [Bächer et al. 2021]. Code transformation

and auto-differentiation, e.g., in simulators such as Jatavallabhula

et al. [2021] and Heiden et al. [2021], based on technology devel-

oped in NVIDIA Warp [Xu et al. 2022], while potentially allowing

one to reuse existing codes, typically places a few limitations on

what the code may contain. To the best of our knowledge, none of

the existing simulators support robust handling of contact and fric-

tion for complex geometries, and they only support a subset of the

design parameters compared to the more general formulation of

this paper.

We provide direct comparisons of our solver, Du et al. [2021]

and Jatavallabhula et al. [2021] in Section 10.5.

Differentiable Simulations with Contact. Differentiable sim-

ulators incorporating various contact models have recently been

developed for rigid [Heiden et al. 2020] and soft bodies [Geilinger

et al. 2020; Heiden et al. 2021; Jatavallabhula et al. 2021; Liang et al.

2019; Qiao et al. 2020]. These contact models often require per-

scene parameter tuning if complex contact scenarios are present,

which makes these methods hard to use in optimization, especially

shape optimization.

Our approach uses the recently proposed Incremental Po-

tential Contact (IPC) formulation [Li et al. 2020], replacing the

traditional zero-gap assumption [Belytschko et al. 2000; Bridson

et al. 2002; Brogliato 1999; Daviet et al. 2011; Harmon et al.

2009, 2008; Kikuchi and Oden 1988; Otaduy et al. 2009; Stewart

2001; Verschoor and Jalba 2019; Wriggers 1995] with a smooth

version ensuring a (small) non-zero separation between objects

at every frame of the simulation. This approach was designed

with the explicit goal of guaranteeing robustness and its smooth

formulations of contact and friction avoids the need for handling

non-smooth constraints.

Stupkiewicz et al. [2010] is one of the few papers that demon-

strate sensitivity analysis of elastic problems with contact with re-

spect to a range of parameters, including shape and material prop-

erties. This method, tested on a limited set of regular-grid prob-

lems, uses direct differentiation requiring a solve per parameter,

and does not use a robust contact model.

We compare our solver, Du et al. [2021] and Jatavallabhula

et al. [2021] in Section 10.5 in scenes involving both contact and

self-contact.

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

31:4 • Z. Huang et al.

Shape and topology optimization with contact. Historically,

shape optimization was primarily considered separately, e.g., for

physical parameter or initial condition estimation, primarily in

static settings, often with additional assumptions on bodies in-

volved in contact.

Some previous works in this area have considered the specific

case of optimization in the presence of contact between a soft

body with fixed rigid surfaces [Beremlijski et al. 2014; Haslinger

et al. 1986; Herskovits et al. 2000]. Other works, like ours, have

studied the interaction of two or more deformable bodies in con-

tact [Desmorat 2007; Maury et al. 2017; Stupkiewicz et al. 2010;

Tozoni et al. 2021]. Most papers do not consider friction or use a

simplified model (compared to the standard Coulomb formulation)

as discussed by Maury et al. [2017].

Most closely related to our approach, Maury et al. [2017]

presented a level set discretization technique where contact and

friction were modeled with penalty terms, using smooth approxi-

mations to the problem. Using a similar contact and friction model,

Tozoni et al. [2021] designed a shape optimization technique that

focused on reducing stress of static assemblies that are held to-

gether by contact and friction. Both these works followed the math-

ematical model of contact presented by Eck et al. [2005], which al-

lows for interpenetration and assumed that contact zones are fixed.

For the specific use case of avoiding sag due to gravity forces,

Hsu et al. [2022] proposes a global/local approach to optimize the

rest shape and initial displacement of input geometries to avoid

the deformation introduced by gravity forces. This work uses the

IPC contact model in some simulation examples, but does not use

IPC in their optimization procedure.

Our approach supports dynamic simulation, allows contact

zones to change with both optimization parameter changes and in

the course of the simulation, and supports contact and self-contact

between arbitrary deformable objects.

Meshfree methods. A number of differentiable simulation

methods use meshfree discretizations. Especially for shape opti-

mization, methods like XFEM [Hafner et al. 2019; Schumacher et al.

2018] and MPM [Hu et al. 2019b] that do not maintain conforming

meshes are often considered to circumvent remeshing-induced dis-

continuities [Bächer et al. 2021]. However, these methods sacrifice

accuracy [de Vaucorbeil et al. 2019], particularly for stress mini-

mization problems [Sharma and Maute 2018]. Our approach com-

putes accurate displacement and stressed by using a finite element

method framework using high-order elements, coupled with dy-

namic remeshing to compensate for the distortion introduced by

large deformations.

2.1 Choice of Approach to Computing Gradients

A broad variety of approaches to differentiable simulation exist

in the literature on optimal control, shape optimization, and in-

verse problems (see, e.g., van Keulen et al. [2005] for a systematic

overview); in this section, we briefly discuss the motivation for the

design choices in our algorithm. Our choice is significantly influ-

enced by the features of our problem setting:

— High dimension: e.g., shape and variable material property

optimization may require thousands of parameters.

— Complex linear solvers: we aim to accurately solve highly

nonlinear, time-dependent or static, stiff problems, requir-

ing complex linear solvers for large sparse linear systems in

the inner loop of nonlinear solvers.

— Contact: resolving contacts requires additional complex al-

gorithms for continuous collision detection, in the nonlinear

solver line searches.

— Large shape changes and deformations: shape differen-

tiation often leads to large shape changes, which may

require remeshing.

Choice of the overall approach. The two most general ap-

proaches are, in a sense, opposite extremes, but neither is a good

fit for our setting.

Finite difference methods can be used with any black-box solver,

but require an extra solve for each parameter, so it is not suit-

able for high-dimensional problems or even problems of moder-

ate dimension (Table 6 compares the efficiency of our method and

finite differences).

Code differentiation [Bischof and Bücker 2000; Griewank and

Walther 2008; Margossian 2019; Naumann 2012] through overload-

ing operators, or using a specialized language, has two fundamen-

tal problems, making it unsuitable for complex nonlinear codes

with contact: it requires rewriting all of the simulation code, includ-

ing supporting numerical libraries, e.g., sparse linear solvers and

contact handling, and even more significantly is likely to produce

unnecessarily inefficient code (fully differentiable sparse linear ma-

trix inversion is going to be slow, and differentiating through a non-

linear solve is unnecessary, as we see below). While automatic code

transformation in principle may eliminate the need to rewrite the

code, and there is promising work [Jakob 2010; Moses et al. 2022]

in this direction, we are unaware of fully automated tools capable

of handling large software systems, and the concerns about the

efficiency of the resulting code remain.

Existing differentiable solvers following this route use explicit

time integration and/or a few iterations of an iterative linear solver.

Both these options are unsuitable for applications requiring robust-

ness and accuracy, limiting their applicability. For more details, we

refer to Appendix E.3 of Hu et al. [2019a], where the authors dis-

cuss that it is not realistic to differentiate stably a complex linear

solver (the paper refers to a multigrid solver, but it is even more

true for a sparse direct solver), so they use 10 Jacobi iterations to

approximate the linear solve in the smoke simulation.

We opt for the approach based on adjoint equations, well estab-

lished in scientific computing and optimal control, as described in

Section 3. It is widely considered the most efficient approach to

computing sensitivities, with the cost of a single additional linear

solve per time step, and reusing important parts of the forward

solver, at the expense of requiring derivations specific to a partic-

ular time-stepping algorithm. It allows us to implement efficient

differentiability for solvers with all the features listed above.

Fixed vs. changing discretization. The adjoint method is

particularly simple to apply to a purely algebraic problem, in

which both the objective and PDE are discretized once, and then

the problem is treated as a purely algebraic finite-dimensional

optimization problem with PDE acting as a constraint. However,

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

Differentiable solver for time-dependent deformation problems with contact • 31:5

in our context, as shape optimization may change the domain,

we cannot view the optimization problem as purely algebraic,

as the discretization may change at every optimization step:

both the forward and adjoint systems are rebuilt starting from a

new discretization.

Discretize-then-optimize vs. optimize-then-discretize.

In the context of adjoint methods, we need to choose between

the “discretize-then-optimize” approach and “optimize-then-

discretize” [van Keulen et al. 2005]. In the first approach, the

original PDE and objectives are converted to a discrete form

which is then differentiated with respect to discrete optimization

parameters. In the second approach, a PDE for the sensitivities

is derived, and this PDE is discretized. The difference between

these approaches is relatively small for differentiation with

respect to material parameters, but more significant for shape

derivatives. In this context, “optimize-then-discretize” is the most

common approach: its convergence theory is better established,

and directly follows from the discretization convergence. On a

more practical side, it leads to a simpler form of adjoint equations

for the shape derivatives formulated in the physical domain,

enabling better reuse of the forward solver code. We refer to

Section 2.3 in Allaire et al. [2021] for additional discussion and

to Appendix G for an example illustrating the differences for

the Poisson problem. We emphasize that both approaches, for a

suitable choice of discretization, lead to the same discrete solution;

however, discretize-then-optimize in the context of shape opti-

mization obscures the essential fact that the system matrix need

not be recomputed. We use a specific discretization that ensures

that the computed gradients are consistent with differentiating

the discretized objective, as this simplifies the implementation of

optimization algorithms.

Dokken et al. [2020] uses the “discretize-then-optimize” ap-

proach to support shape derivatives in FEniCS, which has its own

DSL. This approach allows one to support a broad range of PDEs

but at the expense of higher complexity and significant additional

performance overhead.

Constructing adjoint equation components: AD vs. ana-

lytic approach. The adjoint method requires partial derivatives

of the objective for the right-hand side of the adjoint system, and

the stiffness and mass matrices for the adjoint PDE itself, which are

similar to or coincide with those for the forward PDE. These can

be computed using an AD method (note that the code to be differ-

entiated is a straightforward algebraic computation, not a complex

algorithm like a linear solver) or in closed form.

This can be done by transforming the code of assembling force

vectors and computing objectives to an AD framework or applying

code transformation to these parts of the code. However, AD leads

to less reuse compared with the analytic case and higher computa-

tional complexity. We briefly compare these options in Section 10.

We opt for doing extra analytical work to derive all derivatives

explicitly, but the approaches can be combined - one can add addi-

tional forces or objectives using AD.

3 OVERVIEW

In Sections 4–9, we provide a self-contained description of our

method. While this contains a mix of known and new material,

we aim to present all components of the method in a unified and

systematic notation to ensure reproducibility.

Typographical conventions. We use lower-case italics for

functions a(z) and variables z, with both z and a in RD , where

D = 2, 3. Boldface lower-case letters (a) are used for vectors of

coefficients of a FEM (or any other) discretization of a function.

For a vector or matrix quantity, superscripts are used to index

whole vectors or matrices: e.g., pi may denote p at time step i .
Subscripts are used for the indices of components of a vector, e.g.,

a(z) =
∑n

�=1
a�ϕ

�(z) means that the function a(z) : R → RD is

a linear combination of basis functions ϕ� , with coefficients a�
which are components of a. If a(z) has values in RD , its coeffi-

cients in a scalar basis ϕ� are D-dimensional. Then a is a vector

of length D · n, with D coordinates of each component of a� in

sequential entries.

General problem form. We solve static and dynamic optimiza-

tion problems of the form

min
q

J (u,x ,q), such that,H(u,x ,q) = 0 (1)

and

min
q

J (u, q) = min
q

∫ T

t=0
J (u, t , q)

such that ρ �u = H(u,x , t ,q) on Ωq̄, u(0) = д
u (q), �u(0) = дv (q),

(2)

where J is an objective, possibly including constraints in penalty

form, u(x , t) is the displacement of a material point x satisfying

a static or dynamic physics equation, and дu and дv are the ini-

tial conditions for the displacements and velocities. In this work,

we consider nonlinear elastic deformation, contact, friction, and

damping forces. We assume the density ρ to be constant in time.

The optimization parameter functions q = (q̄, q1, . . . , qm) include

all parameters of the system: material properties (elastic, friction,

and damping), object shape, and initial and boundary conditions.

The first of these, q̄ plays a special role: it determines the shape

of the domain Ωq̄ on which the PDE is defined; it is a function

on a reference domain Ωref defining its deformation. Parameters

qi may be global constants, or dependent on the points of the

reference domain, or pairs of points (as it is the case for the

friction coefficient).

This problem statement is similar to Geilinger et al. [2020] and

other works on differentiable simulators; however, our goal is to

support full differentiability, including shape, in a systematic way

(see Table 1 for details) which affects the adjoint formulation and

requires deriving expressions for a number of gradients of forces

and functionals.

Discrete problem. We postpone the exact description of the

discrete problem to Section 6. The discretized static problem ob-

tained using FEM discretization has the general form:

min
q

J (u, q), s.t., h(u, q) = 0, (3)

where u is the vector of FE basis coefficients of u and q is the con-

catenation of the vectors of coefficients of q̄, q1, . . . , qm .

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

31:6 • Z. Huang et al.

Table 3. Notation

Domains and bases

Dd Domain dimension, 2 or 3.

Ds Solution dimension, 1, 2 or 3.

Ωref Reference domain Ωref ⊂ R
Dd consists of

copies of identical reference elements K̂j , j =

1 . . . nK identified along edges.

x̂� and ẑ� Nodes are points in Ωref used to define bases,

� = 1 . . . nx
N

, and 1 . . . nz
N

respectively. The set

of nodes ẑ� does not include nodes with Dirichlet

boundary conditions; the set of nodes xi does include

these nodes.

ϕ̂� and ξ̂ � FE basis functions are scalar basis functions de-

fined on Ωref ; ξ̂ � correspond to nodes x̂i , and is

used for geometric maps (we use p.w. linear basis);

ϕ̂� correspond to ẑ� and used for all other quanti-

ties (arbitrary order Lagrangian).

q̄, q̄ j (y j), q̄,

x�

Geometric map q̄ embedding a reference ele-

ment in space, is defined on each K̂j in Ωref with

local coordinates y j as q̄ j (y j) =
∑

� x� ξ̂ � (y j),

where x� ∈ R
Dd are the positions of the nodes

of the element j forming the vector q̄. Concatena-

tion of these maps yields the global geometric map

q̄ : Ωref → R
Dd .

Ωq̄ Physical domain is the domain on which the

PDE is solved, parametrized by q̄, Ωq̄ = q̄(Ωref).

The global coordinate on Ωq̄ is x = x q̄ ∈ RDd .

ϕ� (x),ξ � (x) FE bases on Ωq̄. The bases ϕ̂� and ξ̂ � can be

pushed forward to the domain Ωq̄ via ϕ(x) =

ϕ̂ ◦ q̄−1(x) and ξ (x) = ξ̂ ◦ q̄−1(x).

Ωq̄+θ t Perturbed domain obtained using a perturbation

direction θ in q̄. Perturbation θ (x) ∈ RDd is: θ =

θ (x) =
∑

� θ� ξ̂ � ◦ (q̄ j)−1(x) =
∑

� θ� ξ � (x).

Functions on physical domain Ωq̄

uq̄(x),u PDE solution defined on Ωq̄ with values in RDs .

We denote the vector of coefficients of u in the FE ba-

sis ϕ by u. u(x) =
∑

� u� ϕ̂� ◦ q̄−1(x) =
∑

� u�ϕ� (x).

w (x),

ψ (x),w,ψ
Test functions (scalar) defined similarly to u(x) in

the same basis and vectors of their coefficients are w

and ψ .

p(x),p Adjoint solution is the solution of the adjoint equa-

tion and the vector of its coefficients, with values in

R
Ds .

qm (x), qm m-th optimization parameter qm (x) =∑nm
q

�=1
qm
�

ζ � (x) with a basis ζ � with values in

R
Dm

q parameters can be material properties, bound-

ary conditions etc, defined on all or parts of Ωq̄ .

For the geometry map q̄, ξ on Dom(q̄) = Ωref , and

ζ � = ξ � .

PDE and derivatives

h(u, q) = 0 Discretized form of the PDE, i.e., a system of nu

algebraic equations with components of u as un-

knowns.

J (u, q) Discretized form of the objective.

∂qa(u, q) Derivative of a (possibly) vector quantity a with

respect to a vector of optimization parameters,

not including dependence through u . The vector is

the vector of coefficients of one of qm or q̄. If the

dimension of a is na , then ∂qa is a matrix of size

na × Dm
q nm

q .

∂ua(u, q) Derivative of a quantity a with respect to the the

PDE solution u ; it is a vector of length Ds nu .

dqa(u, q) Full derivative of a with respect to q, including

through the dependence on u .

∇a(v),

∇i a(v, w)

Derivatives of a with respect to arguments

v, w ∈ RD .

The dynamic discretized problem with BDF of order m dis-

cretization in time has the general form:

min
q

J (u, q) = min
q

N∑
i=0

wi Ji (u
i , q)

ui +

min(i,m)∑
j=1

α i
j ui−j = βi Δt vi

M

(
vi +

min(i,m)∑
j=1

α i
j vi−j

)
= βi Δt hi (ui , ui−1, q) = ĥi ,

(4)

where M is the mass matrix. The higher-order BDF schemes need

to be initialized with lower-order steps; more specifically, α i
j is

j-th coefficient of BDFi , for 1 � i < m, and j-th coefficient of BDFm

otherwise. In the formulation above, h(u, q) does not depend on ve-

locities v. If the dependence on velocities is needed, as for damping

forces, we discretize in time, and handle it as dependence on u at

different time steps.

Overview of the method. We aim to present a complete,

largely self-contained formulation, to ensure reproducibility as

well as support easy addition of new types of forces. This requires

restating briefly some of the known facts and formulas using our

notation; we identify parts that are not present in previous work.

We first assume the discretized form of the problem (3) and

(4), and derive consistent adjoint equations for the static and

dynamic cases.

