
LECTURE 3: APPLICATION TO COVER TIMES - BOUNDS

We discuss an application of the generalized Ray-Knight theorem to the study
of cover times. In the setup of Lecture 1, we define the cover time as the first time
that all vertices have been covered:

tcov = inf{t : `y(t) > 0 for all y ∈ V }.
A-priori, the cover time does depend on the starting point.

We first prove the Matthew bound, an a-priori upper bound on the cover time.
We next show how the generalized second Ray-Knight theorem gives directly upper
bounds on the cover time. Finally, we discuss an extension of the generalized second
Ray-Knight theorem to a metric extension of V , which yields complimentary lower
bounds.

A further discussion of the relation between cover time and Gaussian fields will
hopefully be given in a subsequent lecture.

1. The Matthew bound

We discuss in this section the discrete random walk on G. We will not use the
fact that the chain is reversible, so in this section we simply declare {Xn}n≥0 to be
a Markov chain with finite state space S. We set

Tcov = min{n : {X0, . . . , Xn} = S}.
Let τx = min{n : Xn = x} denote the hitting time of x. Let H(x, y) = Ex(τy)

denote the expected hitting time of y when starting at x. Let hmax = maxi,j H(i, j).

Theorem 1.1 (Matthew).

(1) max
x∈S

ExTcov ≤ hmax ·
|S|∑
k=1

1

k
.

Proof. It is convenient to identify S with {1, . . . , N}. Let σ denote a random
permutation of S. Define Bi = {τσ(i) > maxj<i τσ(j)}, i.e. σ(i) is visited last
among σ(1), . . . , σ(j). Note that Bi is measurable on Gi := σ(Xt, t ≤ maxj<i τσj

).
Also, since σ is random, P (Bi) = 1/i.

For a subset Q ⊂ S, we set τQ = maxi∈Q τi. Now,

(2) τ{σ(1),...,σ(i)} = τ{σ(1),...,σ(i−1)} + 1BiRi

where Ri = τ{σ(1),...,σ(i)} − τ{σ(1),...,σ(i−1)}. Note that E[Ri|Gi−1] ≤ hmax, and
therefore, since Bi is measurable on Gi−1,

E[Ri1Bi
] = E[E[Ri1Bi

|Gi−1]] ≤ hmaxP (Bi) =
hmax

i
.

Combining the last display with (2) and summing, one obtains the claim. �

Remark 1.2. The bound is particularly effective if hmax is not too far from H(i, j)
for “most” j 6= i. This is e.g. the case in the classical coupon collector problem
(i.e., where G is the complete graph and all weights equal 1).
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Exercise 1. Derive a version of Matthew’s bound for continuous time chains with
unit rate of jump at each state (i.e., qxx = 1 for all x ∈ S).

Exercise 2. Using Matthew’s bound, show that for SRW on the two dimensional
torus of side N , ETcov ≤ n2(log n)2.

2. An upper bound on cover times via RK2

We return to the setting of continuous time chains on a finite graphs with a
distinguish vertex x0. We introduce a slightly different notion of cover time, namely

τcov = min{u > 0 : `x(θu) > 0,∀x ∈ V }.

In words, every vertex of V has been visited before a local time of u has been
accumulated at the origin. While this definition seems unrelated to tcov, we will
later see that one can transfer estimates between the two.

Fix now t and suppose that at time θt, there exists a vertex x so that `x(θt) = 0.
For that x, the left side of the GRK2 theorem is

(3) `x(θt) +
1

2
φ2
x =

1

2
φ2
x.

Note that x depends only on the Markov chain, not on the GFF.
Fix ε > 0. Assume that t is such that

(4) P (∃x : `x(θt) = 0) = P (τcov > t) > ε.

Let Ḡ = maxxG(x, x). Fix K = K(ε) so that

(5) max
x∈V

P (
1

2
φ2
x > K(ε)Ḡ) ≤ ε/2.

