
LECTURE 4: DYNKIN ISOMORPHISM THEOREMS

We continues in the setup where V is finite, with a distinguished vertex x0. For
A ⊂ V , we recall the hitting time

τA = inf{t ≥ 0 : Xt ∈ A}

and the modified hitting time

TA = inf{t > 0 : Xt ∈ A,Xs 6= X0 for some s ∈ (0, t)}.

Recall also that if we let {Yn} denote the discrete Markov chain corresponding to
{Xt}, then for x, y ∈ U = E \ x0 and the Markov chain killed at hitting x0,

g(x, y) =

∫ ∞
0

P x(Xt = y)dt =
1

λy

∞∑
n=0

P x(Yn = y) .

Remark 0.1. We could also work with an excess killing at each (or some vertex), i.e.
take λx >

∑
Wx,y for at least one x. This point of view will be sometimes useful,

in particular when deriving Dynkin’s isomorphism. All the formula we derived are
valid for that case.

1. Conditioning the GFF

One of the nice properties of the GFF is its (spatial) Markov properties, i.e. its
behavior under conditioning. We develop these in this section.

1.1. Gaussian preliminaries. We recall the following facts concerning Gaussian
vectors.

Lemma 1.1. If Z = (X,Y) is a centered Gaussian vector then X̂Y := E[X|Y]

is a Gaussian random variable, and X̂Y = TY for a deterministic matrix T . If
det(RY Y ) 6= 0 then T = RXYR

−1
Y Y .

Proof. Assume first that det(RY Y ) 6= 0. Set W = X − TY. Then, since TY is a
linear combination of entries of Y and since Z is Gaussian, we have that (W,Y) is
a (centered) Gaussian vector. Now,

E(WY) = RXY − TRY Y = 0 .

Hence, W and Y are independent. Thus, E[W |Y] = EW = 0, and the conclusion
follows from the linearity of the conditional expectation.

In case det(RY Y ) = 0 and Y 6= 0, let Q denote the projection to range(RY Y ), a
subspace of dimension d ≥ 1. Then Y = QY +Q⊥Y = QY since Var(Q⊥Y) = 0.

Changing bases, one thus finds a matrix B with n− d zero rows so that Y = Q̂BY
for some matrix Q̂, and the covariance matrix of the d dimensional vector of non-
zero entries of BY is non-degenerate. Now repeat the first part of the proof using
the non-zero entries of BY instead of Y. �
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1.2. Conditioning via the Green function representation. The Green func-
tion representation allows one to give probabilistic representation for certain con-
ditionings. Recall that {φx}x∈V denotes the GFF associate with g. Let A ⊂ U
and set φA = E[φ|φx, x ∈ A]. Of course, φAx =

∑
z∈A a(x, z)φz for some matrix

{a(x, z)}. We clearly have that for x ∈ A, a(x, y) = 1x=y. On the other hand,
because gA (the restriction of g to A) is non-degenerate, we have from Lemma 1.1,
that for x 6∈ A, a(x, y) =

∑
w∈A g(x,w)g−1A (w, y). It follows that for any y ∈ A,

a(x, y) (as a function of x 6∈ A) is harmonic, i.e.
∑
P (x,w)a(w, y) = a(x, y) for

x 6∈ A. Hence, a satisfies the equations

(1)

{
(I − P )a(x, y) = 0, x 6∈ A ,
a(x, y) = 1{x=y} , x ∈ A .

By the maximum principle, the solution to (1) is unique. On the other hand, one
easily verifies that the function â(x, y) = P x(τA < τ, SτA = y) satisfies (1). Thus,
a = â.

The difference φ̂A = φ− φA is independent of {φx}x∈A (see the proof of Lemma

1.1). What is maybe surprising is that φ̂A can also be viewed as a GFF.

Lemma 1.2. φ̂A is the GFF associated with (P, x0 ∪A).

(Here, we mean that we identify all vertices in x0 ∪A.)