Each force and objective can be added to this general framework

by deriving a set of matrices and vectors needed to compute partial

force and objective derivatives.

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

Differentiable solver for time-dependent deformation problems with contact • 31:7

We then proceed by computing these quantities analytically for

the set of forces involved in our formulation, and a broad selec-

tion of functionals, including most used in the previous work both

on differentiable dynamic simulation and shape optimization. We

compute these in a form that allows for easy remeshing of Ωref and

Ωq̄, which is necessary for the large changes in physical domain

introduced by shape optimization.

4 ADJOINT-BASED OBJECTIVE DERIVATIVES

The derivatives of the objective J with respect to optimization

parameters can be computed efficiently using the classic adjoint

method. While the basic principles of derivation are well-known,

we show how these are applied in the context of our problem.

The general form of our equations is similar to Geilinger et al.

[2020], which in turn is based on Hahn et al. [2019] for the spe-

cific case of BDF2 time-stepping and material parameter differen-

tiation. We derive the abstract form of the adjoint system for a

general form of BDF time-stepping, and importantly we ensure

that the dynamic adjoint solution is consistent, i.e., yields identi-

cal, rather than approximately identical, results to direct differ-

entiation, as well as considers variable mass matrix needed for

shape derivatives.

4.1 Static Case

With the adjoint method, the gradient with respect to any number

of parameters can be obtained by solving a single additional linear

PDE (the adjoint PDE), and then evaluating an expression depend-

ing on this unknown. The adjoint PDE is obtained by considering

the Lagrangian

L = J (u, q) {objective term} (5)

+ pT h(u, q) {physical constraint term} (6)

and differentiating it with respect to the parameters q:

dqL = ∂q J + ∂u J dqu + pT ∂qh + pT ∂uhdqu. (7)

dqL is expensive to compute if the dimension of q is large; a direct

computation involves computing dqm u (how solution changes ac-

cording to parameter qm) for every optimized parameter qm in q,

which means solving |q | different linear PDEs. Isolating all terms

multiplying dqu:

dqL = ∂q J + pT ∂qh +
(
∂u J + pT ∂uh

)
dqu. (8)

We can then eliminate the last term by choosing the adjoint vari-

able p such that it solves the adjoint problem:

pT ∂uh = −∂u J . (9)

Then, by plugging the solution p of the adjoint PDE into the

Lagrangian, we obtain the final shape derivative:

dq J = dqL(p) = ∂q J + pT ∂qh. (10)

Combining contributions from different forces and objec-

tives together. Our discretized equation has the form

h(u, q) =
∑
k

hk (u, q) = 0,

where hk is a contribution from each type of force (elasticity

forces, contact forces, etc.). Similarly, the objective J is a sum of

contributions from several objective components or constraints in

penalty form:

J (u, q) =
∑
�

J �(u, q).

Thus, the adjoint system and the full parametric derivative have

the following form, respectively:

pT

(∑
k

∂uhk

)
= −

∑
�

∂u J
� ,

dq J =
∑
�

∂q J
� +

∑
k

pT ∂qhk .

(11)

Thus, for each force, we need ∂uhk and ∂qhk and each objective

component, ∂u J
k and ∂q J

� .

4.2 Dynamic Case

Discrete time-dependent Lagrangian. We write the time-

dependent Lagrangian L for the functional J viewing the equa-

tions for �v and �u as constraints with Lagrange multipliers p

and μ.

Similar to the static case, we expand the derivative dqL, and iso-

late the terms containing dqu and dqv. By setting the sum of each

of these two sets of terms to zero, we obtain two adjoint equations.

Our Lagrangian consists of three parts, corresponding to the

objective (J), physics constraints (Lc), and initial condition con-

straints (Lin):

L(u, v, p, μ, q) = J (u, q) + Lc (u, v, p, μ, q) + Lin (u
0, v0, p0, μ0, q),

where

Lin = pT
0 (v

0 − gv) + μT
0 (u

0 − gu),

and

Lc =

N∑
i=1

pT
i M

(
vi +

min(i,m)∑
j=1

α i
j vi−j − ĥi

)
+ μT

i

(
ui +

min(i,m)∑
j=1

α i
j ui−j − βi Δt vi

)
.

Adjoint equations. As shown in the Appendix, this leads to

the following adjoint equations:(
pi +

min(m,N−i)∑
j=1

α
i+j
j pi+j

)
= βi Δt ν i

MT ��ν i +

min(m,N−i)∑
j=1

α
i+j
j ν i+j

���
= (∂ui ĥi)T pi + (∂ui ĥi+1)T pi+1 − (∂u Ĵ

i)T ,

(12)

where we introduce a new variable ν satisfying μ = MTν .

Note that this system is very similar to the forward time-

stepping, with the following differences: it proceeds backward,

from ν i+1 to ν i ; there is a single linear solve per time step, rather

than a nonlinear solve as for the forward system; for higher-order

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

31:8 • Z. Huang et al.

time stepping the first few steps in the forward system are lower-

order BDF steps; however, this is not the case for the adjoint sys-

tem: to maintain consistency, we derive the initial low-order steps

from the forward system. If BDF2 is used for the forward time-

stepping, the resulting scheme is different from the standard BDF2

scheme used in Hahn et al. [2019] for the adjoint system. If the sys-

tem were discretized inconsistently as in Hahn et al. [2019], a suf-

ficiently small time step is needed to maintain accuracy of the gra-

dient that would ensure that the discrete energy decreases along

the gradient direction.

By introducing pN+1, νN+1, the initial condition can be simpli-

fied as
pN+1 = 0,

νN+1 = 0.
(13)

The first (last in the adjoint solve) values need to be treated sep-

arately, as shown in Appendix A.2:

μ0 = −(∂u Ĵ
0)T −

m∑
j=1

α
j
j μ j + pT

1 ∂u0 ĥ1, p0 = −

m∑
j=1

α
j
jM

T pj . (14)

Computing the derivative of J from the forward and ad-

joint solutions. From the adjoint variables, we can compute

dq J = dqL:

dq J = − pT
0 ∂qgv − μT

0 ∂qgu

+

N∑
i=0

∂q Ĵ
i

+

N∑
i=1

−pT
i ∂qĥi + βi Δt νT

i dqMvi

+

m∑
j=1

α
j
j pT

j dqMv0.

(15)

Partial derivatives ∂qĥ, ∂uĥ and ∂q Ĵi , ∂u Ĵi are exactly the same

as used in the construction of the system for static adjoint and

computation of the functional. The differences, specific to time dis-

cretization, are:

— Mass matrix derivative dqM . See Appendix (Section A.3).

— Partial derivatives of the initial conditions with respect to

parameters ∂qgv and ∂qgu , for positions and velocities. See

Section A.4 in the Appendix. Typically, a 3D position and ve-

locity for the whole object (or angular velocity for the object

rotating as a rigid body) are used as parameters, so these are

trivial to compute.

4.3 Summary of the Parametric Gradient Computation

Computing the derivative dq J requires the following components:

— Derivatives ∂u Ji , ∂uhi , ∂q Ji and ∂qhi for each time step i .
See Sections 8 to 9.2 for corresponding formulas.

— For the dynamic problems, ∂qgu and ∂qgv , derivatives of

the initial conditions. See Section A.4 in the Appendix.

To compute the parametric derivative of J , the steps are

as follows:

(1) Solve the forward system (3) or (4), and store the resulting

solutions u for the static problem; for the dynamic problem,

we store ui , vi , i = 0 . . .N at every step.

(2) Initialize adjoint variables pN+1,νN+1 as shown in (13).

(3) For the static problem, solve the adjoint system (9). For

the dynamic problem, perform backward time stepping

using (12).

(4) At every step of the dynamic solve, evaluate derivative of

the mass matrix dqM , if applicable, and use formulas (15) to

update dq J .

5 OPTIMIZATION ALGORITHM

We provide a high-level summary of our method in Algorithm 1,

its major components are:

— ForwardSolve solves the nonlinear elasticity system, re-

taining all solution steps for time-dependent problems;

— Objective computes the objective function given the solu-

tion and parameters;

— AdjointSolve solves the adjoint system (12) stepping back-

ward in time and using the solutions of the forward problem;

— DiscreteDerivative computes gradients given displace-

ments and adjoint variables;

— LineSearch is the standard Wolfe-Armijo line search, with

additional prevention of element inversion and contact [Li

et al. 2020];

— Remesh performs remeshing of Ωref and Ωq to improve the

mesh quality before restarting optimization;

— Converged is the outer iteration stopping criterion.

We omit the pseudo-code for the forward solve as it closely fol-

lows that of Li et al. [2020] with only a few notable changes: (1) we

use an area weighting inside the barrier potential for convergence

(see Section 8.2), (2) we use a fixed barrier stiffness κ as changing it

adaptively throughout the simulation would require computing its

gradient through the update, and (3) to speed up convergence, we

only project the Hessian to positive semi-definite in the Newton

update if the unprojected direction is not a descent direction.

The inner loop works on a fixed mesh for Ωref , and is close to

the standard L-BFGS algorithm with two additional features, es-

sential for handling shape derivatives and large deformations: (1)

we check for any inversions of tetrahedra and contacts resulting

from changes to the shape of the domain Ωq̄ as a result of chang-

ing shape parameters and (2) after each update of the boundary

vertices, we call the SLIM smoothing algorithm [Rabinovich et al.

2017], with boundary vertices p fixed, to move the interior vertices

to improve mesh quality.

Unlike previous work we support remeshing. If the mesh quality

Q is smaller than a tolerance δremesh, the domain is remeshed. If

the gradient w.r.t. q is smaller than a tolerance δgrad or the step

size is smaller than a tolerance δx , the optimization is stopped.

6 PHYSICAL MODEL AND DISCRETIZATION

In this section, we summarize the physical model we use. The

model is similar to the one used in Li et al. [2020], with some minor

modifications to the friction and contact formulation (Section 8.2),

most significantly, the addition of damping.

To discretize the model we use arbitrary-order Lagrangian ele-

ments and arbitrary-order BDF time stepping (our experiments are

with schemes of order 1 and 2).

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

Differentiable solver for time-dependent deformation problems with contact • 31:9

The forces, which contribute to the PDE and need to be included

in the adjoint equations and corresponding parametric gradient

terms are:

— geometrically non-linear elasticity (with linear and Neo-

Hookean constitutive laws as options);

— contact forces in smoothed IPC formulation;

— friction forces also in smoothed IPC formulation;

— strain-rate proportional viscous damping for elastic objects;

— external forces such as gravity or surface loads.

The right-hand side of the system of equations we solve on i-th
time step of (12) can be written as

he (ui ; λ(x), μ(x)) + hc (ui) + hf (ui , ui−1; μ(x ,y))

+ hd (ui , ui−1;α(x), β(x)),

where he is the discrete elastic PDE term, hc and hf define contact

and friction forces, and hd defines damping. In greater detail, all

these forces are defined in the next section, along with ∂uh and

∂qh for each one of them.

The physical parameters q of the model with respect to which

it can be differentiated include:

— (possibly spatially variant) Lame coefficients for elasticity

λ(x), μ(x);
— friction coefficient between pairs of points γ (x ,y) (we con-

sider it fixed for each pair of objects, to reduce the number

of variables involved);

— damping coefficients α(x), β(x).

Domains. A critical aspect of the formulation at the foundation

of our solver is the distinction between reference domain Ωref , and

(undeformed) physical domain Ωq̄, where q̄ denotes parameters

defining the shape (Figure 2). The physics equations H(u,x , t ,q)
and the solution u(x , t) is defined on Ωq̄ most naturally, but this

domain may be changed by optimization. The optimization param-

eters q are defined on Ωref . This distinction is present in previous

work on shape optimization (e.g., Tozoni et al. [2021]) but not in

the more general setting of dynamic differentiable simulation.

7 EXAMPLE: POISSON EQUATION

To explain the principles of how individual derivatives for forces

and target functionals are computed, we use a simple example. For

more complex forces in our problem formulation, we state the final

result in this paper, and we refer to the Appendix for the derivation.

Consider a variable-coefficient Poisson equation ∇ · (c(x)∇u) =
f and zero Neumann boundary conditions on a domain Ωq̄ that

can be changed by the optimization. We take as the optimization

objective the squared gradient of the solution on the domain. Then

— the optimization parameters are q = [q̄, c];
— The PDE in weak form is

H(u,q,w) = H(u, q̄, c,w) =

∫
Ωq̄

c∇u∇w − f w dx .

— The objective is

J (u, q̄) =

∫
Ωq̄

‖∇u‖2dx .

Discretizing in FE basis, with basis functions ϕ̂� (e.g., quadratic)

used for u =
∑

� u�ϕ̂
� and c =

∑
� c�ϕ̂

� , and basis ξ̂ � used for

ALGORITHM 1: Optimization algorithm overview

function Gradient(q)

u← ForwardSolve(q)

p← AdjointSolve(Objective, u, q)

g← DiscreteDerivative(Objective, u, p, q)

return g

end function

function ParameterOptimization

q← initial parameter values

oi ← 0 � Optimization iteration count

repeat

g← Gradient(q)

d← LBFGSDirection(g, q)

s ← LineSearch(d)

q← q + sd
if Q < δremesh then

q← Remesh(Ωq)

end if

oi ← oi + 1

until oi = oimax or ‖g‖ < δgrad or ‖sd‖ < δx

end function

the geometric map q̄ =
∑

� x� ξ̂
� , we obtain the following. (Note

that both our basis ξ̂ and ϕ̂ are defined on the fixed triangulated

domain Ωref .)

— q = [q̄, c] = [x1 . . . xnN , c1 . . . cnN], where x� ∈ R
2 are ver-

tices of the physical domain Ωq̄, which we optimize, and c�
are the coefficients of c in FE basis.

— The PDE discretization is performed on the physical domain

Ωq̄, and has the form h(u, q) = S(q)u − M(q)f. The entry

(m, �) of the matrix S(q) are obtained by substituting u =

ϕm ◦ д−1 and w = ϕ� ◦ д−1, and the discrete expression for

c into the expression below; entries of M(q) are obtained in

a similar way

S(u,w) =

∫
Ωq̄

c(q̄−1(x))∇u · ∇w dx ; M(v,w) =

∫
Ωq̄

vw dx . (16)

— The discrete objective is J (u, q) = uTT (q)u, with entries of

T (q) also obtained by substituting pairs of basis functions

into the bilinear form

T (u,w) =

∫
Ωq̄

∇u · ∇w dx . (17)

Computing derivatives of S , ∂ck
S(u,w), with respect to c is

straightforward, as the dependence on the coefficients of c is linear.

Computation of shape derivatives is more complex, as the integra-

tion domain and the gradient operator ∇ with respect to physical

domain variables are affected by the change of shape parameters.

Direct approach. The direct approach is to perform a change of

variables in (16) and (17) and to the domain Ωref , and differentiate

with respect to x� ; e.g., (16) becomes

S(u,w) =

∫
Ωref

c(y) ∇yû
T (∇yq̄)

−1(∇yq̄)
−T∇yŵ det∇q̄ dy,

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

31:10 • Z. Huang et al.

Fig. 2. Notation for domains and maps we use, see Table 3.

Fig. 3. Domain perturbation θ , see Table 3.

where û and ŵ denote compositions u ◦ q̄−1. These expressions

are highly nonlinear in x� and the final expressions for ∂x�S(u,w)
needed for ∂q̄h are unwieldy, especially for more complex forces

like nonlinear elasticity and friction.

Shape derivative approach. Instead, we use shape derivative

calculus commonly used in shape optimization to obtain the deriva-

tives with respect to the shape parameters directly on the physical

domain Ωq̄ (for the parameters not affecting domain shape the ap-

proaches using Ωref and Ωq̄ are identical).

To compute ∂qh, or ∂q J , we consider the perturbed domain

Ωq̄+θ ϵ , where θ is a vector field, and compute the full derivative

as limit of
1

ϵ

(
h(uq̄+θ ϵ , q̄ + θϵ) − h(uq̄, q̄)

)
,

as ϵ → 0. In the resulting expression, the terms not containing the

change δu(x) correspond to ∂q Jθ , and the terms containing deriva-

tives of u(x) are transformed to ∂u Jψ by substituting ψ instead

of δu(x).

8 PARAMETRIC DERIVATIVES OF FORCES

In this section, we derive expressions for ∂uh and ∂qh for specific

forces needed for the adjoint equations and the final derivative for-

mula respectively.

For each force, we obtain expressions of the forms B and A be-

low, from which the matrices for corresponding derivatives can be

obtained using:

Bk (p,θ) = pT ∂qhk θ , Ak (p,ψ) = pT ∂uhkψ, (18)

with θ going over basis vectors for this parameter type, p going

over adjoint variable components, andψ over the test function ba-

sis vectors for the adjoint; i.e., two matrices of size Dsn
z
N
×Dsn

z
N

.

While nonlinear elasticity derivatives with respect to material

parameters and initial conditions were used in Geilinger et al.

[2020] and Hahn et al. [2019], and static-problem shape deriva-

tives for a different (static, allowing interpenetration) contact and

friction model were obtained in Tozoni et al. [2021], we present

expressions for all force-related derivatives with respect to all

parameters (material, shape, initial conditions) in a unified way,

simplifying adding additional forces, building whenever possible

on a general form described in Section 8.1.

8.1 Volume Forces

Many forces in continuum mechanics have the general weak form

Hv (u,w,q) =

∫
Ωq̄

f v (∇u,q) : ∇w dx , (19)

whereu is the displacement vector, with the components of the vec-

tor hv (u) obtained as Hv (u,ϕ� ,q), for all basis functions ϕ� , and

the column denotes tensor contraction. In our case, elastic forces,

irrespective of the constitutive law used, belongs to this category.

In these expressions f v (∇u,q) is a tensor of dimension Dd ×Ds ;

e.g., for elasticity, Dd = Ds , and this expression is the stress tensor,

as a function of ∇u.

