

MATH-UA 377 Differential Geometry:
Orientation of a Rectangular Surface
Integration of 2-form on an Oriented Rectangular
Surface

Stokes's Theorem on a Rectangular Surface
Integration of 2-form on an Oriented Surface

Deane Yang

Courant Institute of Mathematical Sciences
New York University

April 12, 2022

START RECORDING LIVE TRANSCRIPTION

Rectangular Surface in \mathbb{A}^3

- ▶ Let \mathbb{A}^3 be affine 3-space with tangent space \mathbb{V}^3
- ▶ A rectangular surface S is parameterized by a rectangle
- ▶ A rectangular surface consists of
 - ▶ Open and closed rectangles

$$R = (a, b) \times (c, d) \subset \overline{R} = [a, b] \times [c, d] \subset \mathbb{R}$$

- ▶ A surjective C^1 map $\Phi : \overline{R} \rightarrow \overline{S} \subset \mathbb{A}^3$
- ▶ The restriction of Φ to R is a coordinate map
 $\Phi : R \rightarrow S \cap O \subset \mathbb{A}^3$

Orientation on Parameterized Surface

- ▶ Orientation on a surface can be specified by a basis $(b_1(p), b_2(p))$ of T_p that depends continuously on $p \in S$
- ▶ A coordinate map $\Phi : D \rightarrow S$ is nondegenerate and bijective
- ▶ Therefore, $(b_1, b_2) = (\partial_1 \Phi, \partial_2 \Phi)$ is a basis of $T_p S$, for each $p = \Phi(x^1, x^2)$
- ▶ If $(\partial_1 \Phi, \partial_2 \Phi)$ is not the orientation we want, then we can switch the order of the input variables

Working Definition of Pullback of a 2-Form

- ▶ A 2-form Θ on an open set $O \subset \mathbb{R}^3$ can always be written as

$$\Theta = a \, dy \wedge dz + b \, dz \wedge dx + c \, dx \wedge dy,$$

where a, b, c are scalar functions on O

- ▶ Consider a C^1 map $F : D \subset O$, where $D \subset \mathbb{R}^2$ is open
 - ▶ Does not have to be a coordinate map
- ▶ We can write $F(u, v) = (x(u, v), y(u, v), z(u, v))$
- ▶ The pullback of Θ by F is the 2-form on D

$$F^* \Theta = a \, dy \wedge dz + b \, dz \wedge dx + c \, dx \wedge dy, ,$$

where

$$a = a(x(u, v), y(u, v), z(u, v))$$

$$b = b(x(u, v), y(u, v), z(u, v))$$

$$c = c(x(u, v), y(u, v), z(u, v))$$

$$dx = \partial_u x \, du + \partial_v x \, dv$$

$$dy = \partial_u y \, du + \partial_v y \, dv$$

$$dz = \partial_u z \, du + \partial_v z \, dv$$

Integral of a 2-form on an Oriented Rectangular Surface S

- ▶ Let $\Phi : R = [a, b] \times [c, d] \rightarrow S$ be a coordinate chart, where $(\partial_1 \Phi, \partial_2 \Phi)$ has the correct orientation
- ▶ The pullback $\Phi^* \Theta$ is a 2-form on R
- ▶ If (u^1, u^2) are coordinates on \mathbb{R}^2 , then the pullback can be written as

$$\Phi^* \Theta = p(u^1, u^2) du^1 \wedge du^2$$

where p is a scalar function on R

- ▶ The integral is defined to be

$$\begin{aligned}\int_S \Theta &= \int_R \Phi^* \Theta \\ &= \int_{(u^1, u^2) \in R} p(u^1, u^2) du^1 \wedge du^2 \\ &= \int_{(u^1, u^2) \in D} p(u^1, u^2) du^1 du^2 \\ &= \int_{u^1=a}^{u^2=b} \int_{u^2=c}^{u^2=d} p(u^1, u^2) du^2 du^1\end{aligned}$$