(By Gaussian scalling, K(ε) does not depend on |V | or on the graph structure.)
Combining the last display with (3) and (4), we get that for this t,

(6) P (∃x ∈ V : `x(θt) +
1

2
φ2
x < K(ε)Ḡ) >

ε

2
.

Now we use the GRK2 theorem: the left side of (6) equals

(7) P (∃x ∈ V :
1

2
(φx +

√
2t)2 < K(ε)Ḡ)

and therefore, the expression in (7) is larger than ε/2. On the other hand, if
t > K(ε)Ḡ then

P (∃x ∈ V : (φx +
√

2t)2 < 2K(ε)Ḡ) ≤ P (min
x∈V

φx < −
√

2t+
√

2K(ε)Ḡ)

= P (max
x∈V

φx >
√

2t−
√

2K(ε)Ḡ) =: Q(t, ε).

In particular, if t is chosen such that Q(t, ε) < ε/2 one obtains a contradiction. We
have just proved:

Proposition 2.1. Fix ε > 0 and let K(ε) be as in (5). If t is chosen so that

P (max
x∈V

φx >
√

2t−
√

2K(ε)Ḡ) < ε/2

then

P (τcov > t) < ε.
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Before moving on, we are going to use a general Gaussian tool to make the
estimate of Proposition 2.1 more explicit. Let M := Emaxv∈V φx. Recall that by
the Borell–Tsirelson-Ibragimov-Sudakov inequality,

P (max
v∈V

φx > M + y) ≤ 2e−y
2/2Ḡ.

Substituting this in Proposition 2.1 gives the following.

Theorem 2.2. There exists a universal function C(ε) so that

P (
√

2τcov > Emax
v∈V

φx + C(ε)
√
Ḡ) < ε.

Exercise 3. Instead of using Borell’s inequality, use the inequality

P ((φx +
√

2t)2 < 2K(ε)Ḡ) ≤ P (φx < −
√

2t+
√

2K(ε)Ḡ) ≤ Ce−(
√

2t−
√
K(ε)Ḡ)2/2Ḡ

and a union bound to deduce a bound of the form

P (τcov > Ḡ log |V |+ C(ε)Ḡ
√

log |V |) < ε.

One may wonder what is the relation between τcov and tcov. Luckily, this is not
hard to evaluate. Indeed, let T0 denote the time it takes the Markov chain to leave
x0 and then return time to x0. By a variant of Kac’s lemma, ET0 = 1/(λ0px0) where
px0 is the stationary distribution of the chain, and (as can be checked from detailed
balance), px0

= 1/|V |. On the other hand, the time spent during one excursion at
x0 has mean 1/λx0

. To accumulate local time t at the origin thus is expected to
require tλ0 such excursions, which are expected to take tλ0 · |V |/λ0 = t|V |. Thus,
one expects that tcov ∼ τcov · |V |.

To make the above precise requires some concentration. The main tool is the
following lemma. Let G̃0 denote the Green function of the walk killed when hitting
x0

Lemma 2.3 (Kac moment formula). For x 6= x0,

ExT 2
0 = 2

∑
z 6=x0

(G̃ · G̃)(x, z).

Proof. We have that

ExT 2
0 = Ex(

∫ ∞
0

1s<T0
ds)2 = Ex

∫ ∞
0

∫ ∞
0

1s<T0
1t<T0

dsdt

= 2Ex
∫ ∞

0

∫ ∞
t

1s<T01t<T0dsdt

= 2

∫ ∞
0

∫ ∞
0

∑
w∈U

P̃ x(Xt = w)P̃w(s < T0)dsdt

= 2
∑
z 6=x0

(G̃ · G̃)(x, z),

where P̃ is the law of the process killed upon hitting x0. �

In particular, if t0hit := maxx∈U E
x(T0) then

(8) Ex(T 2
0 ) ≤ 2Ex(T0) · t0hit.
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Let T i0 denote the successtive return times to x0, which form an iid sequence.
Write T i0 = τ i0 + Si0 where τ i0 are the escape times from x0; τ i0 are iid exponential
with parameter λx0 . Fix N . Then,

E((

N∑
i=1

T i0)2) = N2E(T0)2 +N
(
E((T0)2)− (ET0)2

)
.