If the force is associated with a volume energy density

W v (∇u,q), associated forces have the form above, specifically,

f v (∇u,q) = ∇1W
v . (Here, ∇1 means the gradient with respect

to the first parameter, which in this case is ∇u). For a surface en-

ergy density W s (u,q), the formulas are similar, but the integrals

are over the surface.

We also formulate damping forces in a similar way, as explained

in more detail below, except at each timestepW v depends on dis-

placements ui and ui−j , j = 1 . . .m at the current and m previous

steps, where m is the order of approximation of velocity used in

damping (we use m = 1). The formulas for Av and Bv in this case

are obtained in exactly the same way as for the dependence on

ui only, separately for ui and ui−1, corresponding to ∂ui hi and

∂ui−1 hi respectively.

To obtain matrices Av and Bv corresponding to ∂uhv and ∂qhv

(18), we split ∂qhf into ∂q̄hf and ∂q1 hf , the shape and non-shape

parameter derivatives, assuming f depends on a single volume vec-

tor of parameters q = q1 (e.g., Lame constants). We treat these two

types of parameters separately, as q̄ affects the domain of integra-

tion but not the integrand, and conversely, q affects the integrand

but not the domain.

Shape derivatives. For the shape derivative contribution, we

obtain the following forms (the derivation and explicit form of ma-

trix entries can be found in supplementary material).

Bv (θ ,p) =

∫
Ωq̄

−f (∇u)∇θT : ∇p

− (∇1 f (∇u) : (∇u∇θ)) : ∇p + (f (∇u) : ∇p)∇ · θ dx ,
(20)

Bv (θ ,p) is linear in θ and p, and we convert it to a matrix form by

substituting basis functions for θ and p.

The contribution to the left-hand side of the adjoint equation is

Av (ψ ,p) =

∫
Ωq̄

(∇1 f (∇u) : ∇ψ) : ∇p dx . (21)

Observe that the matrix is identical to the matrix used in the

forward solve.

Non-shape volumetric parameter derivatives. We assume

that the force depends on q = q(x), a function of the point in Ωq̄,

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

Differentiable solver for time-dependent deformation problems with contact • 31:11

defined by its values q at the same nodes as the solution, and inter-

polated using the same basis ϕ.

In this case, the form B is:

Bv (θ ,p) =

∫
Ω
(∂q f · θ) : ∇p dx .

The contribution to the left-hand side of the adjoint equation is

identical to the shape derivative case.

In our implementation we consider two versions of elastic forces,

both defined by Lame parameters specified as functions on Ωref :

q(x) = [λ(x), μ(x)]. The only quantities we need are derivatives of

f (∇u) with respect to ∇u, and material parameters.

Linear elasticity. For linear elasticity, we replace f v with

f e (∇u, q) = σ (∇u, q) = C(q) : ε(∇u) =
1

2
C(q) : (∇uT + ∇u),

with Ci jkl (λ, μ) = λδi jδkl + μ(δikδjl + δilδjk).

For computing Ae and Be we use partial derivatives of f e with

respect to material parameters:

∇1 f
e (∇u,λ, μ) = C,

∂λ f
e (∇u,λ, μ)i j = δi jδkl εkl ,

∂μ f
e (∇u,λ, μ)i j = (δikδjl + δilδjk)εkl .

Neo-Hookean elasticity. For Neo-Hookean elasticity, the

following formula is used for computing stress from the

deformation gradient:

f e (∇u, q) = μ(F (∇u) −Q(∇u)) + λ log(det(F (∇u)))Q(∇u),

where F (∇u) = ∇u + I and Q(∇u) = F (∇u)−T .

We can then compute derivatives of f (∇u):

∇1 f
e (∇u, q)i jkl = μ(δikδjl +QilQk j)

+ λ(Qi jQkl − log(det(F))QilQk j),

∂λ f
e (∇u, q) = F (∇u) −Q(∇u),

∂μ f
e (∇u, q) = log(det(F (∇u)))Q(∇u).

Damping. For damping, we have material parameters control-

ling shear and bulk damping α , β . We use the strain-rate propor-

tional damping described in Brown et al. [2018]. Given deforma-

tion gradient F = ∇u + I , the Green strain tensor E = 1
2 (F

T F −
I) is rotation-invariant. The viscous Piola-Kirchhoff stress is of

the form
P(∇u,∇�u) = F (2α �E + β Tr(�E)I),

where �E denotes the time derivative, and the weak form of the

corresponding force

Hd (u, �u,w) =

∫
Ωq̄

P(∇u,∇�u)∇wdx .

In our case, to fit this force into our differentiable formulation,

we discretize �F using as �F i = 1
Δt (F

i − F i−1); this yields a force

expression of the form

Hd (ui ,ui−1,w) =

∫
Ωq̄

P(∇ui ,∇ui−1)∇wdx ,

which is identical to (19), except it depends on both ∇ui and ∇ui−1.

As a consequence, expressions for Ad (ψ ,p) and Bd (θ ,p) are ob-

tained in the same way as in (21) and (20), except two pairs of

matrices are obtained, one for ∇ui the other for ∇ui−1, using ∇1P
and ∇2P as ∇1 f respectively.

8.2 Contact and Friction

For the contact forces, we use a slightly modified version of the for-

mulation of Li et al. [2020]. While the original formulation is intro-

duced in a discrete form, it can be derived with minimal changes

as a linear finite-element discretization of a continuum formula-

tion [Li et al. 2023a]. The contact incremental potential uses log

barrier function b(y), where b is a truncated log barrier function,

approaching infinity, if y → 0, and vanishing for y � d̂ for some

small distance d̂ .

For any pair k of primitives (vertices, edges, and faces) of the

surface mesh ∂Ωxd , defined by the vertex positions xd = M∗q̄+ u,

dk (x
d) denotes the distance between them;C is the set of primitive

pairs in contact, i.e., pairs of primitives with dk < d̂ .

Recall that the geometric map q̄ always uses piecewise-linear el-

ements ξ� , while the basis for the deformations u can be of any or-

der. The matrix M∗ is an upsampling matrix to bring dimension of

q̄ to the same as discrete solution u. The upsampling is performed

by linear interpolation from x̂� to nodes ẑ� .

The contact forces are derived from the following potential:

E(u, q̄) = κ
∑
k ∈C

b(dk (x
d))Ak =

∑
k ∈C

Wk (u, q̄)Ak ,

where κ > 0 is a parameter controlling the barrier stiffness and

Ak corresponds to the sum of surface areas associated with each

primitive in k (i.e., 1
3 of the sum of areas of incident triangles for

vertices and edges, and the area for triangles). See Section D in the

Appendix.

We define Fc
k
(u, q̄) = ∂uWk (u, q̄) = κb

′(dk (x
d))∂xddk .

The contact force is given by

hc =
∑
k ∈C

Fc
k
(u, q̄)Ak .

The terms Bc and Ac have the form

Bc (p,θ) =
∑
k

(
∂q̄F

c
k
θ · p + Fc

k
· p ∂q̄Ak

)
Ak ,

Ac (p,ψ) =
∑
k

∂uF
c
k
ψ · p Ak ,

where

∂uF
c
k
= κ(b ′′(∂xddk)(∂xddk)

T + b ′∂xd (∂xddk)),

∂q̄F
c
k
= ∂uF

c
k
M∗

and ∂q̄Ak corresponds to the gradient of the area term, which

varies depending on the type of primitive pairs corresponding to

k . See Section D in the Appendix.

Friction. In general, the friction coefficient γ (x1,x2) is a func-

tion of pairs of surface material points in ∂Ωq̄. As a simplification,

in our implementation, we assume that each pair of objects (m,n),
in the simulation has a single coefficient γm,n , which can vary

through the optimization. To simplify notation, we use γk1,k2
for

a pair of primitives k1 and k2 to indicate the friction coefficient

between objects these primitives belong to.

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

31:12 • Z. Huang et al.

We follow the IPC definition of friction [Li et al. 2020]. Its key

feature is that it is a differentiable function of displacements, which

determine the contact forces, and relative velocities, which, for

dynamic problems, we discretize using first-order approximation

ui − ui−1, where i is the time step.

The friction force for each active pair of primitives k is

F
f

k
(ui−1, ui) = −γk1,k2

NkTk fη (‖τk ‖)
τk

‖τk ‖
, (22)

where Nk is the contact force magnitude, Tk is a tangential frame

matrix, constructed as described in Li et al. [2020], and τk and fη
are defined as

τk = Tk (x
d,i−1)T (ui − ui−1),

fη (y) =

{
−

y2

η2 +
2y
η y ∈ [0,η)

1 y � η
.

The total friction force has the form

hf =
∑
k ∈C

F
f

k
(ui , ui−1, q̄)Ak ,

with the form B for shape derivatives given by

Bf (p,θ) =
∑
k

∂q̄F
f

k
θ · p Ak + F

f

k
· p ∂q̄Ak Ak .

Additional details on the computation of ∂q̄F
f

k
are in the Appendix

(Section E). The derivative with respect to friction coefficient val-

ues is easily obtained as the force is linear in friction coefficients.

If q is a vector of friction coefficients,

∂q� F
f

k
=

{
−NkTk fη (‖τk ‖)

τk

‖τk ‖
if q� corresponds to γk1,k2

0 otherwise.

Two formsAf , for ∂ui and ∂ui−1 are needed for the adjoint equa-

tion. Both have the general form

Af (ψ ,p) =
∑
k

∂uFkψ · p Ak ,

which reduces to computing the derivative of each Fk term with

respect to ui and ui−1, which can be be found in Appendix E.

9 OBJECTIVE DERIVATIVES

In this section, we define the ∂q J and ∂u J terms needed for the gra-

dient computation (10): For each objective-optimization parameter

pair, ∂q J
� θ and ∂u J

�ψ, i.e., two vectors of size Dsn
z
N

.

Similar to Section 8, we present all objective derivatives with

respect to all types of optimization parameters, including shape

in a unified way. We consider a comprehensive set of objectives

used in many previous works, that can be easily extended with

additional ones. In Section 9.1 we present general forms that all

objectives can be reduced to.

9.1 General Forms of Objectives

Typically, objectives do not depend directly on the optimization

parameters other than shape, so we focus primarily on derivatives

of objectives with respect to shape parameters q̄ and solution u.

We consider objectives of the form

J (u, q̄) = J (J1(u, q̄), . . . Jn J (u, q̄)), (23)

where J is a differentiable function, and Ji , i = 1 . . .n J are objec-

tive terms each of which typically has one of the integral forms

described below. J can be as simple J (J1) = J1, or can depend on

several terms, as e.g., the center of mass optimization. The deriva-

tives of objective are reduced to the the derivatives of the objective

terms by a direct application of a chain rule, so we focus on these.

We first consider two general forms of objective terms which

will be used for a number of specific objectives in Section 9.2. This

includes inequality constraints in penalty form.

For each objective term Jo , we obtain vectors Ro (ψ) and So (θ)
corresponding to the partial derivatives ∂u J

o and ∂q J
o , which are

necessary to compute the adjoint solution and the full shape de-

rivative. As for the derivatives of the objective vectors ∂u J
o and

∂q J
o are obtained by plugging in the basis functions ϕ� int Ro

and So .

Objectives depending on gradient of solution and shape.

Consider an objective term that depends on both the solution of

the PDE and the domain:

Jo (∇u, q̄) =

∫
Ωq̄

j(∇u,x)dx . (24)

In this case, as derived in the supplementary document,

So (θ) =

∫
Ωq̄

−∇1j : ∇u ∇θ + ∇2j · θ + j∇ · θ dx (25)

and

Ro (ψ) =

∫
Ωq̄

∇1j : ∇ψ dx . (26)

Objective terms depending on solution and shape. We also

use objective terms depending on both the solution of the PDE and

the domain:

Jo (u, q̄) =

∫
Ωq̄

j(u,x)dx . (27)

In this case,

So (θ) =

∫
Ωq̄

∇2j · θ + j∇ · θ dx (28)

and

Ro (ψ) =

∫
Ωq̄

∇1j ·ψ dx . (29)

9.2 Specific Objectives

Lp norm of stress. For p = 2 this objective measures the over-

all average stress, and for high p, Lp -norm of stress approximates

maximal stress:

Jσ =

(∫
Ωq̄

‖σ (∇u)‖
p
F
dx

)1/p

, (30)

where σ (∇u) = f (∇u) represents stress, which depends on ∇u.

Following the chain rule, this objective is a function of a single

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

Differentiable solver for time-dependent deformation problems with contact • 31:13

objective term Jσ = (Jσ
1)

p which is of the form (24). with j =

‖σ (∇u)‖
p
F

for which ∇2j = 0, and

∇1j = p ‖σ ‖
p−2 σ : ∇f (∇u).

Weighted difference from target deformations.

J tr j (x ,u) =

∫
Ωq̄

w(q̄−1(x)) ‖xd − xtrд(q̄−1(x))‖2 dx (31)

where xd = x + u, the deformed state of the object, weight w de-

termines relative importance of points, and xtrд is the target con-

figuration, defined as function on Ωref .

The formulas for the general objective (27), apply, with

∇1j = ∇2j = 2w(q̄−1(x))(xd − xtrд(q̄−1(x)).

If we define only the shape on the boundary as the target, then

we have:

Jbtr j =

∫
∂Ωq̄

w(q̄−1(x)) ‖xd − xtrд(q̄−1(x))‖2 dx .

Formulas for the derivatives are similar:

Sbtr j =

∫
∂Ωq̄

∇2j · θ + j(u,x) ∇s · θ dx ,

Rbtr j =

∫
∂Ωq̄

∇1j ·ψ dx ,

where ∇s denotes the surface derivative.

Target center of mass trajectory. A related objective is the

deviation of the center of mass of the object from a target trajectory.

Jctr (JP , JD) =

���� JP

JD
− xctr

����2

=

����
∫

Ωq̄
ρ(x)xd dx∫

Ωq̄
ρ(x) dx

− xctr

����2

=

Dd∑
i

(
JP
i

JD
− xctr

i

)2

.

(32)

Using the chain rule, we can reach a formulation where Sctr and

Rctr depend on respective derivatives from each JP
i and JD :

Sctr =
∑

i

(∂1 J
ctr)iS

P
i + ∂2 J

ctrSD ,

Rctr =
∑

i

(∂1 J
ctr)iR

P
i + ∂2 J

ctrRD .

We then need to compute shape derivative and adjoint terms for

both of our scalar integrals JP
i and JD , following general formulas

for 27. For each JP
i , we have:

∇1j = ∇2j = ρ(x)ei ,

where ei ∈ R
Dd is a vector with 0s everywhere except at index i ,

where the value is 1.

Finally, assuming that densities are constant per point, for JD ,

∇1j = ∇2j = 0.

Height. This functional aims to maximize the height of the cen-

ter of mass:

Jzmax = −

∫
Ωq̄

ρ(x)xd
z dx∫

Ωq̄
ρ(x)dx

, (33)

where uz is the z (vertical) component of the solution (displace-

ment) u, xz is the z component of the original position x. We can

rewrite this formula using JP
z and JD from previous subsection:

Jzmax (JP
z , J

D) = −
JP
z

JD
. (34)

This way, similar to Jctr , we have:

Szmax = ∂1 J
zmaxSP

z + ∂2 J
zmaxSD ,

Rzmax = ∂1 J
zmaxRP

z + ∂2 J
zmaxRD .

Then, as for previous case, we can compute SP
z , RP

z , SD and RD

through general formula 27, using ∇1j = ∇2j = ρ(x)ez for JP
z and

∇1j = ∇2j = 0 for JD .

Upper bound for volume. A constraint on the volume of the

optimized object in penalty form is

JV = φ(V (Ωq̄) −Vt), (35)

where V corresponds to (
∫

Ωq̄
dx), the volume of shape Ωq̄, Vt to

the target volume, and φ(z) is a quadratic penalty function equal

to z2 for positive z and zero for negative z. This functional re-

duces to the general objective (27), with ∇1j = ∇2j = 0, since

j(u,x) = 1.

Upper bound for stress. Similarly, we can impose an approxi-

mate upper bound on stress via a penalty:

Jσt =

∫
Ωq̄

φ(‖σ ‖ − st)dx , (36)

where st is the stress magnitude target. As for Lp stress energy, our

integrand φ(‖σ ‖ − st) depends only on ∇u and (24) applies with

∇1j = φ ′
f (∇u)

‖σ ‖
: ∇f (∇u),

∇2j = 0.

9.3 Regularization Terms

In addition to the physical objectives described in the previous sec-

tions, we use two discrete regularization terms essential for numer-

ical stability for a number of problems.

Scale-invariant smoothing.

J smooth =
∑
i ∈B

‖si ‖
p , si =

∑
j ∈N (i)∩B (vi −vj)∑

j ∈N (i)∩B ‖vi −vj ‖
, (37)

whereB contains the indices of all boundary vertices,N (i) contains

the indices of all neighbor vertices of vertex i , and vi is the posi-

tion of vertex i . The value of p can be adjusted to obtain smoother

surfaces at the cost of less optimal shapes, normally we use p = 2.

This term is scale-invariant and pushes the triangles/tetrahedra of

the mesh toward equilateral. The derivative of this smoothing term

with respect to optimization parameters vi can be seen in the first

paragraph of Appendix F.

Material parameter spatial smoothing.

Jλ,μ smooth =
∑
t ∈T

∑
t ′ ∈Ad j(t)

(
1 −

λt ′

λt

)2

+

(
1 −

μt ′

μt

)2

, (38)

where T is the set of all triangles/tetrahedra, Adj(t) is the set of

triangles/tetrahedra adjacent to t . λ, μ are the material parameters

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

31:14 • Z. Huang et al.

defined per triangle. The derivative of this term can be seen in the

last part of Section F (Appendix).

