MATH-UA 377 Differential Geometry: Moving Frame on Euclidean Space First Fundamental Form of a Surface Orthonormal Moving Frame on a Surface

Deane Yang

Courant Institute of Mathematical Sciences
New York University
April 19, 2022

START RECORDING LIVE TRANSCRIPTION

Differential of Identity Map

- Let $I: \mathbb{A}^{m} \rightarrow \mathbb{A}^{m}$ be the identity map
- Given $v \in \mathbb{V}^{m}$ and a curve c such that $c(0)=p \in \mathbb{A}^{m}$ and $c^{\prime}(0)=v$, the directional derivative of I at $p \in \mathbb{A}^{m}$ is

$$
\begin{aligned}
D_{v} I(p) & =\left.\frac{d}{d t}\right|_{t=0} I(c(t)) \\
& =\left.\frac{d}{d t}\right|_{t=0} c(t) \\
& =c^{\prime}(0) \\
& =v
\end{aligned}
$$

- On the other hand, we know that if $\left(e_{1}, \ldots, e_{m}\right)$ is a moving frame and ($\omega^{1}, \ldots, \omega^{m}$), then

$$
v=e_{1}\left\langle\omega^{1}, v\right\rangle+\cdots+e_{m}\left\langle\omega^{m}, v\right\rangle
$$

- So

$$
d I=e_{k} \omega^{k}
$$

Structure Equations for Moving Frame on Affine Space

- There exist unique 1 -forms ω_{k}^{j}, where $1 \leq j, k \leq m$, such that the following equations hold:

$$
\begin{aligned}
d l & =e_{k} \omega^{k} \\
d e_{k} & =e_{j} \omega_{k}^{j} \\
d \omega^{j}+\omega_{k}^{j} \wedge \omega^{k} & =0 \\
d \omega_{k}^{j}+\omega_{i}^{j} \wedge \omega_{k}^{i} & =0
\end{aligned}
$$

- The 1-forms ω_{k}^{j} are called the connection 1-forms and measure the twisting of the frame E as it moves around the domain O

Matrix Form of Structure Equations

If we write

$$
\begin{aligned}
E & =\left[\begin{array}{lll}
e_{1} & \cdots & e_{m}
\end{array}\right] \\
E^{*} & =\left[\begin{array}{c}
\omega_{1} \\
\cdots \\
\omega_{m}
\end{array}\right] \\
\Gamma & =\left[\begin{array}{ccc}
\omega_{1}^{1} & \cdots & \omega_{m}^{1} \\
\vdots & & \vdots \\
\omega_{1}^{m} & \cdots & \omega_{m}^{m}
\end{array}\right]
\end{aligned}
$$

then the structure equations become

$$
\begin{aligned}
d I & =E E^{*} \\
d E & =E \Gamma \\
d E^{*}+\Gamma \wedge E^{*} & =0 \\
d \Gamma+\Gamma \wedge \Gamma & =0,
\end{aligned}
$$

Orthonormal Moving Frame on Euclidean Space

- Let $\mathbb{A}^{m}=\mathbb{E}^{m}$, so \mathbb{V}^{m} now has an inner product
- Let $E=\left(e_{1}, \ldots, e_{m}\right)$ be an orthonormal moving frame on $O \subset \mathbb{E}^{m}$
- Recall that this means $e_{i} \cdot e_{j}=\delta_{i j}$, which can be written as

$$
\begin{aligned}
E^{t} \cdot E & =\left[\begin{array}{c}
e_{1} \\
\vdots \\
e_{m}
\end{array}\right] \cdot\left[\begin{array}{lll}
e_{1} & \cdots & e_{m}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
e_{1} \cdot e_{1} & \cdots & e_{1} \cdot e_{m} \\
\vdots & & \vdots \\
e_{m} \cdot e_{1} & \cdots & e_{m} \cdot e_{m}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & & \vdots & \\
0 & 0 & \cdots & 1
\end{array}\right]=1
\end{aligned}
$$

