

MATH-UA 377 Differential Geometry:

Moving Frame on Euclidean Space

First Fundamental Form of a Surface

Orthonormal Moving Frame on a Surface

Deane Yang

Courant Institute of Mathematical Sciences
New York University

April 19, 2022

START RECORDING LIVE TRANSCRIPTION

Differential of Identity Map

- ▶ Let $I : \mathbb{A}^m \rightarrow \mathbb{A}^m$ be the identity map
- ▶ Given $v \in \mathbb{V}^m$ and a curve c such that $c(0) = p \in \mathbb{A}^m$ and $c'(0) = v$, the directional derivative of I at $p \in \mathbb{A}^m$ is

$$\begin{aligned} D_v I(p) &= \frac{d}{dt} \bigg|_{t=0} I(c(t)) \\ &= \frac{d}{dt} \bigg|_{t=0} c(t) \\ &= c'(0) \\ &= v, \end{aligned}$$

- ▶ On the other hand, we know that if (e_1, \dots, e_m) is a moving frame and $(\omega^1, \dots, \omega^m)$, then

$$v = e_1 \langle \omega^1, v \rangle + \dots + e_m \langle \omega^m, v \rangle$$

- ▶ So

$$dI = e_k \omega^k$$

Structure Equations for Moving Frame on Affine Space

- ▶ There exist unique 1-forms ω_k^j , where $1 \leq j, k \leq m$, such that the following equations hold:

$$dl = e_k \omega^k$$

$$de_k = e_j \omega_k^j$$

$$d\omega^j + \omega_k^j \wedge \omega^k = 0$$

$$d\omega_k^j + \omega_i^j \wedge \omega_k^i = 0$$

- ▶ The 1-forms ω_k^j are called the connection 1-forms and measure the twisting of the frame E as it moves around the domain O

Matrix Form of Structure Equations

If we write

$$E = [e_1 \quad \cdots \quad e_m]$$

$$E^* = \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_m \end{bmatrix}$$

$$\Gamma = \begin{bmatrix} \omega_1^1 & \cdots & \omega_m^1 \\ \vdots & & \vdots \\ \omega_1^m & \cdots & \omega_m^m \end{bmatrix},$$

then the structure equations become

$$dI = EE^*$$

$$dE = E\Gamma$$

$$dE^* + \Gamma \wedge E^* = 0$$

$$d\Gamma + \Gamma \wedge \Gamma = 0,$$

Orthonormal Moving Frame on Euclidean Space

- ▶ Let $\mathbb{A}^m = \mathbb{E}^m$, so \mathbb{V}^m now has an inner product
- ▶ Let $E = (e_1, \dots, e_m)$ be an orthonormal moving frame on $O \subset \mathbb{E}^m$
- ▶ Recall that this means $e_i \cdot e_j = \delta_{ij}$, which can be written as

$$\begin{aligned} E^t \cdot E &= \begin{bmatrix} e_1 \\ \vdots \\ e_m \end{bmatrix} \cdot [e_1 \quad \cdots \quad e_m] \\ &= \begin{bmatrix} e_1 \cdot e_1 & \cdots & e_1 \cdot e_m \\ \vdots & & \vdots \\ e_m \cdot e_1 & \cdots & e_m \cdot e_m \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & \vdots & \\ 0 & 0 & \cdots & 1 \end{bmatrix} = I \end{aligned}$$

Dual Orthonormal Moving Frame

- ▶ Let $(\omega^1, \dots, \omega^m)$ be the dual frame
- ▶ Since $e_j \cdot e_k = \delta_{jk}$,

$$\begin{aligned} 0 &= d(e_j \cdot e_k) \\ &= de_j \cdot e_k + e_j \cdot e_k \\ &= (e_i \omega_j^i) \cdot e_k + e_j \cdot (e_i \omega_k^i) \\ &= \omega_j^i (e_i \cdot e_k) + \omega_k^i (e_j \cdot e_i) \\ &= \omega_j^k + \omega_k^j \end{aligned}$$

- ▶ Therefore,

$$\omega_j^k + \omega_k^j = 0 \text{ or } \Gamma + \Gamma^t = 0$$

Structure Equations of Orthonormal Moving Frame in \mathbb{E}^m

- Same structure equations as for \mathbb{A}^m and **two more**:

$$dx = e_k \omega^k$$

$$de_k = e_j \omega_k^j$$

$$d\omega^j + \omega_k^j \wedge \omega^k = 0$$

$$d\omega_k^j + \omega_i^j \wedge \omega_k^i = 0$$

$$e_j \cdot e_k = \delta_{ij}$$

$$\omega_k^j + \omega_j^k = 0$$

- In matrix form:

$$dx = EE^*$$

$$dE = E\Gamma$$

$$dE^* = \Gamma \wedge E^*$$

$$d\Gamma + \Gamma \wedge \Gamma = 0$$

$$E^t \cdot E = I$$

$$\Gamma + \Gamma^t = 0$$

Example: Constant Orthonormal Frame on \mathbb{E}^m

- ▶ Fix a point $p_0 \in \mathbb{E}^m$ and an orthonormal frame $E_0 = (e_1, \dots, e_m)$ on \mathbb{V}^m
- ▶ We can define the constant moving frame E , where for any $p \in \mathbb{E}^m$

