MATH-UA 377 Differential Geometry: Local 2-Manifold Atlas of Coordinate Charts Tangent and Cotangent Bundles Riemannian metric Adapted Orthonormal Frame

Deane Yang
Courant Institute of Mathematical Sciences
New York University

April 26, 2022

START RECORDING LIVE TRANSCRIPTION

Local 2-Manifold

- A local 2-manifold consists of the following:
- A set S
- A bijective map

$$
\Phi: D \rightarrow S,
$$

where D is an open subset of \mathbb{R}^{2}

- Another bijective map $\Psi: D^{\prime} \rightarrow S$, where $D^{\prime} \subset \mathbb{R}^{2}$ is open, is a compatible C^{k} coordinate map, if the maps

$$
\begin{aligned}
\Psi^{-1} \circ \Phi: D & \rightarrow D^{\prime} \\
\Phi^{-1} \circ \Psi: D^{\prime} & \rightarrow D
\end{aligned}
$$

are both C^{k} maps

- The set of all compatible C^{k} coordinate maps is called the maximal atlas of S
- Combination of S with a C^{k} maximal atlas is called a C^{k} local 2-manifold

Curves

- A map $c: I \rightarrow S$, where I is a connected open interval, is a C^{k} curve if, for any coordinate map $\Phi: D \rightarrow S$, the map

$$
\Phi^{-1} \circ c: I \rightarrow D \subset \mathbb{R}^{2}
$$

is a C^{k} map

- If this holds for one C^{k} coordinate map, it holds for any other one
- Follows by the chain rule

Tangent Space is Space of Velocity Vectors

- The tangent space at $p \in S$ is defined to be the space of all possible velocity vectors of curves
- Given $p \in S$ and a coordinate map $\Phi: D \rightarrow S$ such that $\Phi(0)=p$, there is a map

$$
\Phi_{*}: \widehat{\mathbb{R}}^{2} \rightarrow T_{p} S
$$

- If $\hat{v} \in \widehat{\mathbb{R}}^{2}$, let $\hat{c}: I \rightarrow D$ be a curve such that $\hat{c}(0)=0$ and $\hat{c}^{\prime}(0)=\hat{v}$ and define

$$
\Phi_{*} \hat{v}=(\Phi \circ \hat{c})^{\prime}(0)
$$

- Conversely, given $v \in T_{p} S$, there is a C^{k} curve $c: I \rightarrow S$ such that $c(0)=p$ and $c^{\prime}(0)=v$
- If $\hat{v}=\left(\Phi^{-1} \circ c\right)^{\prime}(0)$, then $\Phi_{*} \hat{v}=v$
- Let $\Phi_{*}^{-1}=\left(\Phi_{*}\right)^{-1}: T_{p} S \rightarrow \widehat{\mathbb{R}}^{2}$

Tangent Space is a Vector Space

- If $\Psi: D^{\prime} \rightarrow S$ is another coordinate map, then

$$
\begin{aligned}
\Psi_{*}^{-1} \circ \Phi_{*}: \widehat{\mathbb{R}}^{2} & \rightarrow \widehat{\mathbb{R}}^{2} \\
\hat{v}=\hat{c}^{\prime}(0) & \mapsto\left(\Psi^{-1} \circ \Phi \circ \hat{c}\right)^{\prime}(0)
\end{aligned}
$$

is linear

- There is a unique vector space structure on $T_{p} S$ such that Φ_{*} is a linear isomorphism for each coordinate map $\Phi: D \rightarrow S$

Tangent Bundle

- Tangent Bundle of S is the disjoint union of tangent spaces

$$
T_{*} S=\coprod_{p \in S} T_{p} S
$$

- Every element of $T_{p} S$ is a tangent vector v in the tangent space of a point $p \in S$
- If $p \neq q$, then $T_{p} S \cap T_{q} S=\emptyset$
- A vector field is a map $V: S \rightarrow T_{*} S$ such that $V(p) \in T_{p} S$ for every $p \in S$
- If $\Phi: D \rightarrow S$ is a coordinate map, there is a map

$$
\begin{aligned}
\Phi_{*}: D \times \widehat{\mathbb{R}}^{2} & \rightarrow T_{*} S \\
(u, \hat{v}) & \mapsto \Phi_{*} v \in T_{\Phi(u)} S
\end{aligned}
$$

Cotangent Bundle

- Cotangent Bundle of S is the disjoint union of cotangent spaces

$$
T^{*} S=\coprod_{p \in S} T_{p}^{*} S
$$

- Every element of $T_{p}^{*} S$ is a cotangent vector θ in the cotangent space of a point $p \in S$
- If $p \neq q$, then $T_{p}^{*} S \cap T_{q}^{*} S=\emptyset$
- A 1-form is a map $\theta: S \rightarrow T^{*} S$ such that $\theta(p) \in T_{p}^{*} S$ for every $p \in S$
- If $\Phi: D \rightarrow S$ is a coordinate map, there is a map

$$
\begin{aligned}
\Phi^{*}: T^{*} S & \rightarrow D \times\left(\widehat{\mathbb{R}}^{2}\right)^{*} \\
(p, \theta) & \mapsto\left(\Phi^{-1}(p), \Phi^{*} \theta\right)
\end{aligned}
$$

