MATH-UA 377 Differential Geometry:

 Riemannian metricOrthonormal Frame
Uniqueness of Connection 1-Form
Adapted Orthonormal Frame for Curve in Surface Geodesic Curvature

Deane Yang

Courant Institute of Mathematical Sciences
New York University

April 28, 2022

START RECORDING LIVE TRANSCRIPTION

Local 2-Manifold and Associated Bundles

- A local C^{k} 2-manifold consists of the following:
- A set S
- An atlas of C^{k} coordinate maps $\Phi: D \rightarrow S$
- Tangent bundle $T_{*} S$
- $T_{p} S$ is the vector space of velocity vectors of curves passing through p
- A vector field V assigns to each $p \in S$ a tangent vector $V(p) \in T_{p} S$
- Cotangent bundle $T^{*} S$
- $T_{p}^{*} S=\left(T_{p} S\right)^{*}$ is the vector space of 1-tensors of $T_{p} S$
- A 1-form θ assigns to each $p \in S$ a 1-tensor $\theta(p) \in T_{p}^{*} S$
- Exterior 2-tensor bundle $\Lambda^{2} T^{*} S$
- $\Lambda^{2} T_{p}^{*} S$ is the vector space of exterior 2-tensors on $T_{p} S$
- A 2-form Θ assigns to each $p \in S$ an exterior 2-tensor $\Theta(p) \in \Lambda^{2} T_{p}^{*} S$
- Symmetric 2-tensor bundle $S^{2} T^{*} S$
- $S^{2} T_{p}^{*} S$ is the vector space of symmetric 2-tensors of $T_{p} S$
- A symmetric 2 -tensor field h assigns to each $p \in S$ a symmetric 2 -tensor $h(p) \in S^{2} T_{p}^{*} S$

Orientation of a Local 2-Manifold

- An orientation on a local 2-manifold is an orientation on $T_{p} S$ that depends continuously on p
- An orientation can be specified using a frame (v_{1}, v_{2}) of vector fields
- $\left(v_{1}(p), v_{2}(p)\right)$ has positive orientation on $T_{p} S$
- An orientation can also be specified by a nowhere vanishing 2-form Θ on S
- A basis $\left(v_{1}, v_{2}\right)$ of $T_{p} S$ has positive orientation if

$$
\left\langle v_{1} \otimes v_{2}, \Theta(p)\right\rangle>0
$$

- If $\left(e_{1}, e_{2}\right)$ is a positively oriented frame, and $\left(\omega^{1}, \omega^{2}\right)$ is the dual frame, then $\omega^{1} \wedge \omega^{2}$ is also positively oriented

Riemannian Metric on Local 2-Manifold

- A Riemannian metric g on a local 2-manifold S is a positive definite symmetric 2-tensor field
- At each point $p \in S, g(p)$ defines a dot product on $T_{p} S$
- A tangent vector $v \in T_{p} S$ has a length $|v|$, where

$$
|v|^{2}=g(p)(v, v)
$$

- Two tangent vectors $v, w \in T_{p} S$ have an angle θ between them, where

$$
g(p)(v, w)=|v||w| \cos \theta
$$

- The length of a curve $c: I \rightarrow S$ is

$$
\ell=\int_{I}\left|c^{\prime}(t)\right| d t
$$

- Example: First fundamental form of a local surface $S \subset \mathbb{E}^{3}$
- $g(p)$ is the dot product on \mathbb{V}^{3} restricted to $T_{p} S$

Riemannian Metric With Respect to Coordinates

- Let $\Phi: D \rightarrow S$ be a coordinate map
- Denote the coordinates on D by $\left(u^{1}, u^{2}\right)$
- Let $\left(\partial_{1}, \partial_{2}\right)$ be the standard basis of $\widehat{\mathbb{R}}^{2}$
- Let $\left(d u^{1}, d u^{2}\right)$ be the dual basis
- Given $p=\Phi\left(u^{1}, u^{2}\right), v=v^{1} \partial_{1}+v^{2} \partial_{2}, w=w^{1} \partial_{1}+w^{2} \partial_{2}$,

$$
\begin{aligned}
g(p)(v, w)= & g(p)\left(v^{1} \partial_{1}+v^{2} \partial_{2}, w^{1} \partial_{1}+w^{2} \partial_{2}\right) \\
= & v^{1} w^{1} g(p)\left(\partial_{1}, \partial_{1}\right)+v^{1} w^{2} g(p)\left(\partial_{1}, \partial_{2}\right) \\
& +v^{2} w^{1} g(p)\left(\partial_{2}, \partial_{1}\right)+v^{2} w^{2} g(p)\left(\partial_{2}, \partial_{2}\right) \\
= & g_{11}\langle v \otimes w, d u \otimes d u\rangle+g_{12}\left\langle v \otimes w, d u^{1} \otimes d u^{2}\right\rangle \\
& +g_{21}\left\langle v \otimes w, d u^{2} \otimes d u^{1}+g_{22}\left\langle v \otimes w, d u^{2} \otimes d u^{2}\right\rangle\right. \\
= & \left\langle v \otimes w, g_{j k} d u^{j} \otimes d u^{k}\right\rangle
\end{aligned}
$$