$$E(p) = E_0$$

- ▶ The dual frame $E_0^* = (\omega^1, \dots, \omega^m)$ is also constant
- ▶ Therefore, $de_i = 0$, which implies $\omega_j^i = 0$, which implies $\Gamma = 0$
- ▶ The structure equations are therefore

$$dx = E_0 E_0^*$$

$$dE = 0$$

$$dE^* = 0$$

$$\Gamma = 0$$

Structure Equations of Orthonormal Moving Frame in \mathbb{E}^3

- ▶ (e_1, e_2, e_3) orthonormal moving frame on \mathbb{E}^3
- ▶ $(\omega^1, \omega^2, \omega^3)$ dual frame
- ▶ Inner product on \mathbb{V}^3 :

$$\omega^1 \otimes \omega^1 + \omega^2 \otimes \omega^2 + \omega^3 \otimes \omega^3 = (\omega^1)^2 + (\omega^2)^2 + (\omega^3)^2$$

- ▶ Structure equations

$$dx = e_1 \omega^1 + e_2 \omega^2 + e_3 \omega^3$$

$$e_j \cdot e_k = \delta_{ij}$$

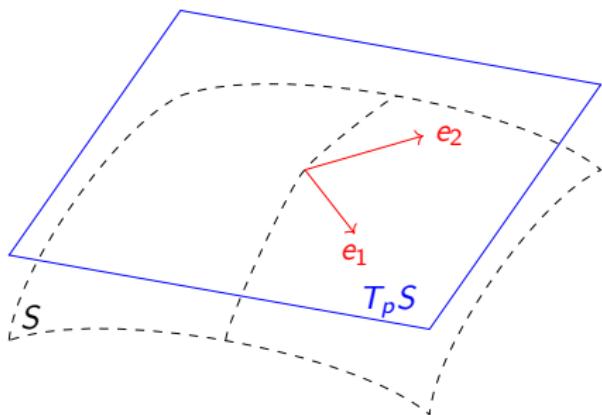
$$\omega_k^j + \omega_j^k = 0$$

$$de_k = e_j \omega_k^j$$

$$d\omega^j + \omega_k^j \wedge \omega^k + \omega_k^j \wedge \omega^k = 0$$

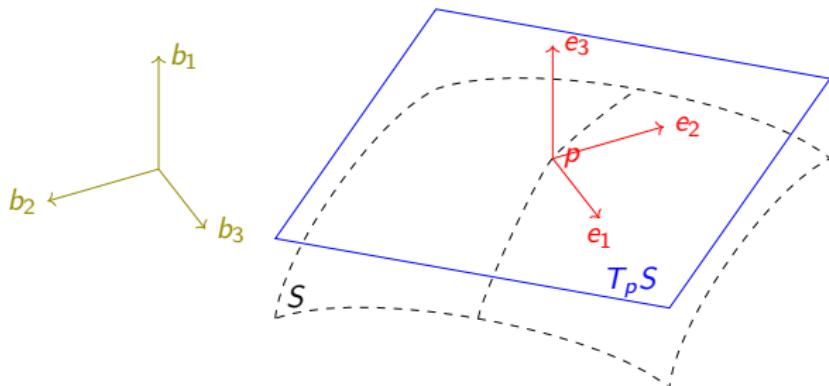
$$d\omega_k^j + \omega_i^j \wedge \omega_k^i = 0$$

First Fundamental Form of a Surface in Euclidean 3-Space



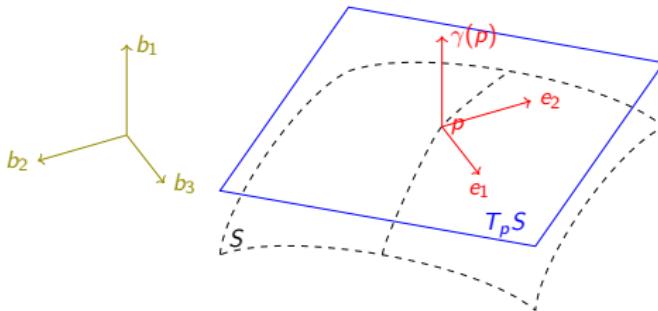
- ▶ Let $S \subset \mathbb{E}^3$ be a surface
- ▶ For each $p \in S$, the dot product on \mathbb{V} restricted to $T_p S$ is a dot product on $T_p S$
- ▶ It therefore defines a symmetric 2-tensor field g , where for each $p \in S$, $g(p)$ is the dot product on $T_p S$
- ▶ g is called the first fundamental form