10 RESULTS

We partition our results into three groups depending on the type

of the dofs used in the objective function: shape (Section 10.2),

initial conditions (Section 10.3), or material (Section 10.4). For

each group, we provide a set of examples of static and dynamic

scenes of increasing complexity. In Section 10.5, we compare our

solver, Du et al. [2021] and Jatavallabhula et al. [2021] to evaluate

the effect of different material and contact models. We also com-

pare against a baseline implementation using finite differences. We

run our experiments on a workstation with a Threadripper Pro

3995WX with 64 cores and 512 Gb of memory. For a selection of

problems, we validate our results with physical experiments us-

ing items fabricated in silicon rubber (we use 1:1 SMOOTH-ON

OOMOO 30 poured into a 3D printed PVA mold) or 3D printed

PLA plastic.

We additionally provide a video showing the intermediate op-

timization step for all the results in the paper as part of our addi-

tional material.

Statistics. We provide statistics for our experiments in Table 4,

including the size of the meshes, material model, running time, and

memory used.

We observe that the time to compute the gradients of the ob-

jective function is negligible compared to the forward solve time

(usually less than 10%). This implies that as long as a physical sys-

tem can be simulated in PolyFEM, our approach enables optimiz-

ing functionals depending on it with a comparable running time

per optimization iteration.

We recall that the gradient computation requires solving one lin-

ear system for each time step of the forward simulation. For linear

problems, the system to solve has the same stiffness matrix and

we can thus reuse the factorization. For non-linear problems re-

quiring Newton iterations, the forward step requires multiple New-

ton steps, while the solve for the gradient is always a single linear

system solve.

An additional acceleration strategy that we employ is noting

that the optimization algorithm needs to solve many, often similar,

forward simulations. We thus initialize, for non-linear problems,

the forward solver with the solution at the previous step, which is

often a good initialization.

Color Legend. We use green arrows to indicate Neumann

boundary conditions, and black squares to indicate nodes that have

a Dirichlet boundary condition. To reduce clutter, we use a uniform

gray to indicate objects with a uniform Dirichlet boundary condi-

tion on all nodes.

To avoid singularities in the optimization we add, to the objec-

tive function, a boundary smoothing term (37) in all our shape op-

timization experiments, and a material regularization term (38) to

all our material optimization experiments.

10.1 Implementation

FE Solver. We implemented our solver in C++ using the

PolyFEM library [Schneider et al. 2019] for the forward solve, the

IPC Toolkit [Ferguson et al. 2020] for computing contact and fric-

tion potentials, and Pardiso [Alappat et al. 2020; Bollhöfer et al.

2019, 2020] for solving linear systems.

Optimization. Our optimization algorithm (Algorithm 1) uses

the L-BFGS implementation in Wieschollek [2016], with backtrack-

ing line search.

Remeshing. Shape optimization might negatively affect the el-

ement shape, and for large deformation introduce close to singular

elements that force the optimization to take tiny steps. After every

optimization iteration, we evaluate the element quality using the

scaled Jacobian quality measure [Knupp 2001], and optimize the

mesh if it is below a threshold experimentally set to 10−3.

For 2D examples, we keep the mesh boundary fixed and we re-

generate the interior using GMSH [Geuzaine and Remacle 2009]

(Figure 4). For 3D examples, we similarly fix the boundary and

then use the mesh optimization procedure of fTetWild [Hu et al.

2020] to improve the quality of the interior until its quality is above

the threshold.

The reason why we can remesh without damaging the optimiza-

tion convergence is that our optimization objectives have little de-

pendence on interior node positions. The objectives are in the form

of an integral over the domain or boundary, so remeshing only

leads to small errors due to projections between the meshes.

The reason for fixing the boundary in the remeshing is that our

optimization objectives (Section 9.1) often depend on quantities on

the boundary vertices: if the boundary is remeshed, we will need a

bijective map between the two boundaries. Meshing methods pro-

viding this map exist [Jiang et al. 2020], but their integration in

our framework, while trivial from a formulation point of view, is

an engineering challenge that we leave as future work.

Reproducibility. The reference implementation of our solver

and applications will be released as an open-source project.

10.2 Shape Optimization

We start our analysis with shape optimization problems both with-

out and with contact or friction forces.

Static: Bridge with Fabricated Solution. We fabricate a 2D so-

lution to verify the correctness of our formulation and implemen-

tation. Starting from the shape of a bridge (Figure 5) we run a for-

ward linear elasticity simulation with the two sides fixed and grav-

ity forces. We now perturb the geometry of the rest pose and solve

a shape optimization problem to recover the original rest pose, i.e.,

we remove the perturbation we introduced by minimizing the ob-

jective in (31).

Static: Bridge. We use the same model for a more challeng-

ing problem (Figure 6): we use the same Dirichlet conditions and

material model, replace the gravity forces by three Neumann con-

ditions on the lower beams, and minimize the L8 norm of stress

(30). To avoid trivial solutions we add a constant volume con-

straint (Section 9.2). The maximum stress is reduced from 68.789

to 22.232.

Static: 3D Beam. Moving to 3D (Figure 7), we perform static

optimization of the L8 norm of stress using Neo-Hookean mate-

rials on a beam standing on a fixed support at the center (nodes

on the bottom surface of the beam have zero Dirichlet boundary

conditions), and with two side loads applied as Neumann boundary

conditions. We use (35) to bound the volume of the beam during op-

timization in order to avoid trivial solutions. The maximum stress

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

Differentiable solver for time-dependent deformation problems with contact • 31:15

is reduced from 3, 377 to 920. Note that this scene is not using con-

tact, the lower region of the central part of the beam is fixed with

Dirichlet boundary conditions.

Static: Interlocking. Our framework supports contact and

transient friction forces between objects without requiring explicit

definition of contact pairs. We borrow the experimental setup used

in Tozoni et al. [2021]: we optimize the shape of two interlocking

2D parts (Figure 8) to minimize the L8 norm of the stress (30). The

bottom part is fixed and a force pointing down-right is applied to

the top. Figure 8 shows how the shape changes to reduce the max-

imum stress from 3.2 Pa to 0.29 Pa.

Note that unlike [Tozoni et al. 2021], our contact model does

not support overlapping boundary nodes, which are used in To-

zoni et al. [2021] to keep the contact over the optimization. To

mimic this behaviour in our setting, we create small displacements

on the overlapped boundary nodes along the normal directions

as the initial guess for the forward simulation, so that each ob-

ject is shrinked by a tiny amount and there is no overlap in the

initial guess.

We note that our result is expected to be different from Tozoni

et al. [2021], as the contact models are different and the solutions of

these problems are in general not unique. Despite their differences,

we observe in both cases a reduction in maximal stress of similar

magnitude (around 10 times reduction).

Static: 2D Hook. To physically validate our shape optimization

results we reproduce the experiment in Tozoni et al. [2021, Figure

21], where a hook is optimized to minimize the maximum stress

(30) when a load is applied to one of its ends (Figure 9). The grey

block is fixed with zero Dirichlet conditions on all nodes. We phys-

ically validate that the optimized shape is able to withstand a load

of over 3× the unoptimized shape before breaking (Figure 9). The

hook has been fabricated using an Ultimaker 3 3D printer, using

black PLA plastic. Despite the different contact model, the result

is quite similar to the one presented in Tozoni et al. [2021]: our ap-

proach has the advantage of not requiring manual specification of

the contact surfaces.

Static: 3D Hanger. We also reproduce the experiment [Tozoni

et al. 2021, Figure 29]: a coat hanger is composed of two cylinders

and a hanger keeping them together. The shape of the hanger is

optimized to minimize the maximum internal stress (30) when two

loads are applied on its arms (Figure 10). The maximal stress is re-

duced from 89.93 Pa to 25.74 Pa. When comparing with Tozoni

et al. [2021], we observe a similar optimized shape and an equiva-

lent stress reduction rate (around three times).

Transient: Bouncing Ball. As a demonstration of shape opti-

mization in a transient setting, we run a forward non-linear sim-

ulation of a ball bouncing on a plane and use its trajectory as the

optimization goal (32). We then deform the initial shape into an

ellipse and try to recover the original shape (Figure 11).

Transient: Shock Protection. We optimize the shape of

a shock-protecting microstructure from Shan et al. [2015] so

that the stress (30) of the load being dropped onto the mi-

crostructure is minimized. To accelerate convergence, we adopt a

low-parametric shape representation from Panetta et al. [2015]. In

Figure 13, the maximal stress is reduced from 32 kPa to 12 kPa. This

example involves complex self-contact inside the microstructure.

Fig. 4. An example of remeshing in the shape optimization. The quality is

shown for each triangle. Triangles with bad quality have higher values.

Fig. 5. Static: Bridge with fabricated solution. The result of the shape

optimization (blue surface) matches the target shape (wire-frame).

Unlike penalty-based contact, our method is intersection-free

regardless of the contact parameters, so it is able to produce

plausible results with the same configuration even though the

thickness of beams inside the microstructure changes drastically in

the optimization.

Transient: Sliding Ball. We optimize the shape of a ball sliding

down a ramp to minimize the internal stress (30). To avoid trivial

solutions, we add a volume constraint to not allow its volume to

decrease. Perhaps unsurprisingly, the ball gets flattened on the side

it contacts with the ramp as this leads to a major reduction of max

stress, from 38 kPa to 14 kPa.

10.3 Initial Conditions

Our formulation supports the optimization of objectives depend-

ing on the initial conditions. We show three examples: the first

involves an object sliding on a ramp with a complex geometry, the

second simulates a game of pool, using bunnies instead of spheres,

and the third demonstrates complex contact between tentacles.

Transient: Puzzle Piece. We synthesise a trajectory using

a forward simulation, and we then perturb the initial condi-

tions and try to reconstruct them minimizing (31), with an addi-

tional integration over time (Figure 14). The puzzle piece uses a

Neo-Hookean material.

Transient: Throw Bunny. We use our solver to optimize the

throw (initial velocity) of a bunny to hit and displace a second

bunny into the prescribed circle (Figure 1), minimizing (32). This

example involves complex contact between the bunnies and the

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

31:16 • Z. Huang et al.

Table 4. Columns from Left to Right are: Example Names, Number of Vertices, Degree of Freedom of the Simulation, Physical Formulation, Objective

Functional of the Optimization, Total Running Time (Sec), Peak Memory (Mb), Number of Iterations of the Optimization, Average Running Time of the

Simulation (Sec), Average Running Time of Computing Gradients (Sec), Total Number of Newton Iterations (Linear Solves) in the Simulation, Number

of Newton Solves in the Simulation

Example Vertices Dofs Model Objective Total time Memory Iter Solve time Grad time Newton Iter. Newton Solve

Bridge (Figure 5) 4,641 9282 Linear Target 16.1 162.3 55 0.0343 0.0296 0 0

Bridge (Figure 6) 18,598 143378 Linear Stress 1665.8 1690.8 402 1.3859 0.1861 0 0

3D Beam (Figure 7) 9,939 209409 NeoHookean Stress 95738.6 101786.3 171 192.1587 37.2651 1083 361

Interlocking (Figure 8) 1,290 9946 IPC Stress 303.3 188.5 101 0.8394 0.0590 4900 335

2D Hook (Figure 9) 1,760 13348 IPC Stress 220.5 726.5 60 1.7224 0.0802 2548 126

3D Hanger (Figure 10) 4,190 80412 IPC Stress 14129.4 6554.0 29 204.2374 3.2117 4708 64

Bouncing Ball (Figure 11) 73 146 IPC Target 961.7 29.2 202 1.1061 0.0898 211611 41200

Sliding Ball (Figure 12) 526 6849 IPC Stress 1610.1 2184.6 29 24.3086 1.2580 0 0

Shock Protection (Figure 13) 53,879 107758 IPC Stress 33301 10100 9 1264.395 129.96 35553 4800

Puzzle Piece (Figure 14) 370 740 IPC Trajectory 47.4 107.6 19 1.5877 0.2129 2917 630

Throw Bunny (Figure 1) 2,174 6522 IPC Target 602.0 3344.1 9 209.2998 4.3731 15324 1000

Colliding Tentacles (Figure 15) 6,896 20688 IPC Trajectory 13070 8325 5 2043 41.25 14447 720

Sine (Figure 16) 651 1302 Linear Target 0.3 34.4 12 0.0042 0.0022 0 0

Bridge (Figure 17) 18,598 37196 Linear Target 32.7 655.2 39 0.1416 0.0398 0 0

Cube (Figure 18) 4,631 103383 NeoHookean Target 455.8 6316.6 8 37.9947 2.6101 33 11

Micro-Structure (Figure 19) 3,268 9804 IPC Target 602.3 33502.3 11 42.0954 0.0746 249 14

Kangaroo (Figure 20) 231 462 IPC Trajectory 21.6 224.6 6 1.6704 0.1624 2987 660

Sliding Bunny (Figure 21) 5,682 17046 IPC Target 11734.0 2304.3 8 547.3644 1.6478 61517 880

Bouncing Ball (Figure 22) 720 1440 IPC Height 612.3 86.4 79 3.3482 0.2003 33609 5160

Bouncing Ball (Figure 23) 646 1938 NeoHookean Trajectory 206.3 152.8 24 3.0548 0.7396 3264 1632

Bouncing Ball (Figure 23) 1,251 3753 IPC Trajectory 10546.6 1547.0 49 113.4214 8.8056 105401 20160

Fig. 6. Static: Bridge. Result of shape optimization to minimize the aver-

age stress.

pool table, and also friction forces slowing down the sliding

after contact.

Transient: Colliding Tentacles. We optimize the initial veloc-

ity of the green object in the scene of two colliding half spheres

with tentacles (Figure 15), minimizing the difference of the mass

trajectory with respect to a trajectory obtained from a reference

simulation (32). Our method manages to resolve the complex con-

tact between the soft tentacles.

10.4 Material Optimization

Next, we look at material optimization problems, where our differ-

entiable simulator is used to estimate the material properties of an

object from observations of its displacement.

Static: Sine. We optimize the material of a bar to match the

shape of a sine function (wire-frame) when Dirichlet boundary

conditions are applied at its ends (31). The rest shape of this bar

is a rectangle [−4, 4] × [−0.3, 0.3], the left and right surfaces are

fixed by Dirichlet boundary condition of uy = 0.7 sin(x + ux) and

ux = −siдn(x), and no body force is applied. Figure 16 shows that

deformed bar is aligned with a sine function.

Static: Bridge. We assign material parameters λ = 160, μ = 80

to a bridge shape and run a linear forward simulation to obtain

the target displacement u� (Figure 17 in gray), using the same set

of boundary conditions as Figure 5. We initialize the optimization

using uniform material λ = 100, μ = 50 and minimize (31), success-

fully recovering λ, μ from u�.

Static: Cube. We set up a physical experiment with a silicon

rubber cube compressed by a vise. The deformation is acquired

using an HP 3D scanner, and a set of marker points is manu-

ally extracted from the scan. We minimize (31) to find the mate-

rial parameters which produce the observed displacements. We

found that the material parameter that leads to the smallest er-

ror is ν = 0.4817 (Young’s modulus does not affect its defor-

mation in this setting) and the L2 error in markers position is

3.85e−3 m.

Static: Micro-Structure. We repeat the same experiments with

the complex geometry of a micro-structure tile from Panetta et al.

[2017]. This is a challenging example, as the micro-structure beams

come in contact after compression, and physical models without

self-contact handling may lead to penetration. The optimization

is initialized with E = e6 Pa and ν = 0.3 and converges to E =
2.27e5 Pa and ν = 0.348. Our solver can find material properties

E = 2.27e5 Pa and ν = 0.348 with an L2 error on the markers of

8.8e−3 m.

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

Differentiable solver for time-dependent deformation problems with contact • 31:17

Fig. 7. Static: 3D beam. Result of stress minimization on a beam standing

on a platform, with two loads on its sides.

Fig. 8. Static: Interlocking. Result of shape optimization to minimize the

L8 norm of stress.

Transient: Kangaroo. As an example of reconstruction of ma-

terial parameters from a transient simulation, we run a forward

simulation to obtain a transient non-linear target displacement.

Then we minimize (31) to reconstruct the material parameters

(Figure 20). The initial material parameters are E = 3e6 Pa and

ν = 0.5, and the target material parameters are E = e7 Pa and

ν = 0.3.

Transient: Sliding Bunny. We use our solver to optimize the

friction coefficient to ensure that the bunny is on the white line

at time t = 2. The initial friction coefficient is γ = 0.5, and the

optimized friction coefficient is γ = 0.0974 (Figure 21). This exam-

ple involves complex self-contact and friction of the bunny with

the floor.

Transient: Bouncing Ball. We show that the height of the

bounce of a ball can be optimized by changing the material param-

eters (Figure 22). Initial material parameters for the ball and plank

were E = e5 Pa, ν = 0.48 and E = e9 Pa, ν = 0.48, respectively and

the elasticity model used was NeoHookean. Note that we added a

smoothing term to the optimization to increase smoothness in the

material parameters.

Transient: Physical Experiment Bouncing Ball. We show

that we can optimize for the initial velocity, material parameters,

Fig. 9. Static: 2D hook. Shape optimization of a hook to reduce stress

concentration (left). Fabricated results with maximum load before failure

(right).

friction coefficient, and damping parameters of a silicone rubber

ball bouncing on an incline, using trajectory data from a physi-

cal experiment. The real-world dynamics of the ball are captured

using a high-speed camera and used to formulate a functional

based on (32), which penalizes differences between the observed

and simulated barycenter of the ball. The material model used is

NeoHookean and we match initial conditions by optimizing for

them using the observed barycenters of the ball before it hits

the ground.

