MATH-UA 377 Differential Geometry: Moving Frame on Affine Space

Deane Yang

Courant Institute of Mathematical Sciences New York University

April 14, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

START RECORDING LIVE TRANSCRIPTION

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへ⊙

Differential of Coordinates on Affine Space

Recall that given p₀ ∈ A^m and a basis (∂₁,...,∂_m) of V^m, we have the coordinate map

$$\Phi: \widehat{\mathbb{R}}^m \to \mathbb{A}^m$$

$$\langle x^1, \dots, x^m \rangle \mapsto p_0 + \partial_1 x^1 + \dots + \partial_m x^m$$

$$= Bx,$$

where

$$B = \begin{bmatrix} b_1 & \cdots & b_m \end{bmatrix}$$
 and $x = \begin{bmatrix} x^1 \\ \vdots \\ x^m \end{bmatrix}$

Conversely, the inverse of Φ can be written as

$$\Phi^{-1}: \mathbb{A}^m o \mathbb{R}^m$$

 $p \mapsto \langle x^1(p), \dots, x^m(p) \rangle$

► Recall that the differentials dx¹,..., dx^m are constant 1-forms on A^m and (dx¹,..., dx^m) is the dual basis of (∂₁,..., ∂_m)

The Identity Map

Let B = (b₁,..., b_m) be a basis of V and B^{*} = (β¹,..., b^m) be the dual basis

▶ Recall that for any $v = v^k b_k \in \mathbb{V}$, $\langle v, \beta^j \rangle = v^j$ and therefore

$$\mathbf{v} = \langle \mathbf{v}, \beta^k \rangle b_k$$

In other words, the map

$$I: \mathbb{V} \to \mathbb{V}$$

 $\mathbf{v} \mapsto \langle \beta^k, \mathbf{v} \rangle b_k$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

is the identity map

Moving frame on Affine Space

A moving frame on an open O ⊂ A^m consists of m vector fields

$$e_k: O \to \mathbb{V}^m, \ 1 \leq k \leq m,$$

such that, for each $x \in O$,

$$E(x) = (e_1(x), \ldots, e_m(x))$$

is a basis of \mathbb{V}^m

The dual frame consists of 1-forms

$$\omega^k: \mathcal{O} \to \mathbb{V}^*, \ 1 \leq k \leq m,$$

such that $E^*(x) = (\omega^1(x), \dots, \omega^m(x))$ is the dual basis of E(x)

For each $p \in \mathbb{A}^m$, the map

$$I: \mathbb{V} \to \mathbb{V}$$

 $v \mapsto e_k \langle \omega^k, v \rangle$

is the identity map and therefore a constant map

Connection 1-forms

▶ The differential of $e_k : O \to V$ at $x \in O$ is the map

$$de_k(x): \mathbb{V} \to \mathbb{V},$$

where

$$\langle v, de_k(x) \rangle = \left. \frac{d}{dt} \right|_{t=0} e_k(x+tv) = \lim_{t \to 0} \frac{e_k(x+tv) - e_k(x)}{t} \in \mathbb{V}$$

Since $(e_1(x), \dots, e_m(x))$ is a basis of \mathbb{V} , there are coefficients $a_k^1(x, v), \dots, a_k^m(x, v)$

such that

$$\langle v, de_k(x) \rangle = a_k^1(x, v)e_1(x) + \cdots + a_k^m(x, v)e_m(x)$$

Since (v, de_k(x)) is a linear function of v, so is each a¹_k(x, v)
Therefore, there are 1-forms ω^j_k such that

$$a_k^j(x,v) = \langle v, \omega_j^i(x) \rangle$$

and

$$de_k = e_j \omega_k^j$$

Fundamental Equations on Affine Space

We now have two fundamental equations for a moving frame and its dual frame on an affine space:

$$I = e_k \omega^k$$

 $de_k = e_j \omega_k^j$

By taking the exterior derivative of these two equations, we will obtain equations involving the 1-forms only

First Structure Equation of Affine Space

Since $I : \mathbb{V} \to \mathbb{V}$ is constant,

$$0 = dI = d(e_k \omega^k)$$

= $de_k \wedge \omega^k + e_k d\omega^k$
= $e_j \omega_k^j \wedge \omega^k + e_j d\omega^j$
= $e_j (\omega_k^j \wedge \omega^k + d\omega^j),$

Since (e₁,..., e_m) is a basis, each coefficient has to be zero
This implies the first structure equation

$$d\omega^j+\omega^j_k\wedge\omega^k=$$
 0, for every $1\leq j\leq m$

Second Structure Equation of Affine Space

Treat each e_k : O → V as if it is a scalar function
Therefore,

$$egin{aligned} 0 &= d(de_k) = d(e_j\omega_k^j) \ &= de_j \wedge \omega_k^j + e_j d\omega_k^j \ &= e_i\omega_j^i \wedge \omega_k^j + e_j d\omega_k^j \ &= e_j(d\omega_k^j + \omega_i^j \wedge \omega_k^i), \end{aligned}$$

This implies the second structure equation

$$d\omega^j_k+\omega^j_i\wedge\omega^i_k=$$
0, for every $1\leq j,k\leq m$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Structure Equations for Moving Frame on Affine Space

Let E = (e₁,..., e_m) be a moving frame on an open O ⊂ A^m and E^{*} = (ω¹,..., ω^m) its dual frame

▶ There exist unique 1-forms ω_k^j , where $1 \le j, k \le m$, such that the following equations hold:

$$egin{aligned} dx &= e_k \omega^k \ de_k &= e_j \omega^j_k \ d\omega^j &+ \omega^j_k \wedge \omega^k &= 0 \ d\omega^j_k &+ \omega^j_i \wedge \omega^i_k &= 0 \end{aligned}$$

The 1-forms ω^j_k are called the connection 1-forms and measure the twisting of the frame as it moves around the domain O

Matrix Form of Structure Equations

If we write

$$E = \begin{bmatrix} e_1 & \cdots & e_m \end{bmatrix}$$
$$E^* = \begin{bmatrix} \omega_1 \\ \cdots \\ \omega_m \end{bmatrix}$$
$$\Gamma = \begin{bmatrix} \omega_1^1 & \cdots & \omega_m^1 \\ \vdots & \vdots \\ \omega_1^m & \cdots & \omega_m^m \end{bmatrix}$$

,

then the structure equations become

$$I = EE^*$$

 $dE = E\Gamma$
 $dE^* + \Gamma \wedge E^* = 0$
 $d\Gamma + \Gamma \wedge \Gamma = 0,$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●