MATH-UA 377 Differential Geometry: Gauss-Bonnet Theorem

Deane Yang
Courant Institute of Mathematical Sciences
New York University

May 5, 2022

START RECORDING LIVE TRANSCRIPTION

Rectangular 2-Manifold With Boundary

- A rectangular 2-manifold M with boundary consists of a set M and an atlas of coordinate charts $\Phi: R \rightarrow M$, where $R=[0,1] \times[0,1]$, such that if Φ and Ψ are coordinate charts, then the maps

$$
\Phi^{-1} \circ \Psi, \Psi^{-1} \circ \Phi: R \rightarrow R
$$

are bijective and C^{1}

- The boundary of M is

$$
\begin{aligned}
\partial M & =\Phi((\{0,1\} \times[0,1]) \cup([0,1] \times\{0,1\})) \\
& =c_{1} \cup c_{2} \cup c_{3} \cup c_{4}
\end{aligned}
$$

Orientations of M and ∂M

- An orientation of M is an orientation on $T_{p} M$ for each $p \in M$
- A nowhere zero 2-form Θ uniquely determines an orientation on M
- A basis $\left(b_{1}, b_{2}\right)$ of $T_{p} M$ has positive orientation if

$$
\left\langle b_{1} \otimes b_{2}, \Theta(p)\right\rangle
$$

- If $\left(u^{1}, u^{2}\right) \in R$ denote coordinates on M, then $d u^{1} \wedge d u^{2}$ determines an orientation, where $\left(\partial_{1} \Phi, \partial_{2} \Phi\right)$ has positive orientation
- Any coordinate chart $\psi:[0,1] \times[0,1] \rightarrow M$ preserves orientation if the Jacobian of $\Phi^{-1} \circ \Psi$ has positive determinant
- Orientation on ∂M is compatible with the one on M if, given a vector v_{1} tangent to ∂M and a vector v_{2} that points into $M,\left(v_{1}, v_{2}\right)$ is a positively oriented frame for M

Stokes' Theorem

Theorem
If θ is a $C^{1} 1$-form on an oriented rectangular 2-manifold with boundary, then

$$
\int_{M} d \theta=\int_{\partial M} \theta
$$

Oriented Orthonormal Frame on Riemanian Rectangular 2-Manifold

- M be an oriented rectangular 2-manifold with a Riemannian metric g
- Let $\left(e_{1}, e_{2}\right)$ be a positively oriented orthonormal frame on M
- Let $\left(\omega^{1}, \omega^{2}\right)$ be the dual frame
- Let $\omega_{2}^{1}=-\omega_{1}^{2}$ be the connection 1-form

Change of Frame on Local 2-Manifold

- Let $\left(e_{1}, e_{2}\right)$ be an oriented orthonormal frame with dual frame $\left(\omega^{1}, \omega^{2}\right)$
- Let $\left(f_{1}, f_{2}\right)$ be the frame rotated counterclockwise by angle α relative to $\left(e_{1}, e_{2}\right)$
- Therefore,

$$
\begin{aligned}
& f_{1}=e_{1} \cos \alpha+e_{2} \sin \alpha \\
& f_{2}=-e_{1} \sin \alpha+e_{2} \cos \alpha,
\end{aligned}
$$

- If $\left(\omega^{1}, \omega^{2}\right)$ is the dual frame of $\left(e_{1}, e_{2}\right)$ and $\left(\eta^{1}, \eta^{2}\right)$ is the dual frame of $\left(f_{1}, f_{2}\right)$, then

$$
\begin{aligned}
& \omega^{1}=(\cos \alpha) \eta^{1}-(\sin \alpha) \eta^{2} \\
& \omega^{2}=(\sin \alpha) \eta^{1}+(\cos \alpha) \eta^{2}
\end{aligned}
$$

- The connection 1 -forms and the angle α satisfy

$$
\omega_{2}^{1}=\eta_{2}^{1}+d \alpha
$$

Change of Angle Along Curve

- Let

$$
\begin{aligned}
& \alpha_{0}=\text { counterclockwise angle from } e_{1}(c(0)) \text { to } c^{\prime}(0) \\
& \alpha_{1}=\text { counterclockwise angle from } e_{1}(c(1)) \text { to } c^{\prime}(1)
\end{aligned}
$$

- By the Fundamental Theorem of Calculus,

$$
\begin{aligned}
\int_{c} \omega_{2}^{1} & =\int_{c} \eta_{2}^{1}+d \alpha \\
& =\int_{t=0}^{t=1}\left\langle\eta_{2}^{1}+d \alpha, c^{\prime}(t)\right\rangle d t \\
& =\int_{t=0}^{t=1}\left\langle\eta_{2}^{1}, c^{\prime}(t) d t+\int_{t=0}^{t=1} \alpha^{\prime}(t) d t\right. \\
& =-\int_{t=0}^{t=1} \kappa_{g} \sigma d t+\alpha_{1}-\alpha_{0}
\end{aligned}
$$

