MATH-UA 377 Differential Geometry: Orientation of a Rectangular Surface Integration of 2-form on an Oriented Rectangular Surface Stokes's Theorem on a Rectangular Surface Integration of 2-form on an Oriented Surface

Deane Yang

Courant Institute of Mathematical Sciences New York University

April 12, 2022

START RECORDING LIVE TRANSCRIPTION

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへ⊙

Rectangular Surface in \mathbb{A}^3

- Let \mathbb{A}^3 be affine 3-space with tangent space \mathbb{V}^3
- ► A rectangular surface S is parameterized by a rectangle
- A rectangular surface consists of
 - Open and closed rectangles

$$R = (a, b) imes (c, d) \subset \overline{R} = [a, b] imes [c, d] \subset \mathbb{R}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Orientation on Parameterized Surface

- Orientation on a surface can be specified by a basis (b₁(p), b₂(p) of T_p that depends continuously on p ∈ S
- A coordinate map $\Phi: D \rightarrow S$ is nondegenerate and bijective
- Therefore, $(b_1, b_2) = (\partial_1 \Phi, \partial_2 \Phi)$ is a basis of $T_p S$, for each $p = \Phi(x^1, x^2)$
- If (∂₁Φ, ∂₂Φ) is not the orientation we want, then we can switch the order of the input variables

Working Definition of Pullback of a 2-Form

▶ A 2-form Θ on an open set $O \subset \mathbb{R}^3$ can always be written as

$$\Theta = a\,dy \wedge dz + b\,dz \wedge dx + c\,dx \wedge dy,$$

where a, b, c are scalar functions on O

• Consider a C^1 map $F: D \subset O$, where $D \subset \mathbb{R}^2$ is open

Does not have to be a coordinate map

- We can write F(u, v) = (x(u, v), y(u, v), z(u, v))
- The pullback of Θ by F is the 2-form on D

$$F^*\Theta = a\,dy \wedge dz + b\,dz \wedge dx + c\,dx \wedge dy,,$$

where

$$a = a(x(u, v), y(u, v), z(u, v))$$

$$b = b(x(u, v), y(u, v), z(u, v))$$

$$c = c(x(u, v), y(u, v), z(u, v))$$

$$dx = \partial_u x \, du + \partial_v x \, dv$$

$$dy = \partial_u y \, du + \partial_v y \, dv$$

$$dz = \partial_u z \, du + \partial_v z \, dv$$

Integral of a 2-form on an Oriented Rectangular Surface S

- Let $\Phi : R = [a, b] \times [c, d] \rightarrow S$ be a coordinate chart, where $(\partial_1 \Phi, \partial_2 \Phi)$ has the correct orientation
- The pullback $\Phi^*\Theta$ is a 2-form on R
- If (u¹, u²) are coordinates on ℝ², then the pullback can be written as

$$\Phi^*\Theta = p(u^1, u^2) \, du^1 \wedge du^2$$

where p is a scalar function on R

The integral is defined to be

$$\int_{S} \Theta = \int_{R} \Phi^{*} \Theta$$

= $\int_{(u^{1}, u^{2}) \in r} p(u^{1}, u^{2}) du^{1} \wedge du^{2}$
= $\int_{(u^{1}, u^{2}) \in D} p(u^{1}, u^{2}) du^{1} du^{2}$
= $\int_{u^{1}=a}^{u^{2}=b} \int_{u^{2}=c}^{u^{2}=d} p(u^{1}, u^{2}) du^{2} du^{1}$

Example: Integral over cylinder

We want to compute

$$\int_C y\,dx\wedge dz,$$

where

$$C = \{x^2 + y^2 = \rho^2, \ 0 \le z \le h\}$$

ヘロト 人間 ト 人 ヨト 人 ヨト

æ

Parameterization of Cylinder

Use cylindrical coordinates

$$\Phi(u,v) = (\rho \cos u, \rho \sin u, v),$$

where $-\pi < u < \pi$ and 0 < v < h

▶ Use orientation given by the basis (∂_uΦ, ∂_vΦ)
 ▶ Therefore,

$$x = \rho \cos u$$

$$y = \rho \sin u$$

$$z = v$$

$$dx = -\rho \sin u \, du$$

$$dy = \rho \cos u \, du$$

$$dz = dv$$

• The pullback of $y dx \wedge dz$ is

$$\Phi^*(y\,dx \wedge dz) = (\rho \sin u)(-\rho \sin u) \wedge dv$$
$$= -\rho^2(\sin u)^2 \,du \wedge dv$$