However, using (8),

ES2
0 =

∑
z∈V

λx0,z

λx0

Ez(S2
0) ≤ 2E(S0) · t0hit.

It follows that

ET 2
0 − (ET0)2 = E(S2

0)− (ES0)2 + Eτ2
0 − (Eτ0)2 ≤ 1

λ2
0

+ ES0(t0hit − ES0).

It follows that

P

(∣∣∣∣∣
∑N
i=1 T

i
0

NET0
− 1

∣∣∣∣∣ > δ

)
≤ 1

δ2N

(
1

λ2
0

+
2t0hit
ES0

)
.

In particular, if t0hit � λ0τcovET0 = τcov|V | then, taking N = τcovλ0, one con-

cludes (using the steps described above) that tcov ∼ τcov|V |.

Exercise 4. Fill in the details to show that t0hit � tcov then tcov ∼ τcov|V |.

3. A remark on positivity

Consider Brownian motion Bt and let T1 = min{t : Bt = 1}. We have the
following.

Lemma 3.1. Almost surely, Lx(T1) > 0 for any x ∈ [0, 1).

That the claim is true for fixed x is obvious from the downcrossing representation.
The point is that we claim this to be true for all x at once (and not merely for
almost every x).

The claim follows at once from the first Ray-Knight theorem:

Theorem 3.2 (First Ray-Knight theorem). Let Lx,a(t) be the local time of Brow-
nian motion started at a > 0 and let W (2) denote a two dimensional Brownian
motion started at 0. Let T0 = min{t : Bt = 0}. Then

{Lx,a(T0)}x∈[0,a]}
d
= {|W (2)

x |2}x∈[0,a].

Indeed, Lemma 3.1 follows by noting that 0 is polar for the two dimensional
Brownian motion.

The proof of RK1 is not hard, given the downcrossing representation, see the
Mörters-Peres book. We provide instead a sketch of an alternative proof of Lemma
3.1 that avoids the use of RK1. Recall that by the second Ray-Knight theorem
gave that Lx(θu) is a BESQ0(

√
u) process, denoted Qx. Since Qx > 0 for x < X0

and Qx = 0 for x ≥ X0, it follows that Lx(θu) is positive on [0, X0). We claim that
X0 = maxt≤θu Bt =: X1. Indeed, clearly X1 ≥ X0. If X1 > X0 then Lx(θu) = 0 on
(X0, X1), which implies by the integral representation that the occupation measure
of (X0, X1) vanishes. This is impossible for Brownian motion since it is continuous
almost surely and hits X1. From here, the proof of Lemma 3.1 is not far.
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4. Generalized second Ray-Knight theorem on metric graphs

We return to the discrete setup of Lecture 1. We now replace each edge (x, y)

by an interval of length Wx,y, and thus obtain a metric space V̂ . Note that V is

naturally embedded in V̂ . The construction follows T. Lupu.
We now define a Brownian motion on V̂ . Some care is needed in the construction;

one way is to use Ito’s excursion construction of Brownian motion. Another is to
divide each edge to intervals of length 1/N , attach to each a weight Wx,y ·N , and

consider the random walk with these weights on V̂ , and finally take weak limits.
In what follows, we use Bt to denote the Brownian motion on V̂ . Let Ti be the

successive hitting times of V by {Bt}: T0 = 0 and Ti+1 = inf{t > Ti : Bt ∈ V,Bt 6=
XTi
}. For t ≥ 0, let At = max{Ti : Ti ≤ t} and set Xt = BAt

.

Lemma 4.1. Conditioned on XTi−1 = x, the local time L̂x(Ti)− L̂x(Ti−1) is expo-
nentially distributed with parameter Wx. Further,

P (XTi
= y|XTi−1

= x) =
Wxy

Wx
.