Orientation of a Surface $S \subset \mathbb{E}^3$



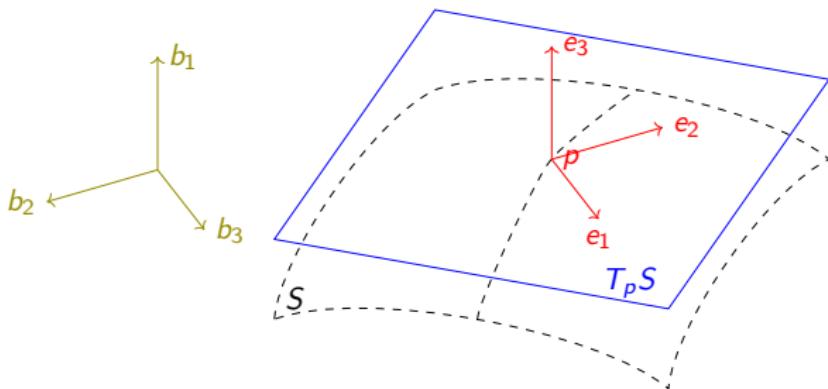
- ▶ Let (b_1, b_2, b_3) be a positively oriented basis of \mathbb{V}
- ▶ Given a unit vector e_3 normal to $T_p S$, there is a unique orientation of $T_p S$ such that if (e_1, e_2) is a positively oriented orthonormal basis of $T_p S$, then (e_1, e_2, e_3) is a positively oriented basis of \mathbb{V}

The Gauss Map of an Oriented Surface



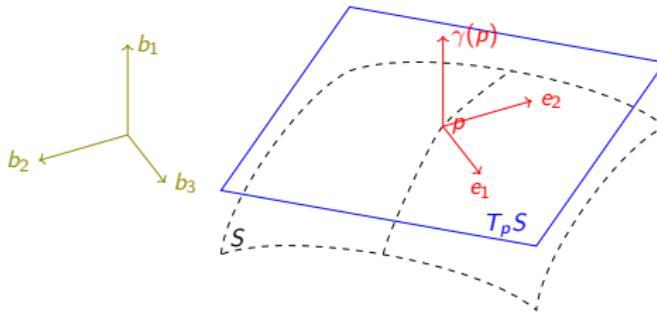
- ▶ Let \mathbb{E}^3 be Euclidean 3-space with a positively oriented basis (b_1, b_2, b_3)
- ▶ Let $S \subset \mathbb{E}^3$ be an oriented surface
 - ▶ Each $T_p S$ has an orientation, which depends continuously on $p \in S$
- ▶ At $p \in S$, let (e_1, e_2) be a positively oriented basis of $T_p S$
- ▶ There is a unique vector $\gamma(p) \in \mathbb{V}^3$ such that
 - ▶ $\gamma(p)$ is a unit normal to $T_p S \subset \mathbb{V}^3$
 - ▶ $(e_1, e_2, \gamma(p))$ is positively oriented
- ▶ γ is called the Gauss map of the oriented surface S

Adapted Oriented Orthonormal Frame on $S \subset \mathbb{E}^3$



- ▶ An adapted oriented orthonormal frame on S is an orthonormal frame (e_1, e_2, e_3) , where, for each $p \in S$,
 - ▶ $(e_1(p), e_2(p), e_3(p))$ is a positively oriented orthonormal basis of \mathbb{V}^3
 - ▶ $(e_1(p), e_2(p))$ is a positively oriented orthonormal basis of $T_p S$
 - ▶ In particular, $e_3(p) = \gamma(p)$ is the Gauss map

Orthonormal Moving Frame and Dual Frame on Surface



- ▶ Let $\Phi : D \rightarrow S \cap O$ be a coordinate map
- ▶ Let $(\omega^1, \omega^2, \omega^3)$ be the dual frame of 1-forms
- ▶ We can pull a moving frame (e_1, e_2, e_3) to D using Φ to get maps

$$e_k \circ \Phi : D \rightarrow \mathbb{V},$$

and 1-forms $(\Phi^* \omega^1, \Phi^* \omega^2, \Phi^* \omega^3)$

- ▶ $\Phi^* \omega^3 = 0$, because

$$\langle \Phi^* \omega^3, \partial_u \rangle = \langle \omega^3, \partial_u \Phi \rangle = 0$$

- ▶ e_k will denote either $e_k : S \cap O \rightarrow \mathbb{V}$ or $e_k \circ \Phi : D \rightarrow \mathbb{V}$
- ▶ ω^k will denote either the 1-form ω^k on S or its pullback $\Phi^* \omega^k$

Structure Equations for Adapted Moving Frame on Surface

The structure equations for the moving frame and dual frame are

$$dl = e_1\omega^1 + e_2\omega^2$$

$$de_1 = e_2\omega_1^2 + e_3\omega_1^3$$

$$de_2 = e_1\omega_2^1 + e_3\omega_2^3$$

$$de_3 = e_1\omega_3^1 + e_2\omega_3^2$$

$$d\omega^j + \omega_k^j \wedge \omega^k = 0, \quad j = 1, 2$$

$$\omega_1^3 \wedge \omega^1 + \omega_2^3 \wedge \omega^2 = 0$$

$$d\omega_k^j + \omega_i^j \wedge \omega_k^i = 0, \quad 1 \leq j, k \leq 3$$

$$\omega_k^j + \omega_j^k = 0, \quad 1 \leq j, k \leq 3$$