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Oriented Surface in Oriented Euclidean 3-Space

by

b3

» Let E3 be Euclidean space with an orientation (by, by, b3)

» Let S C E3 be a parameterized surface with coordinate map
®:D—>S

> A parameterized surface is always orientable, because
(019, 02®) is an orientation on T,S for each p = ®(u?, u?)

» An orientation on T,S uniquely determines a unit normal
n(p) at each p € S and vice versa

> (019, 0o®) has positively orientation on T,S if and only if
(019,029, n) is positively oriented on V3



Adapted Oriented Orthonormal Frame on S C [E3

» (e1, e, €3) is an adapted oriented orthonormal frame on S if
foreach pe S,
> (e1(p), e2(p), e3(p)) is positively oriented on V3
> (ei(p), e2(p)) is positively oriented on T,5

» For each p € S, let 7,5 be the set of all oriented orthonormal
bases of T,S

» For each frame (er, &) € F,S, there is a unique oriented
orthonormal basis (er, e, e3) of V3

» The oriented orthonormal frame bundle of S is
F.S§ = disjoint union of F,S forall pe S
» A moving orthonormal frame of S is a map

E = (e1,e,€3): S — F.S such that E(p) € F,S



Gauss Map of an Oriented Surface

» The Gauss map of an oriented surface S C E3 is defined to be

7:5—>V3

p — positively oriented unit normal to 7,5

» If (e1, e) is an oriented orthonormal frame on S, then
(e1, e, 7) is an oriented orthonormal frame on E3



The Weingarten Map

» Given p€ S and v € T,S, the directional derivative of

v:S = V3is
Dvy(p) = % - v(c(t)) e V3 = /!i—n?o (et + h)lz - V(C(t))’

where ¢(0) = p and ¢’(0) = v
» Sincev-v=1,
d

0=
dt

(v(c(2))(e(1))) = 27(19)-% ~ e(t)) = 27D,

t=0 0

which implies that D,v(p) € T,S

» Therefore, at each p € S, we can define the differential of the
Gauss map to be

dy(p): TS — T,S
v = Dyy(p)

» This is the Weingarten map



Example: Sphere of Radius R

» The sphere of radius R centered at py € E3 is
S={peE®: (p—p) (p—p) =R}
» Recall that p — pp is an outward normal vector to T,S and
therefore, the Gauss map is given by
P—Po _ P—Po
lp — pol R

v(p) =

and the tangent space at p is

T,S={veV®: v.y(p)=0}



Weingarten Map of Sphere

» The Gauss map of the sphere of radius R centered at pg is

given by
p—p
1(p) =% ° pes
» For each v € T,S, let ¢ be a curve such that ¢(0) = p and
c(0) =v,
» The directional derivative of the Gauss map is
d
(v,dv(p)) = | (c(t))
t=0
_d] c(t)—po
dt|,_o R
o) v
R R

» Therefore, the Weingarten map at p € S is given by
dy(p): TS — T,S

LY
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Weingarten Map of Ellipsoid in R3

> Given a,b,c > 0, let
X2 y2 22
(x,y, )65 v—<xy, z) € TpS, and curve

> Given any p =
v,

¢ : | — S such that ¢(0) = p and ¢(0) =
d X2 y? 22

. =2 '7.7. '<77777
dtt0< * ) . y,2) a?’ b?’ ¢?

» Therefore, the Gauss map is

0= St

Y(x,y,z) = |

» The Weingarten map is given by

(344) (343) G#a)
<\/ df}/(p)>: 329 p29 2 _ EYRN YRRV 229 p2r 2 320 b2 ¢
’ (% % 2) (%, %, %)



Weingarten Map At an Extreme Point of Ellipsoid

> At p = (a,0,0),
7(37 07 O) = <1707 0>

and therefore
T(2,00S ={(0,y,2)}

» The Weingarten map at (a,0,0) is
(0.3,07) =a(0.25. %)
) ) M M b27 C2

» This can also be written as

0 0
< y ,dy(a,0,0)> =10
z 0

oy ©



Second Fundamental Form of a Surface

vvyyypy

v

Let v : S — V3 be the Gauss map of S
Let dv be the Weingarten map
Recall that if p € S and w € T,S, then (w,dvy(p)) € T,S

Given two tangent vectors v,w € T,5,

II(p)(V7 W) =v: <W7 d’Y(P)> eR
II(p) is a linear function of v € T,S and a linear function of
we T,5
II(p) is therefore a bilinear tensor
The bilinear tensor field II is the second fundamental form

We can therefore write

(veaw,Il(p)) eR



Differential of Gauss Map Using Moving Frame

> Let (e1, e2, €3) be an orthonormal frame on S, where e3 = 7 is
the Gauss map

» Recall that one of the structure equations is
des = elw% + egw%

> Since (w!,w?) is a dual frame, there are functions Hj;,
1 <i,j <2, such that

wf = H11w1 + H12w2
wg’ = H21w1 + H22w2
» On the other hand, another structure equation is
0=wiAw! 4+ w3 AWw?
= —(Hllwl + H12w2) Awt — (H21w1 + H22w2) A w?
= (H12 — H21)0J1 AN w2



Weingarten Map Using Moving Frame

> Let v =vle; + v?e and w = wle; + w?ey be any two
tangent vectors at p

» Therefore, then the Weingarten map is given by

(w, des) = e1(w,w3) + ex(w,w3)
= e1(w,wi)ex(w,w3)
= er(wley + w?ey, Hipw! 4 Hipw?)
+ ex(wher + wlep, Haw' + Hoow?)
= el(HHW1 + H12W2) + ez(H21W1 + H22W2)



Second Fundamental Form Using Moving Frame

» The second fundamental form is given by

(vew,Il(p)) = v-(w, de3)
= (viep + V&)
- (er(Hiiw! + Hiaw?) + ex(Hoyw! + Hyow?))
= Hi3 V1W1H12(V1 w? + V2W1)H22V2W2

= (w @ v,1I(p))

» The second fundamental form is a symmetric 2-tensor field
» Example: Sphere of radius R
» The Weingarten map was
14

(v,dv(p)) = I

» The second fundamental form is therefore

<
S

(vow,Il(p)) =v-(w,dy(p)) = v-

o[ =
Ry



Example: Graph of a Function
» Consider a parameterized surface given by a graph

¢:D—R?
(x,y) = (%, y, f(x, ¥))
> A tangent frame is

(00 0,0
(&1, ) = (|ax¢|’ !8y¢\>

(1,0,8,F) (0,1,0,f)
V14 0,2 \/1+0,f?

» A normal vector is
(—0xf,—0,f,1)
» Therefore, an orthonormal frame is (e1, e2, €3), where
(—0xf,—0,f,1)

e3 =



