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Oriented Surface in Oriented Euclidean 3-Space
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I Let E3 be Euclidean space with an orientation (b1, b2, b3)

I Let S ⊂ E3 be a parameterized surface with coordinate map
Φ : D → S

I A parameterized surface is always orientable, because
(∂1Φ, ∂2Φ) is an orientation on TpS for each p = Φ(u1, u2)

I An orientation on TpS uniquely determines a unit normal
n(p) at each p ∈ S and vice versa

I (∂1Φ, ∂2Φ) has positively orientation on TpS if and only if
(∂1Φ, ∂2Φ, n) is positively oriented on V3



Adapted Oriented Orthonormal Frame on S ⊂ E3

I (e1, e2, e3) is an adapted oriented orthonormal frame on S if
for each p ∈ S ,
I (e1(p), e2(p), e3(p)) is positively oriented on V3

I (e1(p), e2(p)) is positively oriented on TpS

I For each p ∈ S , let FpS be the set of all oriented orthonormal
bases of TpS

I For each frame (e1, e2) ∈ FpS , there is a unique oriented
orthonormal basis (e1, e2, e3) of V3

I The oriented orthonormal frame bundle of S is

F∗S = disjoint union of FpS for all p ∈ S

I A moving orthonormal frame of S is a map

E = (e1, e2, e3) : S → F∗S such that E (p) ∈ FpS



Gauss Map of an Oriented Surface

I The Gauss map of an oriented surface S ⊂ E3 is defined to be

γ : S → V3

p 7→ positively oriented unit normal to TpS

I If (e1, e2) is an oriented orthonormal frame on S , then
(e1, e2, γ) is an oriented orthonormal frame on E3



The Weingarten Map
I Given p ∈ S and v ∈ TpS , the directional derivative of
γ : S → V3 is

Dvγ(p) =
d

dt

∣∣∣∣
t=0

γ(c(t)) ∈ V3 = lim
h→0

γ(c(t + h))− γ(c(t))

h
,

where c(0) = p and c ′(0) = v

I Since γ · γ = 1,

0 =
d

dt

∣∣∣∣
t=0

(γ(c(t))·γ(c(t))) = 2γ(p)· d
dt

∣∣∣∣
t=0

γ(c(t)) = 2γ·Dvγ,

which implies that Dvγ(p) ∈ TpS

I Therefore, at each p ∈ S , we can define the differential of the
Gauss map to be

dγ(p) : TpS → TpS

v 7→ Dvγ(p)

I This is the Weingarten map



Example: Sphere of Radius R

I The sphere of radius R centered at p0 ∈ E3 is

S = {p ∈ E3 : (p − p0) · (p − p0) = R2}

I Recall that p − p0 is an outward normal vector to TpS and
therefore, the Gauss map is given by

γ(p) =
p − p0
|p − p0|

=
p − p0
R

and the tangent space at p is

TpS = {v ∈ V3 : v · γ(p) = 0}



Weingarten Map of Sphere
I The Gauss map of the sphere of radius R centered at p0 is

given by

γ(p) =
p − p0
R

, p ∈ S

I For each v ∈ TpS , let c be a curve such that c(0) = p and
c ′(0) = v ,

I The directional derivative of the Gauss map is

〈v , dγ(p)〉 =
d

dt

∣∣∣∣
t=0

γ(c(t))

=
d

dt

∣∣∣∣
t=0

c(t)− p0
R

=
c ′(0)