10.5 Comparisons

Finally, we compare our method with existing methods in terms of

solution quality, contact handling, and efficiency. Due to stability

issues, different time step sizes are chosen for different methods

so that no visible artifacts appear in the forward simulations. See

Table 5 for statistics. We also compare our method with finite dif-

ference and automatic differentiation on PolyFEM [Schneider et al.

2019] in terms of efficiency.

Transient: Armadillo. We simulate dropping the Armadillo

(using the same material parameters) onto a fixed plane (Figure 24)

and compute the material derivatives with our method, DiffPD [Du

et al. 2021] and GradSim [Jatavallabhula et al. 2021]. The results of

GradSim and our method are similar, which is expected as both

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

31:18 • Z. Huang et al.

Fig. 10. Static: 3D hanger. Result of shape optimization of a hanger to

reduce stress concentration.

Fig. 11. Transient: Bouncing ball. The result of the shape optimization

(blue surface) matches the desired trajectory (wire-frame).

Fig. 12. Transient: Sliding ball. Result of shape optimization to reduce

stress.

methods are based on a finite element formulation with a simi-

lar material model. However, the backward solve of GradSim en-

counters NAN and fails to compute the gradient, likely due to

the instability from its semi-implicit time integration or the non-

differentiable contact model (Its contact force is only C0). DiffPD

creates a result that is different from the two, likely due to the use

of a different elastic model.

Transient: Hilbert Cube. In this example, we simulate the

drop of a Hilbert cube (Figure 25), compute the material derivatives,

and compare our method with GradSim and DiffPD. Although

GradSim and DiffPD can resolve the planar contact, they do not

support self-collision, resulting in visible and physically implau-

Fig. 13. Transient: Shock protection. Shape optimization of the shock-

protecting microstructure to reduce the stress on the falling load. The

stress distribution at different time steps is shown for the initial shape

(top) and optimized shape (bottom).

sible self-intersections. In contrast, the solution computed by our

method has no self-intersections or inverted elements.

Static: Tensile Test. We perform the tensile testing on a bar

of size 0.16m × 0.08m × 0.08m, with Poisson’s ratio ν = 0.3 and

Young’s modulus E = 103Pa, using both our method and DiffPD.

We refine the meshes used in both methods until the results be-

come stable and show the converged results. Since there is no

contact, our method is equivalent to the standard FEM with Neo-

Hookean material. Since the material model used in DiffPD is an

approximation of the hyper-elastic model designed for high effi-

ciency, there is a noticeable difference between DiffPD and the

standard model when the deformation is large (Figure 27). We fa-

vor using the Neo-Hookean material model, as we are interested

in accurately capturing large physical deformations.

Transient: Billiards. In this example we reproduce the billiards

example in Du et al. [2021] (Figure 26), and compute the material

derivatives. Since GradSim does not support collisions between

spheres (or between meshes), we restrict the comparison to DiffPD.

Although the same mesh is used in both methods, there is a sig-

nificant difference in the contact handling: Our method detects the

collision between the discrete meshes, while DiffPD uses the av-

eraged sphere center and radius to detect the collision between

spheres. While more efficient, the DiffPD solution is customized

for this example, while our approach works on arbitrary geome-

tries. Due to the difference in both the elastic model (Figure 27)

and contact handling, the results are different. Our forward simu-

lation is 6 times slower than DiffPD.

Finite Difference. To evaluate the correctness and efficiency

of our method, we compute the gradient using finite differences

and compare it with our method. We use the central difference

scheme, which requires solving the forward problem for 2n times

if the parameter dimension is n. As a result, the finite difference is

approximately twice as expensive as the forward solve, while the

time of our method is negligible (Table 6).

Automatic Differentiation (AD). While it is impossible to

transform the linear solver to AD form for large problems (see

Section 2.1), we could use AD to compute the terms needed in the

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

Differentiable solver for time-dependent deformation problems with contact • 31:19

Fig. 14. Transient: Puzzle Piece. Optimizing the initial velocity of a

bouncing puzzle. Target is shown as a black outline while the trajectory

being optimized is blue.

Fig. 15. Transient: Colliding tentacles. We optimize the initial veloc-

ity so that the mass trajectory matches the reference simulation. The

faded view represents the initial configuration. The optimized simulation

matches exactly with the reference simulation.

adjoint method. To evaluate the difference in performance between

AD and analytic derivation, we focus our investigation on the lo-

cal assembly of the elastic force vector into AD form Jakob [2010]

to compute the pT ∂qhk in Equation (11). We solve the static Neo-

Hookean PDE on a tetrahedral mesh with 4670 vertices and using

linear FE bases. Our method of computing pT ∂qhk takes 0.0174 sec-

onds, while AD takes 0.247 seconds. The forward nonlinear solve

takes 2.85 seconds, and the backward adjoint solve takes 0.0212

seconds. Given this experiment, we opted to spend the additional

effort in analytically deriving the adjoint terms to avoid this un-

necessary additional computational cost. In our setting with ex-

pensive implicit solves, the cost of computing the adjoint terms

is a small overhead on the whole optimization, and computing the

derivatives with AD makes the implementation simpler and makes

Fig. 16. Static: Sine. Optimized material parameters to obtain a displace-

ment (blue surface) in y-direction similar to a sine function for a linear

material model (wire-frame).

Fig. 17. Static: Bridge. Optimization of the materials of a bridge (blue

surface) to match a forward simulation (wire-frame).

Fig. 18. Static: Cube. Material optimization (blue) to match real data (or-

ange).

it easier to switch the material models. However, we found that for

more complex contact models, not included in this paper, the cost

of AD can still be significant, and in settings in which forward

solves can be done explicitly or semi-implicitly, the computational

costs are distributed differently.

11 CONCLUDING REMARKS

We introduced a generic, robust, and accurate framework for PDE-

constrained optimization problems involving elastic deformations

of multiple objects with contact and friction forces. Our frame-

work supports customizable objective functions and allows for

the optimization of functionals involving the geometry of the ob-

jects involved, material parameters, contact/friction parameters,

and boundary/initial conditions.

There are several limitations in our work. First, our derivation

is limited to hyper-elastic and visco-elastic materials. We don’t

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

31:20 • Z. Huang et al.

Fig. 19. Static: Micro-Structure. Material optimization of a complex mi-

crostructure in a deformed state with contact (blue) to match real data

(orange).

Fig. 20. Transient: Kangaroo. Non-linear transient simulation of a kan-

garoo (blue surface) bouncing on a plane to match a target shape (wire-

frame).

Fig. 21. Transient: Sliding bunny. Optimize the friction coefficient so

that the bunny can reach the white line at t = 2.

support simulating shells (cloth), plastic materials, fluid, and the

like. Second, rigid and articulated objects, which are widely used

in robotics, are not supported. Although it can be approximated

by very large stiffness in our framework, the simulation is much

slower than rigid body simulations. Third, our forward simulation,

though robust, is less efficient than previous works like [Du et al.

2021; Jatavallabhula et al. 2021] in simple scenes (Section 10.5).

We believe the benefits of our analytic derivation of the adjoint

system (efficiency, generality, guarantee of convergence under re-

finement) outweigh its downsides (complexity of derivation, diffi-

culty in implementation, and requirement of an explicit FE mesh).

We plan to extend our approach to a wider set of PDE-constrained

problems and to further optimize it for common use cases in ma-

terial design and robotics. In particular, we would like to explore

the following directions:

(1) Add support for periodic boundary conditions, which are

required for the design of micro-structure families [Tozoni

et al. 2020].

(2) Add support for rigid and articulated objects (i.e., allow the

material stiffness to be infinite). We plan to incorporate

Fig. 22. Transient: Bouncing ball. Material optimization to increase the

bouncing height.

Fig. 23. Transient: Physical experiment bouncing ball. Optimize the

material and initial velocity of the ball to match the observed physical

result.

the IPC formulation introduced in Ferguson et al. [2021]

to improve performance in design problems involving

rigid objects.

(3) Many robotics problems involve the manipulation of plas-

tic objects or interaction with fluids: adding support for

additional physical models will widen the applicability of

our simulator.

(4) We designed our system to provide accurate modeling

of elastic, contact, and friction forces, as the majority of

PDE-constrained applications require accurate simulations

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

Differentiable solver for time-dependent deformation problems with contact • 31:21

Table 5. Comparisons Columns from Left to Right are Examples,

Methods, Degree of Freedom of the Simulation, Time Step Size, Peak

Memory (MB), Running Time of the Simulation (s), and Running Time of

Computing Gradients (s)

Example Method Dofs dt Memory Solve time Grad time

Armadillo

DiffPD 36699 3 × 10−3 1246 37.9 131.2

GradSim 36699 1.5 × 10−5 17164 167.2 N/A

Ours 36699 6 × 10−3 2068 220.6 14.1

Hilbert Cube

DiffPD 4050 5 × 10−2 240 1.555 2.12

GradSim 4050 5 × 10−4 1323 11.1 27.7

Ours 4050 5 × 10−2 1599 73.2 1.73

Billiards
DiffPD 978 2.5 × 10−3 226 11.3 10.5

Ours 978 2.5 × 10−3 190 66.2 3.1

Fig. 24. Transient: Armadillo. Simulation of dropping an Armadillo onto

the floor.

Fig. 25. Transient: Hilbert cube. Simulation of dropping a Hilbert cube

onto the floor.

Fig. 26. Transient: Billiards. The ball on the left with initial veloc-

ity (cos(15
180 π), sin(15

180 π)) hits the ball on the right, simulated with our

method (orange) and DiffPD (blue).

faithfully reproducing the behavior observable in the real

works. However, there are applications where this is not

necessary, and in these cases, it would be possible to either

use simpler elastic models or reduce the accuracy of the

collision/friction forces by using proxy geometry. This

is commonly done in graphics settings, and it would be

Fig. 27. Static: Tensile test. Stretch a 3D bar up to 300% strain with our

method (orange) and DiffPD (blue). The thickness of the deformed bar is

shown as a percentage with respect to the initial thickness.

Table 6. Finite Difference Columns from Left to Right are Examples,

Dimension of the Design Parameters, Running Time of the Simulation

(s), Running Time of the Adjoint Method (s), and Running Time of the

Finite Difference (s). The Accuracy is the Relative Error between the

Finite Difference and the Adjoint Method

Example Dim Solve time Grad time FD time Accuracy

Shock Protection (Figure 13) 24 1273 131.8 63502 1.12 × 10−2

Micro-Structure (Figure 19) 2 42.1 0.089 172.1 2.25 × 10−6

Sliding Bunny (Figure 21) 1 544.6 1.74 1092 6.35 × 10−10

interesting to add this option to our system to accelerate

its performance.

APPENDICES

A TIME-DEPENDENT PROBLEMS

In this section, we show how to compute the derivative and ad-

joint equation for the time-dependent case. We do this in general

form, only assuming that the force terms depend on solution and

optimization parameters but not explicitly on time.

Problem setup. We assume all quantities involved in the ad-

joint equations and shape derivatives for the static case are known

from the main text. In this appendix, we derive how to update these

to obtain the adjoint equation for the time-dependent PDE.

We consider the following time-dependent system, discretized

in space.

�u = v; M(q)�v = h(u, q); u(0) = gu (q); v(0) = gv (q)

where M(q) is the mass matrix, which may also depend on param-

eters p.

We assume that the discretization in time uses a BDF scheme of

orderm:

�u ≈
1

βΔt

��ui +

min(i,m)∑
j=1

α i
j ui−j���.

In general, α i
j does not depend on i , except at the firstm−1 steps,

when a higher-order scheme needs to be initialized with lower-

order steps; more specifically, α i
j is j-th coefficient of BDFi, for 1 �

i < m, and j-th coefficient of BDFm otherwise.

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

31:22 • Z. Huang et al.

We assume that h(u, q) does not directly depend on the veloci-

ties v; if a dependence on velocities is needed, as we see below, it

can be expressed directly in terms of u.

The discrete system has the form

ui +

min(i,m)∑
j=1

α i
j ui−j = βi Δt vi ,

M

(
vi +

min(i,m)∑
j=1

α i
j vi−j

)
= βi Δt hi (ui , ui−1, q) = ĥi .

(39)

where M is the mass matrix. This is the form in which the system

is solved in Li et al. [2020].

For time-dependent problems, we consider functionals of

the form

J (u, q) =

∫ T

t=0
J (u, t , q)dt ,

where J (u, t , q) is a spatial functional, e.g., integral over the solid

Ω(t) or its surface, of some pointwise quantity depending on the

solution and/or its derivatives pointwise. In discretized form, this

functional is

J (u, q) =
N∑

i=0

wi Ji (u
i , q) =

N∑
i=0

Ĵ i ,

wherewi are quadrature weights (e.g., all Δt in the simplest case),

and N is the number of time steps.

Remark on notation. We omit most of the explicit arguments

in functions h and J used in the expressions, to make the formu-

las more readable. The following is implied: h(ui , ui−1, q, ti) =
hi (u

i , ui−1, q) = hi and similarly for Ji .

Summary. Computing the derivativedq J requires the following

components:

— Derivatives ∂u Ji , ∂uhi , ∂q Ji and ∂qhi . See Sections 7 to 9 in

the main text for corresponding formulas.

— Derivatives ∂qgu and ∂qgv , derivatives of the initial condi-

tions. See Section 5.4 in the main text.

To compute the parametric derivative of J , the steps are

as follows:

— Solve the forward system (39), and store the resulting solu-

tions ui , vi , i = 0 . . .N at every step.

— Initialize adjoint variables pN ,νN from (43) (general

BDF: (13)).

— Perform backward time stepping using (41) (general

BDF: (12)).

— At every step, evaluate derivative of the mass matrix dqM ,

if applicable, and use formula (44) (general BDF: (15)) to up-

date dq J .

A.1 Implicit Euler

Discrete Lagrangian. We use the Lagrangian-based approach

(Céa’s method) to derive the adjoint equation. The overall idea is

to write the Lagrangian L for the functional J viewing the equa-

tions for �v and �u as constraints with Lagrange multipliers p and

μ. For the solution (u, v) for any optimization parameter values,

the constraints are satisfied, dq J = dqL, as the constraint terms

identically vanish. The goal of introducing the adjoint variables is

to eliminate the direct dependence of dq J on the displacement and

velocity derivatives: dqui or dqvi .

To achieve our objective, we expand the derivative dqL, and

isolate the terms multiplying dqu and dqv. By setting the sum

of each of these two sets of terms to zero (which corresponds

to our adjoint equations), we can find p and μ so that the de-

rivative of the functional dq J does not directly depend on dqui

or dqvi .

The time-stepping for implicit Euler/BDF1 has the following

simple form:

ui − ui−1 = Δt vi ,

M(vi − vi−1) = Δt hi = ĥi .
(40)

We introduce adjoint variables pi and μi (we use subscripts for

the adjoint variables to indicate the time step, as these are often

transposed in the formulas to make the formulas more readable).

In the derivation below, we drop most dependencies on vari-

ables, assuming Ĵ i = Ĵ i (ui , q), gu = gu (q), gv = gv (q), ĥi =

ĥ(ui , ui−1, q) and M = M(q).
The Lagrangian L has the form

L =

N∑
i=0

Ĵ i {objective terms}

+ pT
0 (v

0 − gv) + μT
0 (u

0 − gu) {initial condition terms}

+

N∑
i=1

pT
i (M (v

i − vi−1) − ĥi) + μT
i (u

i − ui−1 − Δt vi). {PDE terms}

Rearranging terms, and shifting summation index for ui−1,

L = pT
0 (v

0 − gv) + μT
0 (u

0 − gu) + Ĵ 0

+

N∑
i=1

Ĵ i + pT
i (M (v

i − vi−1) − ĥi) + μT
i (u

i − ui−1 − Δt vi)

= pT
0 (v

0 − gv) + μT
0 (u

0 − gu) + Ĵ 0

+

N∑
i=1

Ĵ i + pT
i (Mvi − ĥi) + μT

i (u
i − Δt vi) −

N−1∑
i=0

pT
i+1Mvi + μT

i+1ui .

Combining two sums back together and separating N -th term
from the first, we get

L = pT
0 (v

0 − gv) + μT
0 (u

0 − gu) + Ĵ 0 − pT
1 Mv0 − μT

1 u0

+

N−1∑
i=1

Ĵ i + pT
i (Mvi − ĥi) + μT

i (u
i − Δt vi) − pT

i+1Mvi − μT
i+1ui

+ Ĵ N + pT
N (MvN − ĥN) + μT

N (u
N − Δt vN).

Collecting ui and vi terms:

L = Ĵ 0 − pT
0 gv − μT

0 gu + (pT
0 − pT

1 M)v0 + (μT
0 − μT

1)u
0

+

N−1∑
i=1

Ĵ i − pT
i ĥi + (μT

i − μT
i+1)u

i + ((pT
i − pT

i+1)M − μT
i Δt)vi

+ Ĵ N − pT
N ĥN + μT

N uN + (pT
N M − μT

N Δt)vN .

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

Differentiable solver for time-dependent deformation problems with contact • 31:23

Differentiating with respect to q:

dqL = ∂q Ĵ 0 − pT
0 ∂qgv − μT

0 ∂qgu − pT
1 ∂qMv0 + (pT

0 − pT
1 M)dqv0+

+ (∂ui Ĵ 0 + μT
0 − μT

1)dqu0+

+

N−1∑
i=1

∂q Ĵ i − pT
i ∂qĥi + (pT

i − pT
i+1)∂qMvi+

+

N−1∑
i=1

(μT
i − μT

i+1 + ∂ui Ĵ i − pT
i ∂ui ĥi)dqui − pT

i ∂ui−1 ĥi dqui−1+

+ ((pT
i − pT

i+1)M − μT
i Δt)dqvi+

+ ∂q Ĵ N − pT
N ∂qĥN + (∂ui Ĵ N − pT

N ∂uN ĥN + μT
N)dquN+

− pT
N ∂uN−1 ĥN dquN−1 + (pT

N M − μT
N Δt)dqvN + pT

N ∂qMvN .