Orientation of a Local 2-Manifold

- An orientation on a local 2-manifold is an orientation on $T_{p} S$ that depends continuously on p
- A frame $\left(v_{1}, v_{2}\right)$ of vector fields on a local 2-manifold S defines an orientation

Bundle of Symmetric 2-Tensors

- Recall that $S^{2} V^{*}$ is the vector space of symmetric 2-tensors over a vector space V
- Bundle of symmetric 2-tensors over S is the disjoint union of symmetric 2-tensors over tangent spaces

$$
S^{2} T^{*} S=\coprod_{p \in S} S^{2} T_{p}^{*} S
$$

- Every element of $S^{2} T_{p}^{*} S$ is a a symmetric 2-tensor over the vector space $T_{p} S$
- If $p \neq q$, then $S^{2} T_{p}^{*} S \cap S^{2} T_{q}^{*} S=\emptyset$
- A symmetric 2-tensor field is a map $t: S \rightarrow S^{2} T^{*} S$ such that $t(p) \in S^{2} T_{p}^{*} S$ for every $p \in S$
- If $\Phi: D \rightarrow S$ is a coordinate map, there is a map

$$
\begin{aligned}
\Phi^{*}: S^{2} T^{*} S & \rightarrow D \times S^{2}\left(\widehat{\mathbb{R}}^{2}\right)^{*} \\
(p, t) & \mapsto\left(\Phi^{-1}(p), \Phi^{*} t\right),
\end{aligned}
$$

where $S^{2}\left(\widehat{\mathbb{R}}^{2}\right)^{*}$ is the space of symmetric 2-by-2 matrices

Dot Product on a Vector Space

- Recall that a dot product on a vector space is a positive definite symmetric 2-tensor
- $g: V \times V \rightarrow \mathbb{R}$
- $g\left(v_{1}+v_{2}, w\right)=g\left(v_{1}, w\right)+g\left(v_{2}, w\right)$ and $g\left(v, w_{1}+w_{2}\right)=g\left(v, w_{1}\right)+g\left(v, w_{2}\right)$
- $g(c v, w)=g(v, c w)=c g(v, w)$
- $g(w, v)=g(v, w)$
- $g(v, v)>0$ if $v \neq 0$
- Examples on $\widehat{\mathbb{R}}^{2}$
$\rightarrow g\left(\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle\right)=x_{1} x_{2}+y_{1} y_{2}$
- $g\left(\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle\right)=2 x_{1} x_{2}+3 y_{1} y_{2}$
- $g\left(\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle\right)=x_{1} x_{2}+x_{1} y_{2}+x_{2} y_{1}+2 y_{1} y_{2}$
- Non-examples on $\widehat{\mathbb{R}}^{2}$
$\rightarrow g\left(\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle\right)=x_{1} x_{2}-y_{1} y_{2}$
- $g\left(\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle\right)=x_{1} y_{2}+x_{2} y_{1}$
$-g\left(\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle\right)=x_{1} x_{2}$
- Given a dot product g, there exists a basis $\left(e_{1}, e_{2}\right)$ such that

$$
g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=1 \text { and } g\left(e_{1}, e_{2}\right)=g\left(e_{2}, g_{1}\right)=0
$$

Riemannian Metric on Local 2-Manifold

- A Riemannian metric g on a local 2-manifold S is a positive definite symmetric 2-tensor field
- If $p \in S$, then $g(p) \in S^{2} T_{p}^{*}$ and

$$
g_{p}(v, v)>0, \text { if } v \neq 0
$$

- Each tangent space $T_{p} S$ has its own dot product
- Example: Euclidean space \mathbb{E}^{2}
- $T_{p} \mathbb{E}^{2}=\mathbb{V}^{2}$
- Dot product on $T_{p} \mathbb{E}^{2}$ is the dot product on \mathbb{V}^{2}
- Example: First fundamental form of a local surface $S \subset \mathbb{E}^{3}$
- The dot product on each $T_{p} S \subset \mathbb{V}^{3}$ is the dot product on \mathbb{V}^{3} restricted to $T_{p} S$

Hyperbolic Plane

- Given $p_{0} \in \mathbb{E}^{2}$, let S be the open unit disk centered at p_{0},

$$
S=\left\{p \in \mathbb{E}^{2}:\left|p-p_{0}\right|<1\right\}
$$

- Given $v, w \in \mathbb{V}^{2}$, let $v \cdot w$ be the Euclidean dot product
- The hyperbolic metric is the Riemannian metric g given by

$$
g(p)(v, w)=\frac{4(v \cdot w)}{1-\left|p-p_{0}\right|^{2}}
$$

- Negatively curved analogue of the unit sphere
- No way to visualize it in Euclidean 3-space

