MATH-UA 377 Differential Geometry:
Orientation of a Rectangular Surface
Integration of 2-form on an Oriented Rectangular Surface
Stokes's Theorem on a Rectangular Surface Integration of 2-form on an Oriented Surface

Deane Yang

Courant Institute of Mathematical Sciences
New York University
April 12, 2022

START RECORDING LIVE TRANSCRIPTION

Rectangular Surface in \mathbb{A}^{3}

- Let \mathbb{A}^{3} be affine 3 -space with tangent space \mathbb{V}^{3}
- A rectangular surface S is parameterized by a rectangle
- A rectangular surface consists of
- Open and closed rectangles

$$
R=(a, b) \times(c, d) \subset \bar{R}=[a, b] \times[c, d] \subset \mathbb{R}
$$

- A surjective C^{1} map $\Phi: \bar{R} \rightarrow \bar{S} \subset \mathbb{A}^{3}$
- The restriction of Φ to R is a coordinate map $\Phi: R \rightarrow S \cap O \subset \mathbb{A}^{3}$

Orientation on Parameterized Surface

- Orientation on a surface can be specified by a basis ($b_{1}(p), b_{2}(p)$ of T_{p} that depends continuously on $p \in S$
- A coordinate map $\Phi: D \rightarrow S$ is nondegenerate and bijective
- Therefore, $\left(b_{1}, b_{2}\right)=\left(\partial_{1} \Phi, \partial_{2} \Phi\right)$ is a basis of $T_{p} S$, for each $p=\Phi\left(x^{1}, x^{2}\right)$
- If $\left(\partial_{1} \Phi, \partial_{2} \Phi\right)$ is not the orientation we want, then we can switch the order of the input variables

Working Definition of Pullback of a 2-Form

- A 2-form Θ on an open set $O \subset \mathbb{R}^{3}$ can always be written as

$$
\Theta=a d y \wedge d z+b d z \wedge d x+c d x \wedge d y
$$

where a, b, c are scalar functions on O

- Consider a $C^{1} \operatorname{map} F: D \subset O$, where $D \subset \mathbb{R}^{2}$ is open
- Does not have to be a coordinate map
- We can write $F(u, v)=(x(u, v), y(u, v), z(u, v))$
- The pullback of Θ by F is the 2 -form on D

$$
F^{*} \Theta=a d y \wedge d z+b d z \wedge d x+c d x \wedge d y,
$$

where

$$
\begin{aligned}
a & =a(x(u, v), y(u, v), z(u, v) \\
b & =b(x(u, v), y(u, v), z(u, v) \\
c & =c(x(u, v), y(u, v), z(u, v) \\
d x & =\partial_{u} x d u+\partial_{v} x d v \\
d y & =\partial_{u} y d u+\partial_{v} y d v \\
d z & =\partial_{u} z d u+\partial_{v} z d v
\end{aligned}
$$

Integral of a 2-form on an Oriented Rectangular Surface S

- Let $\Phi: R=[a, b] \times[c, d] \rightarrow S$ be a coordinate chart, where $\left(\partial_{1} \Phi, \partial_{2} \Phi\right)$ has the correct orientation
- The pullback $\Phi^{*} \Theta$ is a 2 -form on R
- If $\left(u^{1}, u^{2}\right)$ are coordinates on \mathbb{R}^{2}, then the pullback can be written as

$$
\Phi^{*} \Theta=p\left(u^{1}, u^{2}\right) d u^{1} \wedge d u^{2}
$$

where p is a scalar function on R

- The integral is defined to be

$$
\begin{aligned}
\int_{S} \Theta & =\int_{R} \Phi^{*} \Theta \\
& =\int_{\left(u^{1}, u^{2}\right) \in r} p\left(u^{1}, u^{2}\right) d u^{1} \wedge d u^{2} \\
& =\int_{\left(u^{1}, u^{2}\right) \in D} p\left(u^{1}, u^{2}\right) d u^{1} d u^{2} \\
& =\int_{u^{1}=a}^{u^{2}=b} \int_{u^{2}=c}^{u^{2}=d} p\left(u^{1}, u^{2}\right) d u^{2} d u^{1}
\end{aligned}
$$