Dual Orthonormal Moving Frame

- Let $\left(\omega^{1}, \ldots, \omega^{m}\right)$ be the dual frame
- Since $e_{j} \cdot e_{k}=\delta_{j k}$,

$$
\begin{aligned}
0 & =d\left(e_{j} \cdot e_{k}\right) \\
& =d e_{j} \cdot e_{k}+e_{j} \cdot e_{k} \\
& =\left(e_{i} \omega_{j}^{i}\right) \cdot e_{k}+e_{j} \cdot\left(e_{i} \omega_{k}^{i}\right) \\
& =\omega_{j}^{i}\left(e_{i} \cdot e_{k}\right)+\omega_{k}^{i}\left(e_{j} \cdot e_{i}\right) \\
& =\omega_{j}^{k}+\omega_{k}^{j}
\end{aligned}
$$

- Therefore,

$$
\omega_{j}^{k}+\omega_{k}^{j}=0 \text { or } \Gamma+\Gamma^{t}=0
$$

Structure Equations of Orthonormal Moving Frame in \mathbb{E}^{m}

- Same structure equations as for \mathbb{A}^{m} and two more:

$$
\begin{aligned}
d x & =e_{k} \omega^{k} \\
d e_{k} & =e_{j} \omega_{k}^{j} \\
d \omega^{j}+\omega_{k}^{j} \wedge \omega^{k} & =0 \\
d \omega_{k}^{j}+\omega_{i}^{j} \wedge \omega_{k}^{i} & =0 \\
e_{j} \cdot e_{k} & =\delta_{i j} \\
\omega_{k}^{j}+\omega_{j}^{k} & =0
\end{aligned}
$$

- In matrix form:

$$
\begin{aligned}
d x & =E E^{*} \\
d E & =E \Gamma \\
d E^{*} & =\Gamma \wedge E^{*} \\
d \Gamma+\Gamma \wedge \Gamma & =0 \\
E^{t} \cdot E & =1 \\
\Gamma+\Gamma^{t} & =0
\end{aligned}
$$

Example: Constant Orthonormal Frame on \mathbb{E}^{m}

- Fix a point $p_{0} \in \mathbb{E}^{m}$ and an orthonormal frame $E_{0}=\left(e_{1}, \ldots, e_{m}\right)$ on \mathbb{V}^{m}
- We can define the constant moving frame E, where for any $p \in \mathbb{E}^{m}$

$$
E(p)=E_{0}
$$

- The dual frame $E_{0}^{*}=\left(\omega^{1}, \ldots, \omega^{m}\right)$ is also constant
- Therefore, $d e_{i}=0$, which implies $\omega_{j}^{i}=0$, which implies $\Gamma=0$
- The structure equations are therefore

$$
\begin{aligned}
d x & =E_{0} E_{0}^{*} \\
d E & =0 \\
d E^{*} & =0 \\
\Gamma & =0
\end{aligned}
$$

Structure Equations of Orthonormal Moving Frame in \mathbb{E}^{3}

- $\left(e_{1}, e_{2}, e_{3}\right)$ orthonormal moving frame on \mathbb{E}^{3}
- $\left(\omega^{1}, \omega^{2}, \omega^{3}\right)$ dual frame
- Inner product on \mathbb{V}^{3} :

$$
\omega^{1} \otimes \omega^{1}+\omega^{2} \otimes \omega^{2}+\omega^{3} \otimes \omega^{3}=\left(\omega^{1}\right)^{2}+\left(\omega^{2}\right)^{2}+\left(\omega^{3}\right)^{2}
$$

- Structure equations

$$
\begin{aligned}
d x & =e_{1} \omega^{1}+e_{2} \omega^{2}+e_{3} \omega^{3} \\
e_{j} \cdot e_{k} & =\delta_{i j} \\
\omega_{k}^{j}+\omega_{j}^{k} & =0 \\
d e_{k} & =e_{j} \omega_{k}^{j} \\
d \omega^{j}+\omega_{k}^{j} \wedge \omega^{k}+\omega_{k}^{j} \wedge \omega^{k} & =0 \\
d \omega_{k}^{j}+\omega_{i}^{j} \wedge \omega_{k}^{i} & =0
\end{aligned}
$$

First Fundamental Form of a Surface in Euclidean 3-Space

- Let $S \subset \mathbb{E}^{3}$ be a surface
- For each $p \in S$, the dot product on \mathbb{V} restricted to $T_{p} S$ is a dot product on $T_{p} S$
- It therefore defines a symmetric 2-tensor field g, where for each $p \in S, g(p)$ is the dot product on $T_{p} S$
- g is called the first fundamental form