where

$$
g_{j k}=g\left(\partial_{j}, \partial_{k}\right)
$$

Orthonormal Frame of an Oriented Local 2-Manifold

- Let S be an oriented local 2-manifold with a Riemannian metric g
- A frame $\left(e_{1}, e_{2}\right)$ is an adapted orthonormal frame, if
- $\left(e_{1}(p), e_{2}(p)\right)$ has positive orientation on $T_{p} S$
- $\left(e_{1}(p), e_{2}(p)\right)$ is an orthonormal basis for the dot product $g(p)$

$$
\begin{aligned}
& g(p)\left(e_{1}(p), e_{1}(p)\right)=g(p)\left(e_{2}(p), e_{2}(p)\right)=1 \\
& g(p)\left(e_{1}(p), e_{2}(p)\right)=g(p)\left(e_{2}(p), e_{1}(p)\right)=0
\end{aligned}
$$

- If $\left(\omega^{1}, \omega^{2}\right)$ is the dual frame, then
- $\omega^{1} \wedge \omega^{2}$ has positive orientation
- The metric can be written as

$$
g=\omega^{1} \otimes \omega^{1}+\omega^{2} \otimes \omega^{2}
$$

because

$$
\begin{aligned}
g\left(v^{1} e_{1}+v^{2} e_{2}, w^{1} e_{1}+w^{2} e_{2}\right) & =v^{1} w^{1}+v^{2} w^{2} \\
& =\left\langle v \otimes w, \omega^{1} \otimes \omega^{1}+\omega^{2} \otimes \omega^{2}\right\rangle
\end{aligned}
$$

Connection 1-Form

- Given an orthonormal coframe $\left(\omega^{1}, \omega^{2}\right)$, there is a unique 1 -form $\omega_{2}^{1}=-\omega_{1}^{2}$ such that

$$
\begin{align*}
& d \omega^{1}+\omega_{2}^{1} \wedge \omega^{2}=0 \\
& d \omega^{2}+\omega_{1}^{2} \wedge \omega^{1}=0 \tag{1}
\end{align*}
$$

- Proof
- Suppose

$$
\begin{aligned}
d \omega^{1} & =a \omega^{1} \wedge \omega^{2} \\
d \omega^{2} & =b \omega^{2} \wedge d \omega^{1}
\end{aligned}
$$

- If

$$
\omega_{2}^{1}=p \omega^{1}+q \omega^{2},
$$

then

$$
\begin{aligned}
& d \omega^{1}+\omega_{2}^{1} \wedge \omega^{2}=(a+p) \omega^{1} \wedge \omega^{2} \\
& d \omega^{2}+\omega_{1}^{2} \wedge \omega^{1}=(b-q) \omega^{2} \wedge \omega^{1}
\end{aligned}
$$

- It follows that equations (1) hold if and only if $p=-a$ and $q=b$

Gauss Curvature

- $d \omega_{2}^{1}$ is a 2 -form on S and therefore a scalar multiple of $\omega^{1} \wedge \omega^{2}$
- The Gauss curvature of S is the scalar function K such that

$$
d \omega_{2}^{1}=K \omega^{1} \wedge \omega^{2}
$$

Back to Surface in \mathbb{E}^{3}

- Let g be the first fundamental form
- Let $\left(e_{1}, e_{2}, e_{3}\right)$ be the adapted frame and $\left(\omega^{1}, \omega^{2}, \omega^{2}\right)$ the dual frame
- Recall that there are 1 -forms $\omega_{k}^{j}=-\omega_{j}^{k}$ such that

$$
\begin{aligned}
d e_{1} & =e_{2} \omega_{1}^{2}+e_{3} \omega_{1}^{3} \\
d e_{2} & =e_{1} \omega_{2}^{1}+e_{3} \omega_{2}^{3} \\
d e_{3} & =e_{1} \omega_{3}^{1}+e_{2} \omega_{3}^{2}
\end{aligned}
$$

- These forms satisfy the structure equations, which include

$$
\begin{aligned}
& d \omega^{1}+\omega_{2}^{1} \wedge \omega^{2}=0 \\
& d \omega^{2}+\omega_{1}^{2} \wedge \omega^{1}=0 \\
& d \omega_{2}^{1}+\omega_{3}^{1} \wedge \omega_{2}^{3}=0
\end{aligned}
$$

- Compare this to the orthonormal frame, dual frame, structure equations for a Riemannian metric on a local 2-manifold

Surface in \mathbb{E}^{3} as a Local Riemannian 2-Manifold

- $\left(e_{1}, e_{2}\right),\left(\omega^{1}, \omega^{2}\right)$ are the same
- ω_{2}^{1} is the same connection 1-form
- Recall that the second fundamental form can be written as a symmetric matrix II, where

$$
\begin{aligned}
\omega_{1}^{3} & =\mathrm{II}_{11} \omega^{1}+\mathrm{II}_{12} \omega^{2} \\
\omega_{2}^{3} & =\mathrm{II}_{21} \omega^{1}+\mathrm{II}_{22} \omega^{2}
\end{aligned}
$$

- Since $d \omega_{2}^{1}+\omega_{3}^{1} \wedge \omega_{2}^{3}=0$,

$$
\begin{aligned}
d \omega_{2}^{1} & =\omega_{1}^{3} \wedge \omega_{2}^{3} \\
& =\left(\mathrm{I}_{11} \omega^{1}+\mathrm{II}_{12} \omega^{2}\right) \wedge\left(\mathrm{II}_{21} \omega^{1}+\mathrm{II}_{22} \omega^{2}\right) \\
& =\left(\mathrm{I}_{11} \mathrm{II}_{22}-\mathrm{II}_{12} \mathrm{II}_{21}\right) \omega^{1} \wedge \omega^{2} \\
& =(\operatorname{det} \mathrm{II}) \omega^{1} \wedge \omega^{2}
\end{aligned}
$$

- Since $d \omega_{2}^{1}=K \omega^{1} \wedge \omega^{2}$, the Gauss curvature K for a surface in \mathbb{E}^{3} satisfies

$$
K=\operatorname{det} I I
$$

Curve in an Oriented Surface in \mathbb{E}^{3}

- Consider a unit speed curve $c: I \rightarrow S \subset \mathbb{E}^{3}$
- There is a unique orthonormal frame $\left(f_{1}, f_{2}, f_{3}\right)$ along the curve such that
- $f_{1}=c^{\prime}$
- $\left(f_{1}, f_{2}\right)$ is a positively oriented frame on S
- f_{3} is a positively oriented unit normal for S
- Since $f_{1} \cdot c^{\prime \prime}=f_{1} \cdot f_{1}^{\prime}=0$, there are scalar functions κ_{g} and κ_{n} such that

$$
c^{\prime \prime}=\kappa_{g} f_{2}+\kappa_{n} f_{3},
$$

where

$$
\kappa=\left|f_{1}^{\prime}\right|=\sqrt{\kappa_{g}^{2}+\kappa_{n}^{2}}
$$

is the curvature of c as a curve in \mathbb{E}^{3}

Structure Equations for Curve in Oriented Surface

- If $\left(\eta^{1}, \eta^{2}, \eta^{3}\right)$ is the dual frame and η_{k}^{j} the connection 1 -forms, then

$$
\begin{aligned}
c^{\prime \prime} & =f_{1}^{\prime} \\
& =\left\langle c^{\prime}, d f_{1}\right\rangle \\
& =\left\langle c^{\prime}, f_{2} \eta_{1}^{2}+f_{3} \eta_{1}^{3}\right\rangle \\
& =f_{2}\left\langle c^{\prime}, \eta_{1}^{2}\right\rangle+f_{3}\left\langle c^{\prime}, \eta_{1}^{3}\right\rangle
\end{aligned}
$$

- The normal curvature $\kappa_{n}=\left\langle c^{\prime}, \eta_{1}^{3}\right\rangle$
- Measures how fast c^{\prime} is turning toward f_{3}
- Depends only on the second fundamental form in the direction c^{\prime}
- The geodesic curvature $\kappa_{g}=\left\langle c^{\prime}, \eta_{1}^{2}\right\rangle$
- Measures how fast c^{\prime} is turning toward f_{2}
- Depends only on the Riemannian metric and its connection 1-form

Geodesic Curvature of a Curve in an Oriented Riemannian Local 2-Manifold

- Given a unit speed curve c in an oriented Riemannian Local 2-Manifold S, there is a unique positively oriented orthonormal frame $\left(f_{1}, f_{2}\right)$ such that $f_{1}=c^{\prime}$
- Let $\left(\eta^{1}, \eta^{2}\right)$ be the dual frame and $\eta_{2}^{1}=-\eta_{1}^{2}$ the connection 1-form
- Define the geodesic curvature of c to be the function

$$
\kappa_{g}(t)=\left\langle c^{\prime}(t), \eta_{1}^{2}\right\rangle
$$