Example: Integral over cylinder

We want to compute

$$
\int_{C} y d x \wedge d z
$$

where

$$
C=\left\{x^{2}+y^{2}=\rho^{2}, 0 \leq z \leq h\right\}
$$

Parameterization of Cylinder

- Use cylindrical coordinates

$$
\Phi(u, v)=(\rho \cos u, \rho \sin u, v)
$$

where $-\pi<u<\pi$ and $0<v<h$

- Use orientation given by the basis $\left(\partial_{u} \Phi, \partial_{v} \Phi\right)$
- Therefore,

$$
\begin{aligned}
x & =\rho \cos u \\
y & =\rho \sin u \\
z & =v \\
d x & =-\rho \sin u d u \\
d y & =\rho \cos u d u \\
d z & =d v
\end{aligned}
$$

- The pullback of $y d x \wedge d z$ is

$$
\begin{aligned}
\Phi^{*}(y d x \wedge d z) & =(\rho \sin u)(-\rho \sin u) \wedge d v \\
& =-\rho^{2}(\sin u)^{2} d u \wedge d v
\end{aligned}
$$

Integral Over Cylinder

- PUtting everything together, we get

$$
\begin{aligned}
\int_{C} y d x \wedge d z & =\int_{R} \Phi^{*}(y d x \wedge d z) \\
& =\int_{R}-\rho^{2}(\sin u)^{2} d u \wedge d v \\
& =\int_{R}-\rho^{2}(\sin u)^{2} d u d v \\
& =\int_{u=-\pi}^{u=\pi} \int_{v=0}^{v=h}-\rho^{2}(\sin u)^{2} d v d u \\
& =-\rho^{2} \int_{u=-\pi}^{u=\pi}(\sin u)^{2} d u \int_{v=0}^{v=h} d v \\
& =-\rho^{2} h \int_{u=-\pi}^{u=\pi}(\sin u)^{2} d u
\end{aligned}
$$

Stokes's Theorem for a Rectangular Surface

- Let ω be a 1 -form on $O \subset \mathbb{R}^{3}$,

$$
\omega=p d x+q d y+r d z
$$

- Let S be a rectangular surface and $\Phi: R \rightarrow S$ be a coordinate map
- Stokes's Theorem says

$$
\int_{S} d \omega=\int_{\partial S} \omega
$$

Proof of Stokes's Theorem for a Rectangular Surface

- Key fact: If ω is a 1-form on an open set $O \subset \mathbb{R}^{3}$ and $F: D \rightarrow O$ is a C^{1} map, then

$$
F^{*}(d \omega)=d\left(F^{*} \omega\right)
$$

- Recall Stokes's Theorem for a rectangle: If $R \subset \mathbb{R}^{2}$ is a rectangle and θ is a 1 -form on \bar{R}, then

$$
\int_{R} d \theta=\int_{R} \theta
$$

- Therefore, if $\Phi: R \rightarrow S$ is a coordinate map for S, then

$$
\int_{S} d \omega=\int_{R} \Phi^{*}(d \omega)=\int_{R} d\left(\Phi^{*} \omega\right)=\int_{\partial R} \Phi^{*}(\omega)=\int_{\partial S} \omega
$$

- Crucial assumptions
- $\left(\partial_{1} \Phi, \partial_{2} \Phi\right)$ is the desired orientation on S
- The orientation of ∂S is consistent with the orientation of ∂R

Integration of a 2-Form over an Oriented Surface

- Idea: Chop S into rectangular surfaces S_{1}, \ldots, S_{N}, where

$$
S=\bar{S}_{1} \cup \cdots \cup \bar{S}_{N}
$$

and $S_{j} \cap S_{k}=\emptyset$ for any $1 \leq j, k \leq N$

- If Θ is a 2-form on an open set $O \subset \mathbb{R}^{3}$ that contains S, then we define the integral of Θ over S to be

$$
\int_{S} \Theta=\sum_{k=1}^{N} \int_{S_{k}} \Theta=\sum_{k=1}^{N} \int_{R_{k}} \Phi_{k}^{*} \Theta
$$

where each $\Phi_{k}: R_{k} \rightarrow S_{k}$ is a coordinate map

- Crucial assumption: The orientations used for the rectangular surfaces agrees with the orientation on S

Example: Integration over the Sphere

- Suppose $S=\left\{x^{2}+y^{2}+z^{2}=\rho^{2}\right\}$ and we want to calculate

$$
\int_{S} \Theta
$$

- Use spherical coordinates

$$
\begin{aligned}
\Phi(\phi, \theta) & =(x, y, z) \\
& =(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi),
\end{aligned}
$$

where $0<\phi<\pi$ and $0<\theta<2 \pi$

- The integral is therefore

$$
\int_{S} \Theta=\int_{R} \Phi^{*} \Theta
$$

where $R=(0, \pi) \times(0,2 \pi)$