Reorganizing to have all terms for each dqui together:

dqL = ∂q Ĵ 0 − pT
0 ∂qgv − μT

0 ∂qgu − pT
1 ∂qMv0 + (pT

0 − pT
1 M)dqv0+

+ (∂ui Ĵ 0 + μT
0 − μT

1 − pT
1 ∂u0 ĥ1)dqu0

+

N−1∑
i=1

∂q Ĵ i − pT
i ∂qĥi + (pT

i − pT
i+1)∂qMvi

+

N−1∑
i=1

(μT
i − μT

i+1 + ∂ui Ĵ i − pT
i ∂ui ĥi − pT

i+1∂ui ĥi+1)dqui+

+ ((pT
i − pT

i+1)M − μT
i Δt)dqvi

+ ∂q Ĵ N − pT
N ∂qĥN + (∂ui Ĵ N − pT

N ∂uN ĥN + μT
N)dquN+

+ (pT
N M − μT

N Δt)dqvN + pT
N ∂qMvN .

Introducing μ = MTν , we obtain the following adjoint equa-

tions from the terms multiplying dqvi and dqui in the summation:

pi − pi+1 = Δt ν i ,

MT (ν i − ν i+1) = (∂ui ĥi)T pi + (∂ui ĥi+1)T pi+1 − (∂ui Ĵ i)T .

(41)

For the initial conditions we get from the terms multiplying

dqvN and dquN :

pN = Δt νN ,

MTνN = (∂ui ĥN)T pN − (∂ui ĴN)T .
(42)

By introducing pN+1 and νN+1, the initial conditions can be

simplified as

pN+1 = 0,

νN+1 = 0.
(43)

For p0,ν0 we have MTν0 = −(∂u0 Ĵ0)T +MTν1 + pT
1 ∂u0 ĥ1 and

p0 = MT p1.

Finally, the expression for dq J is obtained by dropping all terms

with dqvi and dqui , as these are set to zero by our choice of equa-

tions for the adjoint, and retaining the rest:

dq J = ∂q Ĵ
0 − pT

0 ∂qgv − μT
0 ∂qgu − pT

1 ∂qMv0,

+

N∑
i=1

∂q Ĵ
i − pT

i ∂qĥi + Δt νT
i ∂qMvi .

(44)

A.2 General BDF Time Integration

Discrete Lagrangian. For the general case, we split the La-

grangian L(u, v, p, μ, q) into three parts: J (u, q) itself, the part Lc

containing the Lagrange multipliers for the time steps i = 1 . . .N ,

and the part for initial conditions Lin

L(u, v, p, μ, q) = J (u, q) + Lc (u, v, p, μ, q) + Lin (u
0, v0, p0, μ0, q),

where

Lin = pT
0 (v

0 − gv) + μT
0 (u

0 − gu).

We start with Lc . Remember that Lc depends on hi , which has
inputs x , ui and ui−1 (due to friction):

Lc =

N∑
i=1

pT
i M

(
vi+

min(i,m)∑
j=1

α i
j vi−j−ĥi

)
+μT

i

(
ui+

min(i,m)∑
j=1

α i
j ui−j−βi Δt vi

)
.

We rearrange the double summations in this expression, so that

each term depends only on ui and vi , as the adjoint equations will

be obtained by setting coefficients of dqui and dqvi to zero after

differentiation.

If we have a sum of the form

N∑
i=1

min(i,m)∑
j=1

α i
jc

T
i zi−j ,

we can change the summation order: let r = i − j,

N∑
i=1

i−1∑
r=max(0,i−m)

α i
i−r c

T
i zr =

N−1∑
r=0

min(r+m,N)∑
i=r+1

α i
i−r c

T
i zr

=

N−1∑
r=0

min(m,N−r)∑
j=1

α
j+r
j cT

r+jzr ,

where we introduced back j = i − r in the last equation. Finally,

renaming r to i , we obtain the form for which each term contains

zi only:

N−1∑
i=0

(min(m,N−i)∑
j=1

α
i+j
j cT

i+j

)
zi . (45)

Returning to the Lagrangian, we regroup the terms in L as:

Lc =

N∑
i=1

(
pT

i

(
Mvi − ĥi

)
+ μT

i

(
ui − βi Δt vi

))
+

N∑
i=1

min(i,m)∑
j=1

(
pT

i Mα i
j vi−j + μT

i α
i
j ui−j

)
.

Using (45), we get

Lc =

N∑
i=1

(
pT

i

(
Mvi − ĥi

)
+ μT

i

(
ui − βi Δt vi

))
+

N−1∑
i=0

min(m,N−i)∑
j=1

(
pT

i+jMα
i+j
j vi + μT

i+jα
i+j
j ui

)
.

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

31:24 • Z. Huang et al.

Collecting the terms for ui and vi :

Lc =

N−1∑
i=1

−pT
i ĥi +

����pT
i +

min(m,N−i)∑
j=1

α
i+j
j pT

i+j
���M − βi Δt μT

i
���vi+

+
��μT

i +

min(m,N−i)∑
j=1

α
i+j
j μT

i+j
���ui

+

m∑
j=1

pT
j Mα

j
j v0 + μT

j α
j
j u0+

− pT
N ĥN + (pT

N M − βN Δt μT
N)v

N + μT
N uN .

We split this expression again, into Lmid
c + L0

c + L
N
c , corre-

sponding to three lines of the equation; these terms contribute to
the time-dependent adjoint equations and boundary conditions. In
this form, it is straightforward to differentiate with respect to q:

dqL
mid
c =

N−1∑
i=1

−pT
i ∂qĥi +

��pT
i +

min(m,N−i)∑
j=1

α
i+j
j pT

i+j
���dqMvi

+

N−1∑
i=1

��
(
pT

i +

min(m,N−i)∑
j=1

α
i+j
j pT

i+j

)
M − βi Δt μT

i
���dqvi+

+
��μT

i +

min(m,N−i)∑
j=1

α
i+j
j μT

i+j − pT
i ∂ui ĥi − pT

i+1 ∂ui ĥi+1���dqui+

− pT
1 ∂u0 ĥ1 dqu0

dqL
0
c =

m∑
j=1

α
j
j

(
pT

j dqMv0 + pT
j Mdqv0 + μT

j dqu0
)

dqL
N
c = −pT

N ∂qĥN − pT
N ∂uN ĥN dquN + pT

N dqMvN +

+ (pT
N M − βN Δt μT

N)dqvN + μT
N dquN .

Similarly, we split

dq J =
N−1∑
i=1

∂q Ĵ
i +

N−1∑
i=1

∂u Ĵ
idqui +

(
∂q Ĵ

0 + ∂u Ĵ
0dqu0)

+
(
∂q Ĵ

N + ∂u Ĵ
NdquN)

= dq J
mid + dq J

0 + dq J
N .

Adjoint equations. Equating the coefficients of dqui and dqvi ,

i = 1 . . .N − 1 to zero in dqL
mid
c + dq J

mid , we obtain the adjoint
equations:

MT

(
pi +

min(m,N−i)∑
j=1

α
i+j
j pi+j

)
= βi Δt μi ,

μi +

min(m,N−i)∑
j=1

α
i+j
j μi+j = (∂ui ĥi)T pi + (∂ui ĥi+1)T pi+1 − (∂u Ĵ i)T ,

(46)

for i = 1 . . .N − 1.

Making a substitution μ = MT ν̂ , we obtain (12).

We obtain the adjoint equation in time in the form very similar

to the forward Equation (39). The most important difference is that

the integration is “back in time”, i.e., the finite difference formula

for time derivative is applied to i, . . . i +m. This means that the

system is integrated backwards, starting with (pN , μN). Second,

there is a slight difference in the coefficients of the scheme used.

Specifically, the starting iterations do not use the lower-order

BDF formulas, rather they use truncations of the same order BDF

formula. At the same time, the end iterations, for small i , will

use lower order coefficients, even though this is not needed. The

reason for preferring this (although this seemingly damages the

accuracy of the integration of the adjoint) is consistency with

the functional discretization: as this fact is a consequence of

deriving the adjoint from the time discretization, if we compute

the functional using the same discretization, finite differences for

the functional will be closer to the adjoint.

Initial conditions for adjoint. The initial conditions follow

from setting coefficients of dquN and dqvN to zero in dqL
N
c dq J

N ,

i.e.,

(∂u Ĵ
N)T − ∂uĥN pN + μN = 0; MT pN − βN Δt μN = 0.

Substituting μ = MTν , we get

(∂u Ĵ
N)T − ∂uN ĥN pN +M

TνN = 0; pN − βN Δt νN = 0,

and a linear system for for νN :

(∂u Ĵ
N)T + (MT − βN Δt ∂uN ĥN)νN = 0.

Solving these

(MT − βN Δt ∂uN ĥN)νN = −(∂u Ĵ
N)T , pN = βN Δt νN . (47)

By introducing pN+1, νN+1, the initial condition can be simpli-

fied as (13).

Finally, the adjoint Equation (12) only allows to solve down to to

i = 1; the equations for p0, μ0 are derived fromdq J
0+dqLin+dqL

0
c ;

adding terms containing dqu0 and dqv0, we get:

��∂u Ĵ0 + μT
0 +

m∑
j=1

α
j
j μ

T
j − pT

1 ∂u0 ĥ1���dqu0+
��pT

0 +

m∑
j=1

α
j
j pT

j M
���dqv0,

which yields direct expressions (14) for p0 and μ0, based on pi , μi
for i = 1 . . .m.

Computing the derivative of J from the forward and ad-

joint solutions. Finally, once the adjoint variables are obtained,

we can compute (15), by collecting all terms not containing dqui

and dqvi .

Partial derivatives ∂qĥ, ∂uĥ and ∂q Ĵi , ∂u Ĵi are exactly the same

as used in the construction of the system for static adjoint and

computation of the functional. The differences, specific to time dis-

cretization, are:

— Mass matrix derivative dqM . See Section A.3.

— Partial derivatives of the initial conditions with respect to

parameters ∂qgv and ∂qgu , for positions and velocities (See

Appendix A.4). Typically, a 3D position and velocity for the

whole object (or angular velocity for the object rotating as

a rigid body) are used as parameters, so these are trivial

to compute.

A.3 Mass Matrix Derivative

Consider our Mass Matrix as follows:

MDs+i,Dt+i =
∑

e ∈E(s)∩E(t)

∫
q̄e (K̂e)

ρ(q)ϕloce (s)(x) ϕloce (t)(x) dx ,

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

Differentiable solver for time-dependent deformation problems with contact • 31:25

where i ∈ {1, ..,D} and D equals 2 or 3 (representing dimension).

This means mass matrix M has D · n rows and columns. Here, we

use notation to define the local index of a node loce (�)with respect

to elements e containing it.

Then, we can obtain the shape derivative with respect to pertur-

bation θ (xϵ = x + ϵθ (x)) by computing the Gateaux Derivative

below for each element:

∂qMDs+i,Dt+i

=
d

dϵ

���
ϵ=0

∑
e ∈E(s)∩E(t)

∫
q̄e (K̂e)ϵ

ρ(q)ϕloce (s)(xϵ) ϕloce (t)(xϵ) dxϵ

=
∑

e ∈E(s)∩E(t)

∫
q̄e (K̂e)

∂qρ(q)ϕ
loce (s)(x) ϕloce (t)(x)+

+ ρ(q)ϕloce (s)(x) ϕloce (t)(x) ∇ · θ (x) dx

=
∑

e ∈E(s)∩E(t)

∑
l ∈Loce

∫
q̄e (K̂e)

∂qρ(q)ϕ
loce (s)(x) ϕloce (t)(x)+

+ ρ(q)ϕloce (s) ϕloce (t) ∇ξ l dx · θ l .

A.4 Initial Condition Derivatives

We need to compute partial derivatives of the initial conditions

with respect to optimization parameters q, ∂qgv and ∂qgu , for po-

sitions and velocities. Notice that both ∂qgv and ∂qgu are discrete

vector fields on domain Ωq̄. Consider we have one vector value qm

per node of the domain.

If (gv)s = qm , where (gv)s is initial condition at node s ,
the derivative with respect to qm is simply the identity matrix

(∂qm (gv)s = I). At the same time, it is the zero matrix w.r.t. any

other qm∗ , withm∗ �m. The same thing goes for gu .

B PARAMETRIC DERIVATIVES OF FORCES

In this section, we derive general expressions for gradient-

dependent volume forces.

In a general form, the contribution to the PDE can be written as

Hv (u,w,Q) =

∫
Ωq̄

f v ((∇u(x),q(x)) : ∇w dx .

B.1 Gradient-dependent Volume Forces

Shape derivatives. We omit the dependence on q, and use ∇f to

denote ∂∇u f .

Define Ωϵ = Ωq̄+θ ϵ , Ω = Ωq̄ and xϵ = x + ϵθ . Let uϵ be the

solution on domain Ωϵ . Then computing the Gâteaux derivative

ofHv we get:

d

dϵ

���
ϵ=0
H f =

d

dϵ

���
ϵ=0

∫
Ωϵ

f (∇x ϵuϵ) : ∇x ϵwϵ dxϵ

=
d

dϵ

���
ϵ=0

∫
Ω
f ((∇u)F−1

ϵ) : (∇w)F−1
ϵ det Fϵ dx

=

∫
Ω

d

dϵ

���
ϵ=0

(
f ((∇u)F−1

ϵ)F
−T
ϵ : ∇w det Fϵ

)
dx

=

∫
Ω
−f (∇u)∇θT : ∇w + (∇f (∇u) : ∇δu) : ∇w +

− (∇f (∇u) : (∇u∇θ)) : ∇w + (f (∇u) : ∇w)∇ · θ dx .
(48)

Thus, we have for the shape derivative contribution:

Bf (θ, p) =

∫
Ω
−f (∇u)∇θT : ∇p − (∇f (∇u) : (∇u∇θ)) : ∇p + (f (∇u) : ∇p)∇ · θ dx .

Bf (θ ,p) is linear in θ and p, and we convert it to a matrix form
by substituting basis functions for θ and p:

[Bf]Da+i,Db+j =
∑

e∈E(a)∩E(b)

∑
k,l∈1. .D

δi, j

∫
q̄e (K̂e)

− [∇ξ loce (b)]k fkl [∇ϕ loce (a)]l dx +

+
∑

e∈E(a)∩E(b)

∑
k,l,m∈1. .D

∫
q̄e (K̂e)

− ∇f (∇u)iklm [∇ξ loce (b)]l [∇u]jm [∇φ loce (a)]k dx +

+
∑

e∈E(a)∩E(b)

∑
k∈1. .D

∫
q̄e (K̂e)

f (∇u)ik [∇ϕ loce (a)]k [∇ξ loce (b)]j dx .

the sum is over elements e containing both a and b. Again, we use

notation loce (�) to define the local index of a node with respect to

the elements e containing it.

The contribution to the left-hand side of the adjoint equation is

Af (ψ ,p) =

∫
Ω
(∇f (∇u) : ∇ψ) : ∇p dx ,

which is the boxed term from (48), corresponding to wT ∂uh δu,
with replacements w := p and δu := ψ . Discretizing according to
our FE basis:

[Af]Da+i,Db+j

=
∑

e∈E(a)∩E(b)

∑
k,l∈1. .D

∫
q̄e (K̂e)

(∇f)ik jl [∇ϕ loce (b)]l [∇ϕ loce (a)]k dx,

where we sum over all elements Ωe = q̄(K̂), with K̂ being the

reference element.

Non-shape volumetric parameter derivatives. We assume

that the force depends on q = q(x), a function of the point in Ωq̄ ,

defined by its values q at the same nodes as the solution, and inter-

polated using the same basis ϕ.

The perturbed parameter function q is defined as

qϵ (x) = q(x) + ϵθ (x),

where θ (x) represents the perturbation, assumed to be given in the

same basis as q and solution.

d

dϵ

���
ϵ=0
Hv =

d

dt

���
ϵ=0

∫
Ωϵ

f (∇uϵ ,qϵ) : ∇wϵ dxϵ

=

∫
Ω
(∇1 f : ∇δu) : ∇w + (∇2 f ·

d

dϵ
qϵ) : ∇w dx

=

∫
Ω
(∇1 f : ∇δu) : ∇w + (∇2 f · θ) : ∇w dx .

(49)

Thus, the shape derivative contribution is:

Bf (θ ,p) =

∫
Ω
(∇2 f · θ) : ∇p dx .

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

31:26 • Z. Huang et al.

Discretizing:

[Bf]Ds a+i,Ds b+j

=
∑

e ∈E(a)∩E(b)

∑
k ∈1..Dd

∫
q̄e (K̂e)

[∇2 f]ik jξ
loce (b)[∇ϕloce (a)]k dx .

The contribution to the left-hand side of the adjoint equation is

Af (ψ ,p) =

∫
Ω
(∇1 f : ∇ψ) : ∇p dx ,

which is the boxed term from (49), depending on δu with replace-

ments w := p and δu := ψ .
Discretizing according to our FE basis

[Af]Ds a+i,Ds b+j

=
∑

e∈E(a)∩E(b)

∑
k,l∈1. .Dd

∫
q̄e (K̂e)

(∇1f)ik jl [∇ϕ loce (b)]l [∇ϕ loce (a)]k dx .

C GENERAL FORM OF OBJECTIVE DERIVATIVES

For each objective J , the derivations below include vectors Ro and

So , corresponding to ∂u J and ∂q J , which are necessary to compute

the adjoint solution and the final shape derivative.