R
=

v

R
I Therefore, the Weingarten map at p ∈ S is given by

dγ(p) : TpS → TpS

v 7→ v

R



Weingarten Map of Ellipsoid in R3

I Given a, b, c > 0, let

S =

{
x2

a2
+

y2

b2
+

z2

c2
= 1

}
I Given any p = (x , y , z) ∈ S , v = 〈ẋ , ẏ , ż〉 ∈ TpS , and curve

c : I → S such that c(0) = p and c ′(0) = v ,

0 =
d

dt

∣∣∣∣
t=0

(
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y2

b2
+

z2

c2

)
= 2〈ẋ , ẏ , ż〉 ·

〈 x

a2
,
y

b2
,
z

c2

〉
I Therefore, the Gauss map is

γ(x , y , z) =

〈
x
a2
, y
b2
, z
c2

〉∣∣〈 x
a2
, y
b2
, z
c2

〉∣∣
I The Weingarten map is given by

〈v , dγ(p)〉 =

〈
ẋ
a2
, ẏ
b2
, ż
c2

〉
∣∣〈 x

a2
, y
b2
, z
c2

〉∣∣−
(〈

ẋ
a2
, ẏ
b2
, ż
c2

〉
·
〈
x
a2
, y
b2
, z
c2

〉) 〈
x
a2
, y
b2
, z
c2

〉
∣∣〈 x

a2
, y
b2
, z
c2

〉∣∣3



Weingarten Map At an Extreme Point of Ellipsoid

I At p = (a, 0, 0),
γ(a, 0, 0) = 〈1, 0, 0〉

and therefore
T(a,0,0)S = {〈0, ẏ , ż〉}

I The Weingarten map at (a, 0, 0) is

〈〈0, ẏ , ż〉, dγ〉 = a

〈
0,

ẏ

b2
,
ż

c2

〉
I This can also be written as〈0

ẏ
ż

 , dγ(a, 0, 0)

〉
=

0 0 0
0 a

b2
0

0 0 a
c2

0
ẏ
ż





Second Fundamental Form of a Surface

I Let γ : S → V3 be the Gauss map of S

I Let dγ be the Weingarten map

I Recall that if p ∈ S and w ∈ TpS , then 〈w , dγ(p)〉 ∈ TpS

I Given two tangent vectors v ,w ∈ TpS ,

II(p)(v ,w) = v · 〈w , dγ(p)〉 ∈ R

I II(p) is a linear function of v ∈ TpS and a linear function of
w ∈ TpS

I II(p) is therefore a bilinear tensor

I The bilinear tensor field II is the second fundamental form

I We can therefore write

〈v ⊗ w , II(p)〉 ∈ R



Differential of Gauss Map Using Moving Frame
I Let (e1, e2, e3) be an orthonormal frame on S , where e3 = γ is

the Gauss map

I Recall that one of the structure equations is

de3 = e1ω
1
3 + e2ω

2
3

I Since (ω1, ω2) is a dual frame, there are functions Hij ,
1 ≤ i , j ≤ 2, such that

ω3
1 = H11ω

1 + H12ω
2

ω3
2 = H21ω

1 + H22ω
2

I On the other hand, another structure equation is

0 = ω3
1 ∧ ω1 + ω3

2 ∧ ω2

= −(H11ω
1 + H12ω

2) ∧ ω1 − (H21ω
1 + H22ω

2) ∧ ω2

= (H12 − H21)ω1 ∧ ω2



Weingarten Map Using Moving Frame

I Let v = v1e1 + v2e2 and w = w1e1 + w2e2 be any two
tangent vectors at p

I Therefore, then the Weingarten map is given by

〈w , de3〉 = e1〈w , ω1
3〉+ e2〈w , ω2

3〉
= e1〈w , ω3

1〉e2〈w , ω3
2〉

= e1〈w1e1 + w2e2,H11ω
1 + H12ω

2〉
+ e2〈w1e1 + w2e2,H21ω

1 + H22ω
2〉

= e1(H11w
1 + H12w

2) + e2(H21w
1 + H22w

2)



Second Fundamental Form Using Moving Frame
I The second fundamental form is given by

〈v ⊗ w , II(p)〉 = v · 〈w , de3〉
= (v1e1 + v2e2)

· (e1(H11w
1 + H12w

2) + e2(H21w
1 + H22w

2))

= H11v
1w1H12(v1w2 + v2w1)H22v

2w2

= 〈w ⊗ v , II(p)〉

I The second fundamental form is a symmetric 2-tensor field
I Example: Sphere of radius R

I The Weingarten map was

〈v , dγ(p)〉 =
v

R

I The second fundamental form is therefore

〈v ⊗ w , II(p)〉 = v · 〈w , dγ(p)〉 = v · w
R

=
v · w
R



Example: Graph of a Function
I Consider a parameterized surface given by a graph

Φ : D → R3

(x , y) 7→ (x , y , f (x , y))

I A tangent frame is

(e1, e2) =

(
∂xΦ

|∂xΦ|
,
∂yΦ

|∂yΦ|

)
=

(
〈1, 0, ∂x f 〉√

1 + ∂x f 2
,
〈0, 1, ∂y f 〉√

1 + ∂y f 2

)
I A normal vector is

〈−∂x f ,−∂y f , 1〉
I Therefore, an orthonormal frame is (e1, e2, e3), where

e3 =
〈−∂x f ,−∂y f , 1〉√

1 + f 2x + f 2y