æ

Integral Over Cylinder

PUtting everything together, we get

$$\int_C y \, dx \wedge dz = \int_R \Phi^* (y \, dx \wedge dz)$$

$$= \int_R -\rho^2 (\sin u)^2 \, du \wedge dv$$

$$= \int_R -\rho^2 (\sin u)^2 \, du \, dv$$

$$= \int_{u=-\pi}^{u=\pi} \int_{v=0}^{v=h} -\rho^2 (\sin u)^2 \, dv \, du$$

$$= -\rho^2 \int_{u=-\pi}^{u=\pi} (\sin u)^2 \, du \int_{v=0}^{v=h} dv$$

$$= -\rho^2 h \int_{u=-\pi}^{u=\pi} (\sin u)^2 \, du$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Stokes's Theorem for a Rectangular Surface

• Let
$$\omega$$
 be a 1-form on $\mathcal{O} \subset \mathbb{R}^3$,

$$\omega = p \, dx + q \, dy + r \, dz$$

- Let S be a rectangular surface and $\Phi : R \to S$ be a coordinate map
- Stokes's Theorem says

$$\int_{\mathcal{S}} d\omega = \int_{\partial \mathcal{S}} \omega$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Proof of Stokes's Theorem for a Rectangular Surface

• Key fact: If ω is a 1-form on an open set $O \subset \mathbb{R}^3$ and $F: D \to O$ is a C^1 map, then

$$F^*(d\omega) = d(F^*\omega)$$

Recall Stokes's Theorem for a rectangle: If R ⊂ ℝ² is a rectangle and θ is a 1-form on R, then

$$\int_R d\theta = \int_R \theta$$

▶ Therefore, if $\Phi : R \to S$ is a coordinate map for *S*, then

$$\int_{S} d\omega = \int_{R} \Phi^{*}(d\omega) = \int_{R} d(\Phi^{*}\omega) = \int_{\partial R} \Phi^{*}(\omega) = \int_{\partial S} \omega$$

- Crucial assumptions
 - $(\partial_1 \Phi, \partial_2 \Phi)$ is the desired orientation on S
 - ► The orientation of ∂S is consistent with the orientation of ∂R

Integration of a 2-Form over an Oriented Surface

▶ Idea: Chop S into rectangular surfaces S_1, \ldots, S_N , where

$$S = \overline{S}_1 \cup \cdots \cup \overline{S}_N$$

and $S_j \cap S_k = \emptyset$ for any $1 \le j, k \le N$

If Θ is a 2-form on an open set O ⊂ R³ that contains S, then we define the integral of Θ over S to be

$$\int_{\mathcal{S}} \Theta = \sum_{k=1}^N \int_{\mathcal{S}_k} \Theta = \sum_{k=1}^N \int_{\mathcal{R}_k} \Phi_k^* \Theta,$$

where each $\Phi_k : R_k \to S_k$ is a coordinate map

Crucial assumption: The orientations used for the rectangular surfaces agrees with the orientation on S Example: Integration over the Sphere

Suppose
$$S = \{x^2 + y^2 + z^2 = \rho^2\}$$
 and we want to calculate
$$\int_S \Theta$$

Use spherical coordinates

$$\Phi(\phi, \theta) = (x, y, z)$$

= (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi),

where 0 $<\phi<\pi$ and 0 $<\theta<2\pi$

The integral is therefore

$$\int_{\mathcal{S}} \Theta = \int_{\mathcal{R}} \Phi^* \Theta,$$

where $R=(0,\pi) imes(0,2\pi)$