Orientation of a Surface $S \subset \mathbb{E}^{3}$

- Let $\left(b_{1}, b_{2}, b_{3}\right)$ be a positively oriented basis of \mathbb{V}
- Given a unit vector es normal to $T_{p} S$, there is a unique orientation of $T_{p} S$ such that if $\left(e_{1}, e_{2}\right)$ is a positively oriented orthonormal basis of $T_{p} S$, then $\left(e_{1}, e_{2}, e_{3}\right)$ is a positively oriented basis of \mathbb{V}

The Gauss Map of an Oriented Surface

- Let \mathbb{E}^{3} be Euclidean 3 -space with a positively oriented basis $\left(b_{1}, b_{2}, b_{3}\right)$
- Let $S \subset \mathbb{E}^{3}$ be an oriented surface
- Each $T_{p} S$ has an orientation, which depends continuously on $p \in S$
- At $p \in S$, let $\left(e_{1}, e_{2}\right)$ be a positively oriented basis of $T_{p} S$
- There is a unique vector $\gamma(p) \in \mathbb{V}^{3}$ such that
- $\gamma(p)$ is a unit normal to $T_{p} S \subset \mathbb{V}^{3}$
- $\left(e_{1}, e_{2}, \gamma(p)\right)$ is positively oriented
- γ is called the Gauss map of the oriented surface S

Adapted Oriented Orthonormal Frame on $S \subset \mathbb{E}^{3}$

- An adapted oriented orthonormal frame on S is an orthonormal frame (e_{1}, e_{2}, e_{3}), where, for each $p \in S$,
- $\left(e_{1}(p), e_{2}(p), e_{3}(p)\right)$ is a positively oriented orthonormal basis of \mathbb{V}^{3}
- $\left(e_{1}(p), e_{2}(p)\right)$ is a positively oriented orthonormal basis of $T_{p} S$
- In particular, $e_{3}(p)=\gamma(p)$ is the Gauss map

Orthonormal Moving Frame and Dual Frame on Surface

- Let $\Phi: D \rightarrow S \cap O$ be a coordinate map
- Let $\left(\omega^{1}, \omega^{2}, \omega^{3}\right)$ be the dual frame of 1 -forms
- We can pull a moving frame $\left(e_{1}, e_{2}, e_{3}\right)$ to D using Φ to get maps

$$
e_{k} \circ \Phi: D \rightarrow \mathbb{V}
$$

and 1-forms $\left(\Phi^{*} \omega^{1}, \Phi^{*} \omega^{2}, \Phi^{*} \omega^{3}\right)$

- $\Phi^{*} \omega^{3}=0$, because

$$
\left\langle\Phi^{*} \omega^{3}, \partial_{u}\right\rangle=\left\langle\omega^{3}, \partial_{u} \Phi\right\rangle=0
$$

- e_{k} will denote either $e_{k}: S \cap O \rightarrow \mathbb{V}$ or $e_{k} \circ \Phi: D \rightarrow \mathbb{V}$
- ω^{k} will denote either the 1 -form ω^{k} on S or its pullback $\Phi^{*} \omega^{k}$

Structure Equations for Adapted Moving Frame on Surface

The structure equations for the moving frame and dual frame are

$$
\begin{aligned}
d l & =e_{1} \omega^{1}+e_{2} \omega^{2} \\
d e_{1} & =e_{2} \omega_{1}^{2}+e_{3} \omega_{1}^{3} \\
d e_{2} & =e_{1} \omega_{2}^{1}+e_{3} \omega_{1}^{3} \\
d e_{2} & =e_{1} \omega_{2}^{1}+e_{3} \omega_{2}^{3} \\
d \omega^{j}+\omega_{k}^{j} \wedge \omega^{k} & =0, j=1,2 \\
\omega_{1}^{3} \wedge \omega^{1}+\omega_{2}^{3} \wedge \omega^{2} & =0 \\
d \omega_{k}^{j}+\omega_{i}^{j} \wedge \omega_{k}^{i} & =0,1 \leq j, k \leq 3 \\
\omega_{k}^{j}+\omega_{j}^{k} & =0,1 \leq j, k \leq 3
\end{aligned}
$$