C.1 Objectives Depending on Gradient of Solution and
Shape

Consider an objective that depends on both the solution of the PDE

and the domain:

J (∇u,Ω) =

∫
Ω
j(∇u,x)dx . (50)

Computing the Gateaux derivative, while considering perturba-
tion of the domain xϵ := x + ϵθ :

d

dϵ

���
t=0

J =
d

dϵ

���
ϵ=0

∫
Ωϵ

j(∇uϵ , x ϵ) dx ϵ

=
d

dϵ

���
ϵ=0

∫
Ω

j((∇u)F −1
ϵ , x + ϵθ) det(Fϵ) dx

=

∫
Ω

d

dϵ

���
ϵ=0

(
j((∇u)F −1

ϵ , x + ϵθ) det(Fϵ)
)

dx

=

∫
Ω
∇1 j : ∇δu − ∇1 j : ∇u∇θ + ∇2 j · θ + j(∇u, x)∇ · θ dx .

We can select the parts not depending on δu to be part of S :

So (θ) =

∫
Ω
−∇1j : ∇u∇θ + ∇2j · θ + j(∇u,x)∇ · θ dx . (51)

Discretizing according to our FE basis:

[So]Da+i =
∑

e ∈E(a)

∫
q̄e (K̂e)

−(∇uT)i j (∇1j)jk [∇ξ
loce (a)]k+

+
∂j

∂xi
ξ loce (a) + j(u,x)[∇ξ loce (a)]i dx .

And,

Ro (ψ) =

∫
Ω
∇1j : ∇ψ dx , (52)

which can be discretized as follows:

[Ro]Da+i =
∑

e ∈E(a)

∫
q̄e (K̂e)

(∇1j)i j [∇ϕ
loce (a)]j dx .

C.2 Objectives Depending on Solution and Shape

Consider an objective that depends on both the solution of the PDE

and the domain:

J (u,Ω) =

∫
Ω
j(u,x)dx . (53)

Computing the Gateaux derivative, while considering perturba-

tion of the domain xϵ := x + ϵθ :

d

dϵ

���
ϵ=0

J =
d

dϵ

���
ϵ=0

∫
Ωϵ

j(uϵ ,xϵ) dxϵ

=

∫
Ω
∇1j · δu + ∇2j · θ + j∇ · θ dx .

We can select the parts depending on δu, which will be the RHS

of our adjoint PDE (represented by vector R), while the remaining

part is a term that should be added directly to the shape derivative

(vector S).

So,

So (θ) =

∫
Ω
∇2j · θ + j(u,x)∇ · θ dx . (54)

Discretizing according to our FE basis:

[S]Da+i =
∑

e ∈E(a)

∫
q̄e (K̂e)

∂j

∂xi
ξ loce (a) + j(u,x)[∇ξ loce (a)]i dx .

And,

Ro (ψ) =

∫
Ω
∇1j ·ψ dx , (55)

which can be discretized as follows:

[R]Da+i =
∑

e ∈E(a)

∫
q̄e (K̂e)

∂j

∂ui
ϕloce (a) dx .

D CONTACT AND FRICTION AREA TERM

In our contact and friction formulas, we use Ak as a weight for

our forces, which measures the area of our contact pair k . In the

formulation, it corresponds to the sum of surface areas associated

with each primitive. In 3D, it is 1/3 of the sum of areas of incident

triangles for vertices and edges, and the area of triangles. For a

triangle T = (t0, t1, t2), where ti corresponds to the position of

each triangle’s vertex, the corresponding triangle area will be:

AΔ(T) = AΔ(t0, t1, t2) =
1
2 ‖(t1 − t0) × (t2 − t0)‖.

If k corresponds to a point-triangle contact pair between point

p and triangle T , and Incid(p) has the incident triangles of p,

we have:

Ak =
∑

T ∈Incid(p)

1
3AΔ(T).

In this context, ∂q̄Ak corresponds to the gradient of the area

term, which can be computed as a sum of the ∂q̄AΔ terms:

∂q̄AΔ(T) =
(t1 − t0) × (t2 − t0)

2‖(t1 − t0) × (t2 − t0)‖
∂q̄((t1 − t0) × (t2 − t0)).

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

Differentiable solver for time-dependent deformation problems with contact • 31:27

E FRICTION DERIVATIVE TERMS

For friction, we have:

Bf (p,θ) =
∑
k

∂q̄F
f

k
sθ · p Ak + F

f

k
· p ∂q̄Ak Ak ,

and

Af (ψ ,p) =
∑
k

∂uFkψ · p Ak ,

which reduces to computing the derivative of each F
f

k
term with

respect to x , ui and ui−1.

∂x�
F

f

k

= −γk1,k2
Tk fη (‖τk ‖)

τk

‖τk ‖

×

(
κ

Nk

‖Nk ‖
· (b′′(∂xddk)(∂xddk)

T + b′∂xd (∂xddk)) M∗
)
�

+

− γk1,k2
Nk

(
∂xpTk M∗

)
� fη (‖τk ‖)

τk

‖τk ‖
+

− γk1,k2
NkTk

τk

‖τk ‖

(
f ′η

τk

‖τk ‖
· ((∂xpTk M∗)T� (u

i − ui−1))

)
+

− γk1,k2
NkTk fη (‖τk ‖)

((
I2

‖τk ‖
−

τk τ T
k

‖τk ‖
3

)
(∂xpTk M∗)T� (u

i − ui−1)

)
.

(56)

∂u i
�
F

f

k
= −γk1,k2

NkTk
τk

‖τk ‖

(
f ′η

τk

‖τk ‖
·
(
TT

k

)
�

)
+

− γk1,k2
NkTk fη (‖τk ‖)

((
I2
‖τk ‖

−
τkτ

T
k

‖τk ‖
3

) (
TT

k

)
�

)
.

(57)

∂u i−1
�

F
f

k

= −γk1,k2
Tk fη (‖τk ‖)

τk

‖τk ‖

×

(
κ

Nk

‖Nk ‖
· (b ′′∇dk∇d

T
k
+ b ′∇2dk)

)
�

+

− γk1,k2
Nk (∂xpTk)� fη (‖τk ‖)

τk

‖τk ‖
+

− γk1,k2
NkTk

τk

‖τk ‖

(
f ′η

τk

‖τk ‖
· (∂xpTk)

T
� (u

i − ui−1))

)
+

− γk1,k2
NkTk fη (‖τk ‖)

((
I2
‖τk ‖

−
τkτ

T
k

‖τk ‖
3

)
(∂xpTk)

T
� (u

i − ui−1)

)
.

(58)

F REGULARIZATION DERIVATIVES

Scale-invariant smoothing. The regularization in (37) is used for

shape optimization, when the optimization parameter is qm = vi ,

a vertex of the shape. That said, the derivative with respect to each

vertex vi is:

∂vi J
smooth = p‖si ‖

p−2sT
i (∂vi si) +

∑
j ∈N (i)∩B

p‖sj ‖
p−2sT

j (∂vi sj).

And we have that

∂vi si =
|N (i) ∩ B |I∑

j ∈N (i)∩B ‖vi −vj ‖

−

(∑
j ∈N (i)∩B

vi−vj

‖vi−vj ‖

) (∑
j ∈N (i)∩B (vi −vj)

)T(∑
j ∈N (i)∩B ‖vi −vj ‖

)2
.

And, for ∂vi sj , where vi is one of the neighbors of vj :

∂vi sj = −
I∑

k ∈N (j)∩B ‖vj −vk ‖

+

(
vj−vi

‖vj−vi ‖

) (∑
k ∈N (j)∩B (vj −vk)

)T(∑
k ∈N (j)∩B ‖vj −vk ‖

)2
.

Material parameter spatial smoothing. For derivatives of

(38) with respect to material parameters λi , μi we have

∂λi
Jλ,μ smooth = 2

∑
t ′ ∈Ad j(ti)

(
λti

λt ′
− 1

)
+

(
1 −

λt ′

λti

)
λt ′

λ2
ti

,

and

∂μi J
λ,μ smooth = 2

∑
t ′ ∈Ad j(ti)

(
μti

μt ′
− 1

)
+

(
1 −

μt ′

μti

)
μt ′

μ2
ti

.

G DIFFERENCE BETWEEN
“OPTIMIZE-THEN-DISCRETIZE” AND
“DISCRETIZE-THEN-OPTIMIZE”

There is a well-established theory showing that the equations de-

rived through the Optimize-then-Discretize are the correct equa-

tions for optimality. This is, in general, not guaranteed for the

“Discretize-then-Optimize” approach; the easiest approach is to en-

sure that for a choice of discretization methods, the results of both

approaches are identical (which is what we do, although further

analysis is needed to make any rigorous claims).

Specifically for shape optimization, “Optimize-then-Discretize”

makes it possible to derive the gradients in the physical domain:

“shape derivative calculus” [Allaire et al. 2021] allows one to com-

pute shape derivatives with respect to changes in the shape of the

domain on which PDE is solved using physical domain variables

in which the PDEs have the standard form, e.g., for Poisson or elas-

ticity, they are expressed in terms of constant differentiation oper-

ators, e.g., the 2D Poisson equation in the weak form:∫
Ω(q)

a(x ,y)∇z · ∇wdxdy =

∫
Ω(q)

f (x ,y)wdxdy (59)

with (x ,y) coordinates on the physical domain Ω(q), where z(x ,y)
is the unknown function, a(x ,y) is a material parameter, f (x ,y) is

the source term, q is the optimization shape parameters.

In a typical FEM discretization, the “Discretize-then-Optimize

approach” requires converting the equations to a fixed reference

domain and then they need to substitute into the equation, leading

to a variable coefficient equation with an explicit dependence on

shape parameters. In this case, the unknown is defined on the refer-

ence domain Ωr ef with coordinates (u,v), mapped to the physical

domain Ω(q) via the geometry map x = x(u,v),y = y(u,v). If we

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

31:28 • Z. Huang et al.

denote the inverse of this map u = u(x ,y), v = v(x ,y), then the

left-hand side of Equation (59) on the reference domain becomes∫
Ωr ef

a(x ,y)(‖∇u‖2zx + ∇u · ∇vzy)wx

+(‖∇v ‖2zy + ∇u · ∇vzx)wy | det J (x ,y)|dudv

with ∇ denoting derivatives w.r.t. x ,y, and J (x ,y) denoting the

geometric map Jacobian matrix
∂(x,y)
∂(u,v)

. Here we spell out the ex-

pressions more explicitly instead of more concise matrix nota-

tion, to elucidate the increase in complexity. Please refer to Equa-

tion (48) for the complete derivation of shape derivatives following

this way.

As typically the geometry map x(u,v),y(u,v), rather than its

inverse, is given explicitly in terms of shape parameters q (as a

linear function of q, if it is e.g., represented in a FEM basis), deriva-

tives of u,v w.r.t. x ,y need to be expressed in terms of deriva-

tives of x ,y w.r.t. u,v , i.e., ∇u, ∇v are the rows of the inverse of

J (x ,y). In other words, a simple constant coefficient equation on

a variable domain becomes a complex variable coefficient equa-

tion on a fixed domain, with coefficients depending on the geomet-

ric map in a complex nonlinear way. As a next step, these equa-

tions need to be discretized by substituting FEM expressions for

x(u,v ;q),y(u,v ;q),z(u,v), f (u,v) in FEM basis, with the standard

Galerkin procedure yielding stiffness matrix and right-hand side

coefficients. Finally, the derivatives of the resulting coefficients

with respect to q need to be computed.

Note that the derivatives with respect to material parameters

(e.g., coefficients of a(x ,y) in a FEM basis) unlike shape derivatives

have similar complexity in either form. This is also true for elas-

ticity equations: shape derivatives in the Discretize-then-Optimize

setting are even more elaborate, but material parameter derivatives

are relatively simple.

While, in the end, most equations required for shape derivative

adjoints are very close to the forward equations (as shown in Equa-

tion (12) in the paper, the coefficient matrices are the same as in

the forward solves), and can be computed relatively concisely, it

is nontrivial to see this from differentiating the coefficients ob-

tained from the equations above with respect to q. We are not

aware of any tool that can automatically do this conversion, nor

of any manual attempt ever done to compute shape derivatives in

this way.

REFERENCES
Christie Alappat, Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager,

Olaf Schenk, Jonas Thies, and Gerhard Wellein. 2020. A recursive algebraic col-
oring technique for hardware-efficient symmetric sparse matrix-vector multi-
plication. ACM Trans. Parallel Comput. 7, 3, Article 19 (June 2020), 37 pages.
https://doi.org/10.1145/3399732

Grégoire Allaire, Charles Dapogny, and François Jouve. 2021. Chapter 1 - Shape and
topology optimization. In Geometric Partial Differential Equations - Part II, Andrea
Bonito and Ricardo H. Nochetto (Eds.). Handbook of Numerical Analysis, Vol. 22.
Elsevier, 1–132. https://doi.org/10.1016/bs.hna.2020.10.004

M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J.
Ring, M. E. Rognes, and G. N. Wells. 2015. The FEniCS project version 1.5. Archive
of Numerical Software 3 (2015). https://doi.org/10.11588/ans.2015.100.20553

Moritz Bächer, Espen Knoop, and Christian Schumacher. 2021. Design and control of
soft robots using differentiable simulation. Current Robotics Reports (2021), 1–11.

Pierre Baque, Edoardo Remelli, François Fleuret, and Pascal Fua. 2018. Geodesic con-
volutional shape optimization. In International Conference on Machine Learning.
PMLR, 472–481.

Ted Belytschko, Wing Kam Liu, and Brian Moran. 2000. Nonlinear Finite Elements for
Continua and Structures. John Wiley & Sons, Ltd.

P. Beremlijski, J. Haslinger, J. Outrata, and R. Pathó. 2014. Shape optimization in
contact problems with Coulomb friction and a solution-dependent friction co-
efficient. SIAM Journal on Control and Optimization 52, 5 (Jan. 2014), 3371–3400.
https://doi.org/10.1137/130948070

James Bern, Pol Banzet, Roi Poranne, and Stelian Coros. 2019. Trajectory optimization
for cable-driven soft robot locomotion. In Robotics: Science and Systems XV, Vol. 1.
Robotics: Science and Systems Foundation. https://doi.org/10.15607/rss.2019.xv.
052

James M. Bern, Yannick Schnider, Pol Banzet, Nitish Kumar, and Stelian Coros. 2020.
Soft robot control with a learned differentiable model. In 2020 3rd IEEE Interna-
tional Conference on Soft Robotics (RoboSoft ’20). IEEE, 417–423. https://doi.org/10.
1109/robosoft48309.2020.9116011

C. H. Bischof and H. M. Bücker. 2000. Computing derivatives of computer programs.
In Modern Methods and Algorithms of Quantum Chemistry: Proceedings, Second
Edition, J. Grotendorst (Ed.). NIC Series, Vol. 3. NIC-Directors, Jülich, 315–327.
http://hdl.handle.net/2128/6053

Matthias Bollhöfer, Aryan Eftekhari, Simon Scheidegger, and Olaf Schenk. 2019.
Large-scale sparse inverse covariance matrix estimation. SIAM Journal on Sci-
entific Computing 41, 1 (2019), A380–A401. https://doi.org/10.1137/17M1147615
arXiv:https://doi.org/10.1137/17M1147615

Matthias Bollhöfer, Olaf Schenk, Radim Janalik, Steve Hamm, and Kiran Gullapalli.
2020. State-of-the-art sparse direct solvers. (2020), 3–33. https://doi.org/10.1007/
978-3-030-43736-7_1

Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust treatment of colli-
sions, contact and friction for cloth animation. ACM Trans. on Graph. 21 (05 2002).

Bernard Brogliato. 1999. Nonsmooth Mechanics. Springer-Verlag.
George E. Brown, Matthew Overby, Zahra Forootaninia, and Rahul Narain. 2018. Ac-

curate dissipative forces in optimization integrators. ACM Trans. Graph. 37, 6,
Article 282 (Dec. 2018), 14 pages. https://doi.org/10.1145/3272127.3275011

Michael B. Chang, Tomer Ullman, Antonio Torralba, and Joshua B. Tenenbaum. 2016.
A compositional object-based approach to learning physical dynamics. arXiv
preprint arXiv:1612.00341 (2016).

Bicheng Chen, Nianfeng Wang, Xianmin Zhang, and Wei Chen. 2020. Design of dielec-
tric elastomer actuators using topology optimization on electrodes. Smart Mater.
Struct. 29, 7 (June 2020), 075029. https://doi.org/10.1088/1361-665x/ab8b2d

Gilles Daviet, Florence Bertails-Descoubes, and Laurence Boissieux. 2011. A hybrid
iterative solver for robustly capturing Coulomb friction in hair dynamics. ACM
Trans. on Graph. 30 (12 2011).

Alban de Vaucorbeil, Vinh Phu Nguyen, Sina Sinaie, and Jian Ying Wu. 2019. Material
point method after 25 years: Theory, implementation and applications. Submitted
to Advances in Applied Mechanics (2019), 1.

B. Desmorat. 2007. Structural rigidity optimization with frictionless unilateral contact.
International Journal of Solids and Structures 44, 3 (Feb. 2007), 1132–1144. https:
//doi.org/10.1016/j.ijsolstr.2006.06.010

Jørgen S. Dokken, Sebastian K. Mitusch, and Simon W. Funke. 2020. Auto-
matic Shape Derivatives for Transient PDEs in FEniCS and Firedrake. (2020).
arXiv:math.OC/2001.10058

Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and
Wojciech Matusik. 2021. DiffPD: Differentiable projective dynamics. ACM Trans.
Graph. 41, 2, Article 13 (Nov. 2021), 21 pages. https://doi.org/10.1145/3490168

Christof Eck, Jiri Jarusek, Miroslav Krbec, Jiri Jarusek, and Miroslav Krbec. 2005. Uni-
lateral Contact Problems: Variational Methods and Existence Theorems. CRC Press.
https://doi.org/10.1201/9781420027365

Zachary Ferguson and others. 2020. IPC Toolkit. Retrieved from https://github.com/
ipc-sim/ipc-toolkit

Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Lan-
glois, Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo.
2021. Intersection-free rigid body dynamics. ACM Transactions on Graphics
(SIGGRAPH) 40, 4, Article 183 (2021).