Example: Integral over cylinder

We want to compute

$$\int_C y \, dx \wedge dz,$$

where

$$C = \{x^2 + y^2 = \rho^2, \ 0 \leq z \leq h\}$$

Parameterization of Cylinder

- ▶ Use cylindrical coordinates

$$\Phi(u, v) = (\rho \cos u, \rho \sin u, v),$$

where $-\pi < u < \pi$ and $0 < v < h$

- ▶ Use orientation given by the basis $(\partial_u \Phi, \partial_v \Phi)$
- ▶ Therefore,

$$x = \rho \cos u$$

$$y = \rho \sin u$$

$$z = v$$

$$dx = -\rho \sin u \, du$$

$$dy = \rho \cos u \, du$$

$$dz = dv$$

- ▶ The pullback of $y \, dx \wedge dz$ is

$$\begin{aligned}\Phi^*(y \, dx \wedge dz) &= (\rho \sin u)(-\rho \sin u) \wedge dv \\ &= -\rho^2 (\sin u)^2 \, du \wedge dv\end{aligned}$$

Integral Over Cylinder

- ▶ Putting everything together, we get

$$\begin{aligned}\int_C y \, dx \wedge dz &= \int_R \Phi^*(y \, dx \wedge dz) \\&= \int_R -\rho^2 (\sin u)^2 \, du \wedge dv \\&= \int_R -\rho^2 (\sin u)^2 \, du \, dv \\&= \int_{u=-\pi}^{u=\pi} \int_{v=0}^{v=h} -\rho^2 (\sin u)^2 \, dv \, du \\&= -\rho^2 \int_{u=-\pi}^{u=\pi} (\sin u)^2 \, du \int_{v=0}^{v=h} \, dv \\&= -\rho^2 h \int_{u=-\pi}^{u=\pi} (\sin u)^2 \, du\end{aligned}$$

Stokes's Theorem for a Rectangular Surface

- ▶ Let ω be a 1-form on $O \subset \mathbb{R}^3$,

$$\omega = p \, dx + q \, dy + r \, dz$$

- ▶ Let S be a rectangular surface and $\Phi : R \rightarrow S$ be a coordinate map
- ▶ Stokes's Theorem says

$$\int_S d\omega = \int_{\partial S} \omega$$

Proof of Stokes's Theorem for a Rectangular Surface

- ▶ Key fact: If ω is a 1-form on an open set $O \subset \mathbb{R}^3$ and $F : D \rightarrow O$ is a C^1 map, then

$$F^*(d\omega) = d(F^*\omega)$$

- ▶ Recall Stokes's Theorem for a rectangle: If $R \subset \mathbb{R}^2$ is a rectangle and θ is a 1-form on \overline{R} , then

$$\int_R d\theta = \int_R \theta$$

- ▶ Therefore, if $\Phi : R \rightarrow S$ is a coordinate map for S , then

$$\int_S d\omega = \int_R \Phi^*(d\omega) = \int_R d(\Phi^*\omega) = \int_{\partial R} \Phi^*(\omega) = \int_{\partial S} \omega$$

- ▶ Crucial assumptions
 - ▶ $(\partial_1 \Phi, \partial_2 \Phi)$ is the desired orientation on S
 - ▶ The orientation of ∂S is consistent with the orientation of ∂R

Integration of a 2-Form over an Oriented Surface

- Idea: Chop S into rectangular surfaces S_1, \dots, S_N , where

$$S = \overline{S}_1 \cup \dots \cup \overline{S}_N$$

and $S_j \cap S_k = \emptyset$ for any $1 \leq j, k \leq N$

- If Θ is a 2-form on an open set $O \subset \mathbb{R}^3$ that contains S , then we define the integral of Θ over S to be

$$\int_S \Theta = \sum_{k=1}^N \int_{S_k} \Theta = \sum_{k=1}^N \int_{R_k} \Phi_k^* \Theta,$$

where each $\Phi_k : R_k \rightarrow S_k$ is a coordinate map

- Crucial assumption: The orientations used for the rectangular surfaces agrees with the orientation on S

Example: Integration over the Sphere

- ▶ Suppose $S = \{x^2 + y^2 + z^2 = \rho^2\}$ and we want to calculate

$$\int_S \Theta$$

- ▶ Use spherical coordinates

$$\begin{aligned}\Phi(\phi, \theta) &= (x, y, z) \\ &= (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi),\end{aligned}$$

where $0 < \phi < \pi$ and $0 < \theta < 2\pi$

- ▶ The integral is therefore

$$\int_S \Theta = \int_R \Phi^* \Theta,$$

where $R = (0, \pi) \times (0, 2\pi)$