MATH-UA 377 Differential Geometry: Riemannian metric Orthonormal Frame Uniqueness of Connection 1-Form Adapted Orthonormal Frame for Curve in Surface Geodesic Curvature

Deane Yang

Courant Institute of Mathematical Sciences New York University

April 28, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

START RECORDING LIVE TRANSCRIPTION

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへ⊙

Local 2-Manifold and Associated Bundles

- ► A local *C^k* 2-manifold consists of the following:
 - A set S
 - An atlas of C^k coordinate maps $\Phi: D \to S$
- Tangent bundle T_*S
 - *T_pS* is the vector space of velocity vectors of curves passing through *p*
 - A vector field V assigns to each $p \in S$ a tangent vector $V(p) \in T_pS$
- Cotangent bundle T*S
 - $T_p^*S = (T_pS)^*$ is the vector space of 1-tensors of T_pS
 - A 1-form θ assigns to each $p \in S$ a 1-tensor $\theta(p) \in T_p^*S$
- Exterior 2-tensor bundle $\Lambda^2 T^*S$
 - $\Lambda^2 T_p^* S$ is the vector space of exterior 2-tensors on $T_p S$
 - A 2-form Θ assigns to each $p \in S$ an exterior 2-tensor $\Theta(p) \in \Lambda^2 T_p^* S$
- Symmetric 2-tensor bundle S^2T^*S
 - $S^2 T_p^* S$ is the vector space of symmetric 2-tensors of $T_p S$
 - ► A symmetric 2-tensor field *h* assigns to each $p \in S$ a symmetric 2-tensor $h(p) \in S^2 T_p^* S$

Orientation of a Local 2-Manifold

- An orientation on a local 2-manifold is an orientation on T_pS that depends continuously on p
- An orientation can be specified using a frame (v₁, v₂) of vector fields

• $(v_1(p), v_2(p))$ has positive orientation on T_pS

 An orientation can also be specified by a nowhere vanishing 2-form Θ on S

• A basis (v_1, v_2) of $T_p S$ has positive orientation if

$$\langle v_1 \otimes v_2, \Theta(p) \rangle > 0$$

If (e₁, e₂) is a positively oriented frame, and (ω¹, ω²) is the dual frame, then ω¹ ∧ ω² is also positively oriented

Riemannian Metric on Local 2-Manifold

- A Riemannian metric g on a local 2-manifold S is a positive definite symmetric 2-tensor field
- ▶ At each point $p \in S$, g(p) defines a dot product on T_pS
 - A tangent vector $v \in T_p S$ has a length |v|, where $|v|^2 = g(p)(v, v)$
 - ► Two tangent vectors $v, w \in T_p S$ have an angle θ between them, where

$$g(p)(v,w) = |v||w|\cos\theta$$

• The length of a curve $c: I \rightarrow S$ is

$$\ell = \int_I |c'(t)| \, dt$$

Example: First fundamental form of a local surface S ⊂ E³
 g(p) is the dot product on V³ restricted to T_pS

Riemannian Metric With Respect to Coordinates

- Let $\Phi: D \rightarrow S$ be a coordinate map
- Denote the coordinates on D by (u^1, u^2)
- Let (∂_1, ∂_2) be the standard basis of $\widehat{\mathbb{R}}^2$
- Let (du^1, du^2) be the dual basis
- Given $p = \Phi(u^1, u^2)$, $v = v^1 \partial_1 + v^2 \partial_2$, $w = w^1 \partial_1 + w^2 \partial_2$,

$$\begin{split} g(p)(v,w) &= g(p)(v^1\partial_1 + v^2\partial_2, w^1\partial_1 + w^2\partial_2) \\ &= v^1w^1g(p)(\partial_1, \partial_1) + v^1w^2g(p)(\partial_1, \partial_2) \\ &+ v^2w^1g(p)(\partial_2, \partial_1) + v^2w^2g(p)(\partial_2, \partial_2) \\ &= g_{11}\langle v \otimes w, du \otimes du \rangle + g_{12}\langle v \otimes w, du^1 \otimes du^2 \rangle \\ &+ g_{21}\langle v \otimes w, du^2 \otimes du^1 + g_{22}\langle v \otimes w, du^2 \otimes du^2 \rangle \\ &= \langle v \otimes w, g_{jk} du^j \otimes du^k \rangle \end{split}$$

where

$$g_{jk} = g(\partial_j, \partial_k)$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへぐ

Orthonormal Frame of an Oriented Local 2-Manifold

- Let S be an oriented local 2-manifold with a Riemannian metric g
- A frame (e_1, e_2) is an adapted orthonormal frame, if
 - $(e_1(p), e_2(p))$ has positive orientation on T_pS
 - $(e_1(p), e_2(p))$ is an orthonormal basis for the dot product g(p)

$$g(p)(e_1(p), e_1(p)) = g(p)(e_2(p), e_2(p)) = 1$$

$$g(p)(e_1(p), e_2(p)) = g(p)(e_2(p), e_1(p)) = 0$$

- If (ω^1, ω^2) is the dual frame, then • $\omega^1 \wedge \omega^2$ has positive orientation
 - The metric can be written as

$$g=\omega^1\otimes\omega^1+\omega^2\otimes\omega^2$$

because

$$g(v^{1}e_{1} + v^{2}e_{2}, w^{1}e_{1} + w^{2}e_{2}) = v^{1}w^{1} + v^{2}w^{2}$$
$$= \langle v \otimes w, \omega^{1} \otimes \omega^{1} + \omega^{2} \otimes \omega^{2} \rangle$$