Proof. Let gA denote the Green function restricted to A (i.e., with τA ∧ τ replacing
τ). By the strong Markov property we have

(2) g(x, y) =
∑
y′∈A

a(x, y′)g(y′, y) + gA(x, y) ,

where the last term in the right side of (2) vanishes for y ∈ A. On the other hand,

E(φ̂Ax φ̂
A
x′) = g(x, x′)− E(φxφ

A
x′)− E(φx′φ

A
x ) + EφAx φ

A
x′ .

Note that

Eφxφ
A
x′ =

∑
y∈A

a(x′, y)g(x, y) = g(x′, x)− gA(x′, x)

while

EφAx φ
A
x′ =

∑
y,y′∈A

a(x, y)a(x′, y)g(y, y′)

=
∑
y′∈A

a(x, y′)g(x′, y′) = g(x, x′)− gA(x, x′) .

Substituting, we get E(φ̂Ax φ̂
A
x′) = gA(x, x′), as claimed. �

From the hitting time representation one sees that if A ⊂ V then the law of
{φx}x∈A conditioned on σ(φx : x ∈ Ac) depends only on σ(φx : x ∈ ∂A). This is
the spatial Markov property alluded to above.

2. Dynkin paths measures

Much of the content of this and the next sections is taken from the published
lecture notes of A.-S. Sznitman.
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Let X̃t denote the unit-rate continuous time random walk associated with W ,
that is, take the discrete time random walk {Yn} and make jumps with rate 1. Note
that

Rtf(x) := Exf(X̃t) =
∑
n≥0

e−t
tn

n!
Pnf(x) = et(P−I)f(x)

is a self-adjoint bounded operator on L2(dλ).

Exercise 1. Check that indeed Rt is a self adjoint operator.

Define the density rt(x, y) = 1
λy

(Rt1y)(x).

We add to the process killing, either at hitting of a particular vertex or at a
certain rate at each vertex. That is, we let λx ≥

∑
yWx,y. It will be convenient

to speak of right continuous paths γ with finitely many jumps and a lifetime ξ(γ).
Often, we will take ξ(γ) = τ(x0).

We consider now the measure P tx,y on paths of length t, given by

P tx,y = 1X̃t=y
P x

λy
.

(We always think of the lifetime of the path as t, and whenever convenient extend
the path to an infinite path by making it equal to a cemetery point for s > t. With
this extension, the path is not necessarily right continuous at t.) Note that rt(x, y)
is the total mass of P tx,y. Then, we introduce the measure Px,y on paths of arbitrary
(finite) length by setting

Px,y =

∫ ∞
0

P tx,ydt.

The total mass of Px,y is
∫∞
0
rt(x, y) = g(x, y). The following are simple properties

of Px,y.

Lemma 2.1. For any 0 < t1 < t2 . . . < tn, x1, . . . , xn ∈ V and setting x0 = x, we
have

Px,y(X̃ti = xi, i = 1, . . . , n) = P x(X̃ti = xi, i = 1, . . . , n)g(xn, y)(3)

=

(
n∏
i=1

λxirti−ti−1
(xi−1, xi)

)
· g(xn, y)

Further, if K ⊂ V and ξ is the lifetime of the process then for any set B measurable
wrt σ(X̃s, s ≤ ξ), we have

(4) Ex(g(X̃τK , y)1B∩τK<∞) = Px,y(B ∩ {τK ≤ ξ}).

Finally, if Ti are the successive jumps of X̃ and N denotes the number of jumps of
X̃ strictly before the lifetime ξ then, for n ≥ 1,

Px,y(N = n, X̃Ti = xn, Ti ∈ ti + dti, i = 1, . . . , n, ξ ∈ t+ dt)(5)

=
Wxn,y ·

∏n
i=1Wxi−1,xi

λy ·
∏n
i=1 λxi−1

δxn,y10<t1<...<tn<te
−t ·

n∏
i=1

dti.