Konstantinos Gavriil, Ruslan Guseinov, Jesús Pérez, Davide Pellis, Paul Henderson,
Florian Rist, Helmut Pottmann, and Bernd Bickel. 2020. Computational design of
cold bent glass FaçAdes. ACM Trans. Graph. 39, 6, Article 208 (Nov. 2020), 16 pages.
https://doi.org/10.1145/3414685.3417843

Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard
Thomaszewski, and Stelian Coros. 2020. ADD: Analytically differentiable
dynamics for multi-body systems with frictional contact. ACM Transactions on
Graphics (TOG) 39, 6 (2020), 1–15.

Christophe Geuzaine and Jean-François Remacle. 2009. Gmsh: A 3-D finite element
mesh generator with built-in pre- and post-processing facilities. Internat. J. Nu-
mer. Methods Engrg. 79, 11 (2009), 1309–1331. https://doi.org/10.1002/nme.2579
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2579

Andreas Griewank and Andrea Walther. 2008. Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation. Vol. 105. SIAM. https://doi.org/10.1137/
1.9780898717761

Christian Hafner, Christian Schumacher, Espen Knoop, Thomas Auzinger, Bernd
Bickel, and Moritz Bächer. 2019. X-CAD: Optimizing CAD models with extended

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

https://doi.org/10.1145/3399732
https://doi.org/10.1016/bs.hna.2020.10.004
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1137/130948070
https://doi.org/10.15607/rss.2019.xv.052
https://doi.org/10.1109/robosoft48309.2020.9116011
http://hdl.handle.net/2128/6053
https://doi.org/10.1137/17M1147615
https://arxiv.org/abs/https://doi.org/10.1137/17M1147615
https://doi.org/10.1007/978-3-030-43736-7_1
https://doi.org/10.1145/3272127.3275011
https://doi.org/10.1088/1361-665x/ab8b2d
https://doi.org/10.1016/j.ijsolstr.2006.06.010
https://arxiv.org/abs/math.OC/2001.10058
https://doi.org/10.1145/3490168
https://doi.org/10.1201/9781420027365
https://github.com/ipc-sim/ipc-toolkit
https://doi.org/10.1145/3414685.3417843
https://doi.org/10.1002/nme.2579
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2579
https://doi.org/10.1137/1.9780898717761

Differentiable solver for time-dependent deformation problems with contact • 31:29

finite elements. ACM Trans. Graph. 38, 6, Article 157 (Nov. 2019), 15 pages. https:
//doi.org/10.1145/3355089.3356576

David Hahn, Pol Banzet, James M. Bern, and Stelian Coros. 2019. Real2Sim: Visco-
elastic parameter estimation from dynamic motion. ACM Trans. Graph. 38, 6, Ar-
ticle 236 (Nov. 2019), 13 pages. https://doi.org/10.1145/3355089.3356548

David Harmon, Etienne Vouga, Breannan Smith, Rasmus Tamstorf, and Eitan Grin-
spun. 2009. Asynchronous contact mechanics. In ACM Trans. on Graph. (TOG ’09),
Vol. 28. ACM.

David Harmon, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. 2008. Ro-
bust treatment of simultaneous collisions. SIGGRAPH (ACM Trans. on Graph.) 27,
3 (2008).

Jaroslav Haslinger, Pekka Neittaanmaki, and Timo Tiihonen. 1986. Shape optimiza-
tion in contact problems based on penalization of the state inequality. Aplikace
Matematiky 31, 1 (1986), 54–77. https://eudml.org/doc/15435

Eric Heiden, Miles Macklin, Yashraj S. Narang, Dieter Fox, Animesh Garg, and Fabio
Ramos. 2021. DiSECt: A differentiable simulation engine for autonomous robotic
cutting. In Proceedings of Robotics: Science and Systems. Virtual. https://doi.org/10.
15607/RSS.2021.XVII.067

Eric Heiden, David Millard, Erwin Coumans, Yizhou Sheng, and Gaurav S. Sukhatme.
2020. NeuralSim: Augmenting differentiable simulators with neural networks.
arXiv preprint arXiv:2011.04217 (2020).

J. Herskovits, A. Leontiev, G. Dias, and G. Santos. 2000. Contact shape optimization:
A bilevel programming approach. Structural and Multidisciplinary Optimization
20, 3 (Nov. 2000), 214–221. https://doi.org/10.1007/s001580050149

Shayan Hoshyari, Hongyi Xu, Espen Knoop, Stelian Coros, and Moritz Bächer. 2019.
Vibration-minimizing motion retargeting for robotic characters. ACM Trans.
Graph. 38, 4 (July 2019), 1–14. https://doi.org/10.1145/3306346.3323034

Jerry Hsu, Nghia Truong, Cem Yuksel, and Kui Wu. 2022. A general two-stage initial-
ization for sag-free deformable simulations. ACM Trans. Graph. 41, 4, Article 64
(Jul. 2022), 13 pages. https://doi.org/10.1145/3528223.3530165

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-
Kelley, and Fredo Durand. 2019a. DiffTaichi: Differentiable programming for
physical simulation. In International Conference on Learning Representations.

Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B. Tenenbaum, William T.
Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. 2019b. ChainQueen: A
real-time differentiable physical simulator for soft robotics. In 2019 International
Conference on Robotics and Automation (ICRA ’19). IEEE, 6265–6271.

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020. Fast
tetrahedral meshing in the wild. ACM Trans. Graph. 39, 4, Article 117 (July 2020),
18 pages. https://doi.org/10.1145/3386569.3392385

Wenzel Jakob. 2010. Mitsuba Renderer. (2010). http://www.mitsuba-renderer.org
Krishna Murthy Jatavallabhula, Miles Macklin, Florian Golemo, Vikram Voleti, Linda

Petrini, Martin Weiss, Breandan Considine, Jerome Parent-Levesque, Kevin Xie,
Kenny Erleben, Liam Paull, Florian Shkurti, Derek Nowrouzezahrai, and Sanja Fi-
dler. 2021. gradSim: Differentiable simulation for system identification and visuo-
motor control. International Conference on Learning Representations (ICLR) (2021).
https://openreview.net/forum?id=c_E8kFWfhp0

Zhongshi Jiang, Teseo Schneider, Denis Zorin, and Daniele Panozzo. 2020. Bijective
projection in a shell. ACM Trans. Graph. 39, 6, Article 247 (Nov. 2020), 18 pages.
https://doi.org/10.1145/3414685.3417769

Noboru Kikuchi and John Tinsley Oden. 1988. Contact Problems in Elasticity: A Study
of Variational Inequalities and Finite Element Methods. SIAM Studies in App. and
Numer. Math., Vol. 8. Society for Industrial and Applied Mathematics.

Patrick M. Knupp. 2001. Algebraic mesh quality metrics. SIAM Journal on Scien-
tific Computing 23, 1 (2001), 193–218. https://doi.org/10.1137/S1064827500371499
arXiv:https://doi.org/10.1137/S1064827500371499

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin,
Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental
potential contact: Intersection- and inversion-free large deformation dynamics.
ACM Transactions on Graphics 39, 4 (2020).

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin,
Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2023a. Convergent
Incremental Potential Contact. (2023). arXiv:math.NA/2307.15908

Yifei Li, Tao Du, Kui Wu, Jie Xu, and Wojciech Matusik. 2022. DiffCloth: Differentiable
cloth simulation with dry frictional contact. ACM Trans. Graph. (Mar. 2022). https:
//doi.org/10.1145/3527660 Just Accepted.

Zhehao Li, Qingyu Xu, Xiaohan Ye, Bo Ren, and Ligang Liu. 2023b. DiffFR: Differen-
tiable SPH-based fluid-rigid coupling for rigid body control. ACM Trans. Graph.
42, 6, Article 179 (Dec. 2023), 17 pages. https://doi.org/10.1145/3618318

Junbang Liang, Ming Lin, and Vladlen Koltun. 2019. Differentiable cloth simulation
for inverse problems. Neural Information Processing Systems (2019).

Mickaël Ly, Romain Casati, Florence Bertails-Descoubes, Mélina Skouras, and Lau-
rence Boissieux. 2018. Inverse elastic shell design with contact and friction. ACM
Trans. Graph. 37, 6, Article 201 (Dec. 2018), 16 pages. https://doi.org/10.1145/
3272127.3275036

Guirec Maloisel, Espen Knoop, Christian Schumacher, and Moritz Bacher. 2021. Auto-
mated routing of muscle fibers for soft robots. IEEE Trans. Robot. 37, 3 (June 2021),
996–1008. https://doi.org/10.1109/tro.2020.3043654

Charles C. Margossian. 2019. A review of automatic differentiation and its efficient
implementation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Dis-
covery 9, 4 (2019), e1305. https://doi.org/10.1002/widm.1305

Aymeric Maury, Grégoire Allaire, and François Jouve. 2017. Shape Optimisation with
the Level Set Method for Contact Problems in Linearised Elasticity. (Jan. 2017).
https://hal.archives-ouvertes.fr/hal-01435325

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid control
using the adjoint method. ACM Transactions on Graphics / SIGGRAPH 2004 23,
3 (Aug. 2004).

Sebastian K. Mitusch, Simon W. Funke, and Jørgen S. Dokken. 2019. dolfin-adjoint
2018.1: Automated adjoints for FEniCS and Firedrake. Journal of Open Source Soft-
ware 4, 38 (2019), 1292. https://doi.org/10.21105/joss.01292

William S. Moses, Sri Hari Krishna Narayanan, Ludger Paehler, Valentin Churavy,
Michel Schanen, Jan Hückelheim, Johannes Doerfert, and Paul Hovland. 2022.
Scalable automatic differentiation of multiple parallel paradigms through com-
piler augmentation. In Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis (SC ’22). IEEE Press, Article
60, 18 pages.

Uwe Naumann. 2012. The Art of Differentiating Computer Programs: An Intro-
duction to Algorithmic Differentiation. Vol. 24. SIAM. https://doi.org/10.1137/1.
9781611972078

Miguel Otaduy, Rasmus Tamstorf, Denis Steinemann, and Markus Gross. 2009.
Implicit contact handling for deformable objects. Comp. Graph. Forum 28
(04 2009).

Julian Panetta, Abtin Rahimian, and Denis Zorin. 2017. Worst-case stress relief for mi-
crostructures. ACM Transactions on Graphics 36, 4 (2017). https://doi.org/10.1145/
3072959.3073649

Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis
Zorin. 2015. Elastic textures for additive fabrication. ACM Trans. Graph. 34, 4,
Article 135 (July 2015), 12 pages.

Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming Lin. 2020. Scalable differen-
tiable physics for learning and control. In International Conference on Machine
Learning. PMLR, 7847–7856.

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.
Scalable locally injective mappings. ACM Transactions on Graphics (TOG) 36,
4 (2017), 1.

Junior Rojas, Eftychios Sifakis, and Ladislav Kavan. 2021. Differentiable implicit soft-
body physics. arXiv preprint arXiv:2102.05791 (2021).

Connor Schenck and Dieter Fox. 2018. SPNets: Differentiable fluid dynamics for deep
neural networks. In Proceedings of The 2nd Conference on Robot Learning (Proceed-
ings of Machine Learning Research), Aude Billard, Anca Dragan, Jan Peters, and
Jun Morimoto (Eds.), Vol. 87. PMLR, 317–335. https://proceedings.mlr.press/v87/
schenck18a.html

Teseo Schneider, Jérémie Dumas, Xifeng Gao, Denis Zorin, and Daniele Panozzo. 2019.
PolyFEM. https://polyfem.github.io/ (2019).

Christian Schumacher, Espen Knoop, and Moritz Bacher. 2020. Simulation-ready char-
acterization of soft robotic materials. IEEE Robot. Autom. Lett. 5, 3 (July 2020),
3775–3782. https://doi.org/10.1109/lra.2020.2982058

Christian Schumacher, Jonas Zehnder, and Moritz Bächer. 2018. Set-in-stone: Worst-
case optimization of structures weak in tension. ACM Trans. Graph. 37, 6, Article
252 (Dec. 2018), 13 pages. https://doi.org/10.1145/3272127.3275085

Sicong Shan, Sung Kang, Jordan Raney, Pai Wang, Lichen Fang, Francisco Candido,
Jennifer Lewis, and Katia Bertoldi. 2015. Multistable architected materials for trap-
ping elastic strain energy. Advanced Materials (Deerfield Beach, Fla.) 27 (06 2015).
https://doi.org/10.1002/adma.201501708

Ashesh Sharma and Kurt Maute. 2018. Stress-based topology optimization using spa-
tial gradient stabilized XFEM. Structural and Multidisciplinary Optimization 57,
1 (2018), 17–38.

Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus
Gross. 2013. Computational design of actuated deformable characters. ACM Trans.
Graph. 32, 4, Article 82 (Jul. 2013), 10 pages. https://doi.org/10.1145/2461912.
2461979

David E. Stewart. 2001. Finite-dimensional contact mechanics. Phil. Trans. R. Soc. Lond.
A 359 (2001).

Stanisław Stupkiewicz, Jakub Lengiewicz, and Jovze Korelc. 2010. Sensitivity analysis
for frictional contact problems in the augmented Lagrangian formulation. Com-
puter Methods in Applied Mechanics and Engineering 199, 33 (July 2010), 2165–2176.
https://doi.org/10.1016/j.cma.2010.03.021

Javier Tapia, Espen Knoop, Mojmir Mutný, Miguel A. Otaduy, and Moritz Bächer. 2020.
MakeSense: Automated sensor design for proprioceptive soft robots. Soft Rob. 7,
3 (June 2020), 332–345. https://doi.org/10.1089/soro.2018.0162

Davi Colli Tozoni, Jérémie Dumas, Zhongshi Jiang, Julian Panetta, Daniele Panozzo,
and Denis Zorin. 2020. A low-parametric rhombic microstructure family for ir-
regular lattices. ACM Trans. Graph. 39, 4, Article 101 (Jul. 2020), 20 pages. https:
//doi.org/10.1145/3386569.3392451

Davi Colli Tozoni, Yunfan Zhou, and Denis Zorin. 2021. Optimizing contact-based
assemblies. ACM Trans. Graph. 40, 6, Article 269 (Dec. 2021), 19 pages. https://doi.
org/10.1145/3478513.3480552

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

https://doi.org/10.1145/3355089.3356576
https://doi.org/10.1145/3355089.3356548
https://eudml.org/doc/15435
https://doi.org/10.15607/RSS.2021.XVII.067
https://doi.org/10.1007/s001580050149
https://doi.org/10.1145/3306346.3323034
https://doi.org/10.1145/3528223.3530165
https://doi.org/10.1145/3386569.3392385
http://www.mitsuba-renderer.org
https://openreview.net/forum?id=c_E8kFWfhp0
https://doi.org/10.1145/3414685.3417769
https://doi.org/10.1137/S1064827500371499
https://arxiv.org/abs/https://doi.org/10.1137/S1064827500371499
https://arxiv.org/abs/math.NA/2307.15908
https://doi.org/10.1145/3527660
https://doi.org/10.1145/3618318
https://doi.org/10.1145/3272127.3275036
https://doi.org/10.1109/tro.2020.3043654
https://doi.org/10.1002/widm.1305
https://hal.archives-ouvertes.fr/hal-01435325
https://doi.org/10.21105/joss.01292
https://doi.org/10.1137/1.9781611972078
https://doi.org/10.1145/3072959.3073649
https://proceedings.mlr.press/v87/schenck18a.html
https://polyfem.github.io/
https://doi.org/10.1109/lra.2020.2982058
https://doi.org/10.1145/3272127.3275085
https://doi.org/10.1002/adma.201501708
https://doi.org/10.1145/2461912.2461979
https://doi.org/10.1016/j.cma.2010.03.021
https://doi.org/10.1089/soro.2018.0162
https://doi.org/10.1145/3386569.3392451
https://doi.org/10.1145/3478513.3480552

31:30 • Z. Huang et al.

F. van Keulen, R. T. Haftka, and N. H. Kim. 2005. Review of options for structural de-
sign sensitivity analysis. Part 1: Linear systems. Computer Methods in Applied Me-
chanics and Engineering 194, 30 (2005), 3213–3243. https://doi.org/10.1016/j.cma.
2005.02.002 Structural and Design Optimization.

Mickeal Verschoor and Andrei C. Jalba. 2019. Efficient and accurate collision response
for elastically deformable models. ACM Trans. on Graph. (TOG) 38, 2 (2019).

Patrick Wieschollek. 2016. CppOptimizationLibrary. https://github.com/PatWie/
CppNumericalSolvers

Peter Wriggers. 1995. Finite element algorithms for contact problems. Archives of
Comp. Meth. in Eng. 2 (12 1995).

Jie Xu, Viktor Makoviychuk, Yashraj Narang, Fabio Ramos, Wojciech Matusik, Ani-
mesh Garg, and Miles Macklin. 2022. Accelerated Policy Learning with Parallel
Differentiable Simulation. (2022). https://doi.org/10.48550/ARXIV.2204.07137

Xiaoting Zhang, Xinyi Le, Zihao Wu, Emily Whiting, and Charlie C. L. Wang. 2016.
Data-driven bending elasticity design by shell thickness. Computer Graphics Fo-
rum (Proceedings of Symposium on Geometry Processing) 35, 5 (2016), 157–166.

Received 7 November 2022; revised 8 February 2024; accepted 27 February

2024

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.

https://doi.org/10.1016/j.cma.2005.02.002
https://github.com/PatWie/CppNumericalSolvers
https://doi.org/10.48550/ARXIV.2204.07137