Change in Angles at Vertices

- Angles: For each $1 \leq k \leq 4$,

$$
\begin{aligned}
\alpha_{k, 0} & =\text { angle from } e_{1}\left(c_{k}(0)\right) \text { to } c_{k}^{\prime}(0) \\
\alpha_{k, 1} & =\text { angle from } e_{1}\left(c_{k}(1)\right) \text { to } c_{k}^{\prime}(1) \\
\theta_{k} & =\text { angle from } c_{k}^{\prime}(1) \text { to } c_{k+1}^{\prime}(0), \text { where } c_{5}=c_{1}
\end{aligned}
$$

- Therefore,

$$
\begin{aligned}
\theta_{1} & =\alpha_{2,0}-\alpha_{1,1} \\
\theta_{2} & =\alpha_{3,0}-\alpha_{2,1} \\
\theta_{3} & =\alpha_{4,0}-\alpha_{3,1} \\
\theta_{4} & =\left(2 \pi+\alpha_{1,0}\right)-\alpha_{4,0}
\end{aligned}
$$

Integral of Connection 1-Form Around Boundary of M

$$
\begin{aligned}
& \int_{\partial M} \omega_{2}^{1}+\kappa_{g} d s \\
& =\alpha_{11}-\alpha_{10}+\alpha_{21}-\alpha_{20}+\alpha_{31}-\alpha_{30}+\alpha_{41}-\alpha_{40} \\
& =-\left(\left(\alpha_{20}-\alpha_{11}\right)+\left(\alpha_{30}-\alpha_{21}\right)+\left(\alpha_{40}-\alpha_{31}\right)+\left(\alpha_{10}-\alpha_{41}\right)\right) \\
& =-\left(\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}-2 \pi\right) \\
& =2 \pi-\left(\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right)
\end{aligned}
$$

Integral of Connection 1-Form Around Boundary

- Interior angle: $\beta_{k}=\pi-\theta_{k}$

$$
\begin{aligned}
\int_{c}\left(\omega_{2}^{1}+\kappa_{g} d t\right) & =2 \pi-\left(\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right) \\
& =2 \pi-\left(4 \pi-\beta_{1}-\beta_{2}-\beta_{3}-\beta_{4}\right) \\
& =-2 \pi+\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}
\end{aligned}
$$

Gauss-Bonnet Theorem for Riemannian Rectangular 2-Manifold

- Given an oriented Riemannian rectangular 2-manifold M with boundary,

$$
\int_{S} K d A+\int_{C} \kappa_{g} d t=-2 \pi+\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}
$$

where K is the Gauss curvature, κ_{g} is the geodesic curvature, and $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ are the interior angles at the vertices

- Although frame and connection form are needed for proof, they do not appear in the theorem
- Everything in formula is defined globally on M

Shapes by Gluing Rectangles

$$
\partial R=c_{1} \cup c_{2} \cup c_{3} \cup c_{4}
$$

$\partial C=c_{2} \cup c_{4}$

$\partial T=\emptyset$

Triangle by Gluing Rectangles

Triangulation of Sphere \Longrightarrow Rectangulation of Sphere

$$
\begin{gathered}
S=T_{1} \cup T_{2} \cup T_{3} \cup T_{4} \cup T_{5} \cup T_{6} \cup T_{7} \cup T_{8} \\
\partial S=\emptyset
\end{gathered}
$$

Geodesic Curvature Independent of Orientation

- Let $c:[a, b] \rightarrow M$ be an oriented curve and $\tilde{c}:[b, a] \rightarrow M$ be the same curve with the opposite orientation
- If $\left(f_{1}, f_{2}\right)$ is an adapted oriented orthonormal frame along c, then the geodesic curvature of c is

$$
\kappa_{g}=f_{2} \cdot f_{1}^{\prime}
$$

- The frame $\left(\tilde{f}_{1}, \tilde{f}_{2}\right)=\left(-f_{1},-f_{2}\right)$ has the same orientation in M as $\left(f_{1}, f_{2}\right)$ and therefore is an adapted oriented frame along \tilde{c}
- The geodesic curvature of \tilde{c} is therefore

$$
\tilde{\kappa}_{g}=\tilde{f}_{2} \cdot \tilde{f}_{1}^{\prime}=\left(-f_{2}\right) \cdot\left(-f_{1}\right)^{\prime}=f_{2} \cdot f_{1}^{\prime}=\kappa_{g}
$$