The last point of the lemma gives the interpretation of Px,y as the un-normalized
version of the law of the path conditioning on y being the last state visited.
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Proof. We begin with the proof of (3). By definition,

Px,y(X̃ti = xi, i = 1, . . . , n) =

∫ ∞
0

P tx,y(X̃ti = xi, i = 1, . . . , n)

=

∫ ∞
tn

P x(X̃ti = xi, i = 1, . . . , n, X̃t = y))
dt

λy
,

where in the last equality we used the fact that necessarily t > tn. Applying now
the Markov at tn, we obtain that the last term equals∫ ∞

tn

Ex(1X̃ti=xi,i=1,...,nrt−tn(xn, y)dt = P x(X̃ti = xi, i = 1, . . . , n)g(xn, y)),

which is the first equality in (3). The second equality is just the Markov property
of P x.

Turning to the proof of (4), we have

Px,y(B∩τK ≤ ξ) =

∫ ∞
0

P tx,y(B∩{τK ≤ ξ}) =

∫ ∞
0

P x(B∩{τK ≤ t}∩{X̃t = y}) dt
λy
,

where the second equality is due to the definition. Applying the Markov property
at τK , the last expression equals∫ ∞

0

Ex(1B∩{τK≤t} · rt−τK (X̃τK , y)dt = Ex(1B∩{τK<∞} · g(X̃τK , y)dt.

We leave the proof of (5) as an exercise. �

The following are analogues of Kac’s moment formulas, for the measures Px,y.

Lemma 2.2. (1) Let F : V → R and fix n ≥ 0. Then,

(6) Ex,y

(
(

∫ ∞
0

F (X̃s)ds)
n

)
= n!

∑
z

(QF )n(x, z)g(z, y),

where QF (a, b) = g(a, b)F (b)λb.

(2) Let Lx = Lx(∞) (recalling that the process X̃ is killed a.s. at a finite time).
Let xi ∈ V , i = 1, . . . , n. Then, with Sn denoting the set of permutations on n
letters,

(7) Ex,y

(
n∏
i=1

Lxi

)
=
∑
σ∈Sn

g(x, xσ(1))g(xσ(n), y)

n−1∏
i=1

g(xσ(i), xσ(i+1)).

Similarly, if ‖Q|F |‖∞ < 1 then

(8) Ex,y(exp(
∑
z∈V

F (z)Lz)) =
∑
z∈V

(I −GF )−1(x, z)g(z, y).

Proof. Consider Fi : V → R, i = 1, . . . , n. Write

Ex,y(

n∏
i=1

∫ ∞
0

Fi(X̃s)ds) =
∑
σ∈Sn

∫
0<sσ(1)<...<sσ(n)

Ex,yF1(X̃s1) · · ·Fn(X̃sn)ds1 · · · dsn.
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Applying (3), the last expression equals∑
σ∈Sn

∫
0<sσ(1)<...<sσ(n)

∑
xi

rsσ(1)(x, x1)Fσ(1)(x1)λx1

·
n−1∏
i=1

rsσ(i+1)−sσ(i)(xi, xi+1)Fσ(i+1)(xi+1)λxi+1
g(xn, y)dsσ(1) · · · dsσ(n).

Integrating over sσ(n) gives for the last factor
∑
xn
g(xn−1, xn)Fσ(n)(xn)g(xn, y),

and iterating this gives

(9) Ex,y(

n∏
i=1

∫ ∞
0

Fi(X̃s)ds) =
∑
σ∈Sn

QFσ(1) · · ·QFσ(n)g(·, y)(x).

Choosing Fi = F gives then (6).
To see (7), we take Fi = λ−1xi 1xi . In this case, QFi(x, z) = g(x, xi)1z=xi , and

substituting in (9) gives that

Ex,y(

n∏
i=1

Lxi) =
∑
σ∈Sn

g(x, xσ(1))g(xσ(1), xσ(2)) · · · g(xσ(n−1), xσ(n))g(xσ(n), y),

as claimed.
Finally, to obtain (8), we have by expanding the exponential function that

Ex,y(exp(
∑
z∈V

F (z)Lz)) = Ex,y

(∑
n

1

n!

(∫ ∞
0

F

λ
(X̃s)ds

)n)
.