Proof. We use the representation as a weak limit of random walks: conditioned
on exiting x in the direction of y, the probability of completing the excursion
before returning to x is 1/N . The number of excursions on the (x, y) edge needed
before completion of a full excursion is Geometric with parameter N . Since by
construction one choses the (x, y) edge with probability Wx,y/Wx, one immediately

obtains the second claim. To see the claim concerning L̂x(Ti) − L̂x(Ti−1), let Ny
denote the number of excursions on the (x, y) edge needed before y is hit. Then

the total time accumulated at x before hitting y is
∑Ny

i=1Ei(x, y) where Ei(x, y) are

iid exponentials of parameter NWxy, which can be written as (NWx,y)−1Êi(x, y)

where Êi(x, y) are iid exponential of parameter 1. Thus, the running time before a
succesful excursion occurs is

1

NWxy

Ny∑
i=1

Êi(x, y)
d→ Ex,y ∼ Exp(Wxy).

Finally, L̂x(Ti)−L̂x(Ti−1), conditioned on XTi−1
= x, is distributed as miny 6=x Ex,y,

which is exponential of parameter Wx. �

Thus, the process {Xt}t≥0 is a continuous time Markov chain on V with rate
matrix W .

The Brownian motion on V̂ has local times, which we denote {L̂x(t)}x∈V̂ . The
construction is essentially the same as for Brownian motion.

Recall that the downcrossing representation of local time of Brownian motion
implied that L̂0(T1) is exponentially distributed. Using a similar argument, one
shows the following.

Exercise 5. The process {L̂x(Ti)}x∈V,i∈Z+
has the same law as the process

{`x(Ti)}x∈V,i∈Z+
. Further, defining θu(B) and θu(X) in the natural way, we have

that

{L̂x(θu(B))}x∈V
d
= {`x(θu(X))}x∈V .

An important observation, consequence of Lemma 3.1, is that if L̂z(θu) > 0 for
z = x and z = y and the edge (x, y) has been traversed by the random walk then

L̂z(θu) > 0 for z ∈ (x, y).
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To complete our discussion of the Brownian motion on the metric graph, we

should discuss the GFF φ̂x there. It is not hard to see that conditioned on {φ̂x}x∈V ,

we have that {φ̂z}z∈(x,y) has the law of a Brownian bridge of length Wx,y, with

endpoints (φ̂(z), φ̂(y)). The GRK2 theorem now reads

(9) {L̂z(θu) +
1

2
(φ̂′z)

2}z∈V̂
d
= {1

2
(φ̂z +

√
2u)2}z∈V̂ .

Here φ̂′ is a copy of the GFF independent of the Brownian motion B.

5. Consequences for cover times

We follow the ideas of A. Zhai. Use the left side of (9) to define a GFF φ in two

steps: first, define Mu = |φ̂−
√

2u| using the formula, then sample the sign of Mu

according to the conditional law.
By construction, if Mu vanishes anywhere along a edge (x, y) then necessary

L̂(θu) vanishes there. By the positivity claim, this means that the edge (x, y) was

not traversed. We thus conclude that necessarily, all vertices where L̂z(θu) > 0

(which are a connected set!) satisfy that the sign of φ̂z +
√

2t is the same; in

particular, since the vertices with L̂z(θu) > 0 belong to a connected cluster of x0,

necessarily φ̂z +
√

2t > 0 there. Thus we have constructed a coupling between
L̂z(θu) and the GFF φ which has the following property: if Lz(θu) > 0 for all

z ∈ V , then φ̂z +
√

2t > 0, i.e. minz∈V φz > −
√

2t. In particular, we have shown
that

P (τcov < t) ≤ P (max
z∈V

φz <
√

2t).

Exercise 6. (*) Derive the sharpest upper and lower probability bound (e.g. expo-
nential tails) you can on cover times. You can express bounds in terms of relevant
bounds on the GFF, which you do not need to prove.