- Therefore,

$$
\int_{\tilde{c}} \tilde{\kappa}_{g}=-\int_{c} \kappa_{g}
$$

Closed Riemannian 2-Manifold

- Edge of a rectangular 2-manifold can be glued to an edge of another rectangular 2-manifold if
- The edges have the same length
- The geodesic curvature, as a function of arclength, is the same on both edges
- A closed 2-manifold is a finite collection of rectangular 2-manifolds satisfying the following:
- Each edge of a rectangular manifold is glued to another edge of a rectangular manifold
- At each vertex, the sum of the interior angles is 2π
- An orientation on a closed 2-manifold is an orientation on each rectangle such that each edge has two opposite orientations

Towards Gauss-Bonnet for a Closed Surface

Each edge is in boundary of two rectangles

Sum of angles at each vertex
$=2 \pi$

- Let M be a closed surface and

$$
\begin{aligned}
& F=\text { number of faces (rectangles) } \\
& E=\text { number of edges } \\
& V=\text { number of vertices }
\end{aligned}
$$

- Since each face has 4 edges, and each edge is counted twice,

$$
2 E=4 F \quad \Longrightarrow F=F-E
$$

- If $\beta_{1,1}, \ldots, \beta_{N, 4}$ are all interior angles, then

$$
\beta_{1}+\cdots+\beta_{N}=2 \pi V
$$

Gauss-Bonnet on a Closed Surface

- Consider a rectangulated closed 2-manifold $M=R_{1} \cup \cdots \cup R_{F}$
- Gauss-Bonnet for rectangular 2-manifolds \Longrightarrow

$$
\begin{aligned}
\int_{M} K d A & =\sum_{k=1}^{N} \int_{R_{k}} K d A \\
& =\sum_{k=1}^{F}\left(\int_{\partial R_{k}} \kappa_{g} d t+\beta_{k, 1}+\beta_{k, 2}+\beta_{k, 3}+\beta_{k, 4}-2 \pi\right) \\
& =2 \pi V-2 \pi F \\
& =2 \pi(V-E+F)
\end{aligned}
$$

Consequences of Gauss-Bonnet

- Given any two Riemannian metrics on a closed 2-manifold M,

$$
\int_{M} K_{1} d A_{1}=\int_{M} K_{2} d A_{2}
$$

- Given any two rectangulations of a closed 2-manifold M,

$$
V_{1}-E_{1}+F_{1}=V_{2}-E_{2}+F_{2}
$$

- Define the Euler characteristic of M to be

$$
\chi(M)=V-E+F=\frac{1}{2 \pi} \int_{M} K d A
$$

- It depends on neither the Riemannian metric nor the rectangulation
- It therefore is a topological invariant

Gauss-Bonnet Theorem for a Polygonal Surface

- Let M be a surface parameterized by a polygon P with N edges
- Let $\theta_{1}, \ldots, \theta_{N}$ be the exterior angles at the vertices
- The interior angles are therefore $\beta_{j}=\pi-\theta_{j}, 1 \leq j \leq N$
- The Gauss-Bonnet theorem says:

$$
\begin{aligned}
\int_{M} K d A & =-\int_{\partial P} \kappa_{g} d t+2 \pi-\left(\theta_{1}+\cdots+\theta_{N}\right) \\
& =-\int_{\partial P} \kappa_{g} d t+2 \pi-\left(\pi-\beta_{1}+\cdots+\pi-\beta_{N}\right) \\
& =-\int_{\partial P} \kappa_{g} d t+(2-N) \pi+\beta_{1}+\cdots+\beta_{N}
\end{aligned}
$$

Decomposition of Surface into Polygonal Surfaces

- $M=P_{1} \cup \cdots \cup P_{F}$, where
- P_{k} is parameterized by a polygon with E_{k} sides
- $\beta_{k, 1}, \ldots, \beta_{k, E_{k}}$ are interior angles
- $P_{j} \cap P_{k}$ is a union of edges and vertices of P_{j} and P_{k}
- The number of edges and faces must satisfy

$$
2 E=\sum_{k=1}^{F} E_{k}
$$

- The sum of all interior angles of all vertices must satisfy

$$
\sum_{k=1}^{F} \sum_{j=1}^{E_{k}} \beta_{k, j}=2 \pi V
$$

- The sum of the integrals of geodesic curvature along the edges must add to zero

Gauss-Bonnet Theorem

- Gauss-Bonnet for a polygonal surface with N edges

$$
\int_{P} K d A=-\int_{\partial P} \kappa_{g} d t+(2-N) \pi+\sum_{j=1}^{N} \beta_{j}
$$

- Therefore,

$$
\begin{aligned}
\int_{M} K d A & =\sum_{k=1}^{F} \int_{P_{k}} K d A \\
& =\sum_{k=1}^{F}\left(-\int_{\partial P_{k}} \kappa_{g} d t+\left(2-E_{k}\right) \pi+\sum_{j=1}^{E_{k}} \beta_{k, j}\right) \\
& =2 \pi(F-E+V)
\end{aligned}
$$