Because ‖G|F ||∞ < 1 one can apply dominated convergence and interchange the
order of summation and Ex,y. Applying (9) then gives that the last expression
equals ∑

n

(GF )ng(·, y)(x),

which equals the claimed expression since
∑
n(GF )n = (I −GF )−1. �

3. Dynkin isomorphism

Recall that we abbreviated Lx = Lx∞. The goal of this section is to prove the
following.

Theorem 3.1 (Dynkin). The field (Lx + 1
2φ

2
x)x∈V under Px,y ⊗ P has the same

law as ( 1
2φ

2
x)x∈V under φxφyP.

Note that the measures in Theorem 3.1 are not probability measures (and φxφyP
is not even a positive measure!). What we mean by law is that for any test function
F ,

(10) Ex,y ⊗ E(F ((Lx +
1

2
φ2x)x∈V )) = E(φxφyF ((

1

2
φ2x)x∈V )).

Proof. The proof is not hard but is somewhat mysterious, as the heart of it is
a computation, which appears in the proof of the following equality of Laplace
transforms.



6 LECTURE 4: DYNKIN ISOMORPHISM THEOREMS

Proposition 3.2. There exists δ > 0 such that for any F : V → R with ‖F‖∞ < δ,
(11)

Ex,y ⊗ E

(
exp

(∑
z∈V

F (z)(Lz +
1

2
φ2z)

))
= E

(
φxφy exp

(∑
z∈V

F (z)(
1

2
φ2z)

))
.

Assuming Proposition 3.2, we show how Theorem 3.1 follows. Let F be given.
Applying Cauchy-Shwartz, we find that for some ε > 0, exp(±ε

∑
z∈V F (z)φ2z/2) is

integrable under |φxφy|P, and therefore, because of (11), so is exp(±ε
∑
z∈V F (z)(Lz+

1
2φ

2
z)) under Px,y ⊗ P. Let D = (−ε, ε) + iR ⊂ C. It follows from this integrability

that the functions f1, f2 : D → C given by

f1(θ) = Ex,y ⊗E(exp(θ
∑
z∈V

F (z)(Lz +
1

2
φ2z)), f2(θ) = E(φxφy exp(θ

∑
z∈V

F (z)φ2z/2))

are analytic on D. Since they are equal for θ ∈ R ∩D, they are equal on D, and
in particular f1(iη) = f2(iη) for η ∈ R. The equality of the characteristic functions
implies then the equality of the laws. �

Proof of Proposition 3.2. Recall from (8) that for F small enough in norm,

(12) Ex,y(exp(
∑
z∈V

F (z)Lz)) = (I −GF )−1g(·, y).

Define the quadratic form

EF (ϕ,ϕ) = E(ϕ,ϕ)−
∑
z∈V

F (z)ϕ2
z = 〈−Lϕ,ϕ〉 − 〈Fϕ,ϕ〉 = 〈(−L− F )ϕ,ϕ.

Since the form E is strictly positive (recall the spectral gap!), there is a δ so that
if ‖F‖∞ < δ then EF is stritcly positive definite. Let PF denote the Gaussian law
with the quadratic form given by EF . The covariance under PF is given by the
matrix

(13) (−L− F )−1 = (I −GF )−1(−L)−1 = (I −GF )−1G.

Therefore, using (12),

(14) PF (φxφy) = (I −GF )−1g(·, y)(x) = Ex,y(exp(
∑
z∈V

F (z)Lz)).

But

(15) PF = P · exp(−1

2

∑
z∈V

φ2zF (z)) · E(exp(
1

2

∑
z∈V

V (z)φ2z))
−1,

and therefore, using (14),

E(φxφy exp(
1

2

∑
z∈V

F (z)φ2z)) = PF (φxφy)E(exp(
1

2

∑
z∈V

F (z)φ2z))

= Ex,y(exp(
∑
z∈V

F (z)Lz))E(exp(
1

2

∑
z∈V

V (z)φ2z))

= Ex,y ⊗ E(exp(
∑
z∈V

F (z)(Lz +
1

2
φ2z))),(16)

as claimed. �
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4. Eisenbaum’s version of the isomorphism theorem

We would like to replace the measures Px,y by the measures Px. Kac’s moment
formula takes then the following form, compare with Lemma 2.2.

