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Local 2-Manifold

I A local 2-manifold consists of the following:
I A set S
I A bijective map

Φ : D → S ,

where D is an open subset of R2

I Another bijective map Ψ : D ′ → S , where D ′ ⊂ R2 is open, is
a compatible C k coordinate map, if the maps

Ψ−1 ◦ Φ : D → D ′

Φ−1 ◦Ψ : D ′ → D

are both C k maps

I The set of all compatible C k coordinate maps is called the
maximal atlas of S

I Combination of S with a C k maximal atlas is called a C k

local 2-manifold



Curves

I A map c : I → S , where I is a connected open interval, is a
C k curve if, for any coordinate map Φ : D → S , the map

Φ−1 ◦ c : I → D ⊂ R2

is a C k map
I If this holds for one C k coordinate map, it holds for any other

one
I Follows by the chain rule



Tangent Space is Space of Velocity Vectors

I The tangent space at p ∈ S is defined to be the space of all
possible velocity vectors of curves

I Given p ∈ S and a coordinate map Φ : D → S such that
Φ(0) = p, there is a map

Φ∗ : R̂2 → TpS ,

I If v̂ ∈ R̂2, let ĉ : I → D be a curve such that ĉ(0) = 0 and
ĉ ′(0) = v̂ and define

Φ∗v̂ = (Φ ◦ ĉ)′(0)

I Conversely, given v ∈ TpS , there is a C k curve c : I → S such
that c(0) = p and c ′(0) = v

I If v̂ = (Φ−1 ◦ c)′(0), then Φ∗v̂ = v

I Let Φ−1
∗ = (Φ∗)

−1 : TpS → R̂2



Tangent Space is a Vector Space

I If Ψ : D ′ → S is another coordinate map, then

Ψ−1
∗ ◦ Φ∗ : R̂2 → R̂2

v̂ = ĉ ′(0) 7→ (Ψ−1 ◦ Φ ◦ ĉ)′(0)

is linear

I There is a unique vector space structure on TpS such that Φ∗
is a linear isomorphism for each coordinate map Φ : D → S



Tangent Bundle

I Tangent Bundle of S is the disjoint union of tangent spaces

T∗S =
∐
p∈S

TpS

I Every element of TpS is a tangent vector v in the tangent
space of a point p ∈ S

I If p 6= q, then TpS ∩ TqS = ∅
I A vector field is a map V : S → T∗S such that V (p) ∈ TpS

for every p ∈ S

I If Φ : D → S is a coordinate map, there is a map

Φ∗ : D × R̂2 → T∗S

(u, v̂) 7→ Φ∗v ∈ TΦ(u)S



Cotangent Bundle

I Cotangent Bundle of S is the disjoint union of cotangent
spaces

T ∗S =
∐
p∈S

T ∗p S

I Every element of T ∗p S is a cotangent vector θ in the
cotangent space of a point p ∈ S

I If p 6= q, then T ∗p S ∩ T ∗q S = ∅
I A 1-form is a map θ : S → T ∗S such that θ(p) ∈ T ∗p S for

every p ∈ S

I If Φ : D → S is a coordinate map, there is a map

Φ∗ : T ∗S → D × (R̂2)∗

(p, θ) 7→ (Φ−1(p),Φ∗θ)



Orientation of a Local 2-Manifold

I An orientation on a local 2-manifold is an orientation on TpS
that depends continuously on p

I A frame (v1, v2) of vector fields on a local 2-manifold S
defines an orientation



Bundle of Symmetric 2-Tensors
I Recall that S2V ∗ is the vector space of symmetric 2-tensors

over a vector space V
I Bundle of symmetric 2-tensors over S is the disjoint union of

symmetric 2-tensors over tangent spaces

S2T ∗S =
∐
p∈S

S2T ∗p S

I Every element of S2T ∗p S is a a symmetric 2-tensor over the
vector space TpS

I If p 6= q, then S2T ∗p S ∩ S2T ∗q S = ∅
I A symmetric 2-tensor field is a map t : S → S2T ∗S such that

t(p) ∈ S2T ∗p S for every p ∈ S
I If Φ : D → S is a coordinate map, there is a map

Φ∗ : S2T ∗S → D × S2(R̂2)∗

(p, t) 7→ (Φ−1(p),Φ∗t),

where S2(R̂2)∗ is the space of symmetric 2-by-2 matrices



Dot Product on a Vector Space
I Recall that a dot product on a vector space is a positive

definite symmetric 2-tensor
I g : V × V → R
I g(v1 + v2,w) = g(v1,w) + g(v2,w) and

g(v ,w1 + w2) = g(v ,w1) + g(v ,w2)
I g(cv ,w) = g(v , cw) = cg(v ,w)
I g(w , v) = g(v ,w)
I g(v , v) > 0 if v 6= 0

I Examples on R̂2

I g(〈x1, y1〉, 〈x2, y2〉) = x1x2 + y1y2

I g(〈x1, y1〉, 〈x2, y2〉) = 2x1x2 + 3y1y2

I g(〈x1, y1〉, 〈x2, y2〉) = x1x2 + x1y2 + x2y1 + 2y1y2

I Non-examples on R̂2

I g(〈x1, y1〉, 〈x2, y2〉) = x1x2 − y1y2

I g(〈x1, y1〉, 〈x2, y2〉) = x1y2 + x2y1

I g(〈x1, y1〉, 〈x2, y2〉) = x1x2

I Given a dot product g , there exists a basis (e1, e2) such that

g(e1, e1) = g(e2, e2) = 1 and g(e1, e2) = g(e2, g1) = 0



Riemannian Metric on Local 2-Manifold

I A Riemannian metric g on a local 2-manifold S is a positive
definite symmetric 2-tensor field

I If p ∈ S , then g(p) ∈ S2T ∗p and

gp(v , v) > 0, if v 6= 0

I Each tangent space TpS has its own dot product

I Example: Euclidean space E2

I TpE2 = V2

I Dot product on TpE2 is the dot product on V2

I Example: First fundamental form of a local surface S ⊂ E3

I The dot product on each TpS ⊂ V3 is the dot product on V3

restricted to TpS



Hyperbolic Plane

I Given p0 ∈ E2, let S be the open unit disk centered at p0,

S = {p ∈ E2 : |p − p0| < 1}

I Given v ,w ∈ V2, let v · w be the Euclidean dot product

I The hyperbolic metric is the Riemannian metric g given by

g(p)(v ,w) =
4(v · w)

1− |p − p0|2

I Negatively curved analogue of the unit sphere

I No way to visualize it in Euclidean 3-space