Connection 1-Form

Given an orthonormal coframe (ω¹, ω²), there is a unique 1-form ω₂¹ = −ω₁² such that

$$egin{array}{ll} d\omega^1+\omega_2^1\wedge\omega^2=0\ d\omega^2+\omega_1^2\wedge\omega^1=0 \end{array}$$

Suppose

$$d\omega^1 = a \, \omega^1 \wedge \omega^2$$

 $d\omega^2 = b \, \omega^2 \wedge d\omega^1$

► If

$$\omega_2^1 = p\,\omega^1 + q\,\omega^2,$$

then

$$d\omega^{1} + \omega_{2}^{1} \wedge \omega^{2} = (a+p)\omega^{1} \wedge \omega^{2}$$
$$d\omega^{2} + \omega_{1}^{2} \wedge \omega^{1} = (b-q)\omega^{2} \wedge \omega^{1}$$

► It follows that equations (1) hold if and only if p = -a and q = b

Gauss Curvature

dω¹₂ is a 2-form on S and therefore a scalar multiple of ω¹ ∧ ω²
 The Gauss curvature of S is the scalar function K such that

$$d\omega_2^1 = K\omega^1 \wedge \omega^2$$

Back to Surface in \mathbb{E}^3

- Let g be the first fundamental form
- Let (e₁, e₂, e₃) be the adapted frame and (ω¹, ω², ω²) the dual frame
- ▶ Recall that there are 1-forms $\omega_k^j = -\omega_j^k$ such that

$$de_{1} = e_{2}\omega_{1}^{2} + e_{3}\omega_{1}^{3}$$
$$de_{2} = e_{1}\omega_{2}^{1} + e_{3}\omega_{2}^{3}$$
$$de_{3} = e_{1}\omega_{3}^{1} + e_{2}\omega_{3}^{2}$$

These forms satisfy the structure equations, which include

$$d\omega^{1} + \omega_{2}^{1} \wedge \omega^{2} = 0$$

$$d\omega^{2} + \omega_{1}^{2} \wedge \omega^{1} = 0$$

$$d\omega_{2}^{1} + \omega_{3}^{1} \wedge \omega_{2}^{3} = 0$$

Compare this to the orthonormal frame, dual frame, structure equations for a Riemannian metric on a local 2-manifold

Surface in \mathbb{E}^3 as a Local Riemannian 2-Manifold

- (e_1, e_2) , (ω^1, ω^2) are the same
- ω_2^1 is the same connection 1-form
- Recall that the second fundamental form can be written as a symmetric matrix II, where

$$\omega_1^3 = II_{11}\omega^1 + II_{12}\omega^2$$
$$\omega_2^3 = II_{21}\omega^1 + II_{22}\omega^2$$
$$\blacktriangleright \text{ Since } d\omega_2^1 + \omega_3^1 \wedge \omega_2^3 = 0,$$
$$d\omega_2^1 = \omega_1^3 \wedge \omega_2^3$$
$$= (II_{11}\omega^1 + II_{12}\omega^2) \wedge (II_{21}\omega^1 + II_{22}\omega^2)$$
$$= (II_{11}II_{22} - II_{12}II_{21})\omega^1 \wedge \omega^2$$
$$= (\det II)\omega^1 \wedge \omega^2$$

Since dω₂¹ = Kω¹ ∧ ω², the Gauss curvature K for a surface in ℝ³ satisfies

$$K = \det \Pi$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Curve in an Oriented Surface in \mathbb{E}^3

• Consider a unit speed curve $c: I \to S \subset \mathbb{E}^3$

There is a unique orthonormal frame (f₁, f₂, f₃) along the curve such that

•
$$f_1 = c'$$

• (f_1, f_2) is a positively oriented frame on S

• f_3 is a positively oriented unit normal for S

Since $f_1 \cdot c'' = f_1 \cdot f_1' = 0$, there are scalar functions κ_g and κ_n such that

$$c'' = \kappa_g f_2 + \kappa_n f_3,$$

where

$$\kappa = |f_1'| = \sqrt{\kappa_g^2 + \kappa_n^2}$$

is the curvature of c as a curve in \mathbb{E}^3

Structure Equations for Curve in Oriented Surface

 If (η¹, η², η³) is the dual frame and η^j_k the connection 1-forms, then

$$egin{aligned} c'' &= f_1' \ &= \langle c', df_1
angle \ &= \langle c', f_2 \eta_1^2 + f_3 \eta_1^3
angle \ &= f_2 \langle c', \eta_1^2
angle + f_3 \langle c', \eta_1^3
angle \end{aligned}$$

• The normal curvature $\kappa_n = \langle c', \eta_1^3 \rangle$

- Measures how fast c' is turning toward f_3
- Depends only on the second fundamental form in the direction c'
- The geodesic curvature $\kappa_g = \langle c', \eta_1^2 \rangle$
 - Measures how fast c' is turning toward f₂
 - Depends only on the Riemannian metric and its connection 1-form

Geodesic Curvature of a Curve in an Oriented Riemannian Local 2-Manifold

- Given a unit speed curve c in an oriented Riemannian Local 2-Manifold S, there is a unique positively oriented orthonormal frame (f₁, f₂) such that f₁ = c'
- Let (η^1, η^2) be the dual frame and $\eta^1_2 = -\eta^2_1$ the connection 1-form
- Define the geodesic curvature of c to be the function

$$\kappa_{g}(t) = \langle c'(t), \eta_{1}^{2}
angle$$