Lemma 4.1. (1) Let F : V → R and fix n ≥ 0. Then,

(17) Ex
(

(

∫ ∞
0

F (X̃s)ds)
n

)
= n!

∑
z∈V

(QF )n(x, z).

(2) Let xi ∈ V , i = 1, . . . , n. Then,

(18) Ex

(
n∏
i=1

Lxi

)
=
∑
σ∈Sn

g(x, xσ(1))

n−1∏
i=1

g(xσ(i), xσ(i+1)).

Similarly, if ‖Q|F |‖∞ < 1 then

(19) Ex(exp(
∑
z∈V

F (z)Lz)) =
∑
z∈V

(I −GF )−1(x, z).

We now have the following version of the isomorphism theorem.

Theorem 4.2 (Eisenbaum). Fix x ∈ V, s > 0. Then, the field (Lz+ 1
2 (φz+s)2)z∈V

under P x ⊗ P has the same law as ( 1
2 (φz + s)2)z∈V under (1 + φx/s)P.

(One would like to be able to force s → 0, and recover GRK2. However, this
is not obvious directly because (1 + φx/s)P does not force φx = 0 due to the non-
positivity of the measure. But one could look at P conditioned on φx ∈ (s2, εs),
say, and consider the limit as s→ 0 followed by ε→ 0.)

Proof. It is enough to show that for small F : V → R,

Ex ⊗ P

(
exp

(∑
z∈V

F (z)

(
Lz +

(φz + s)2

2

)))
(20)

= E

((
1 +

φx
s

)
exp

(∑
z∈V

F (z)
(φz + s)2

2

))
.

By (19) we have

(21) Ex

(
exp

(∑
z∈V

F (z)Lz

))
=
∑
z∈V

(I −GF )−1(x, z).

Recall PF , see (15). We turn to computing the right side in (20). Because PF
absorbs the quadratic term

∑
F (z)φ2z in the exponent, we have

E
(
(1 + φx/s) exp

(
1
2

∑
z∈V F (z)(φz + s)2

))
E
(
exp

(
1
2

∑
z∈V F (z)(φz + s)2

))
= 1 +

E
(
φx exp

(
1
2

∑
z∈V F (z)(φz + s)2

))
sE
(
exp

(
1
2

∑
z∈V F (z)(φz + s)2

))
= 1 +

EF
(
φx exp

(
s
∑
z∈V F (z)φz

))
sEF

(
exp

(
s
∑
z∈V F (z)φz

)) .(22)

The following identity involving Laplace transforms is somewhat opaque.



8 LECTURE 4: DYNKIN ISOMORPHISM THEOREMS

Lemma 4.3. Let (X,Y ) be a two dimensional centered Gaussian vector. Then,
for anyy s 6= 0,

(23) E(XY ) =
E(X exp(sY ))

sE(exp(sY ))
.

We postpone the proof of Lemma 4.3. Applying it with X = φx and Y =∑
z∈V F (z)φz and the Gaussian measure PF , and recalling that EFφxφy = (−L−

F )−1(x, y) = (I −GF )−1G, see (13), we see that the right side of (22) equals

1 +EF
(
φx
∑
z∈V

F (z)φz

)
= 1 +

∑
z∈V

F (z)EF (φxφz) = 1 +
∑
z∈V

(I −GF )−1GF (x, z).

Since (I−GF )−1 = (I−GF )−1(I−GF+GF ) = I+(I−GF )−1GF , substituting in
the last expression we get that the right side of (22) equals

∑
z∈V (I−GF )−1(x, z),

i.e. the right side of (21). Rearranging gives the claim. �

Proof of Lemma 4.3. This is a Laplace computation. We have that

E(etX+sY ) = eE(tX+sY )2/2 = et
2EX2/2+s2EY 2/2+stE(XY ).

Differentiate in t and set t = 0 to obtain

E(XesY ) = sE(XY )es
2EY 2/2 = E(XY )EesY ,

as claimed. �


