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Integration over a rectangle in R2

x1

x2

(b1, b2)(a1, b2)

(b1, a2)(a1, a2)

I Consider the rectangular region

R = {(x1, x2) : a1 ≤ x1 ≤ b1 and a2 ≤ x2 ≤ b2}
= [a1, b1]× [a1, b2].

I The integral of a continuous function f : R → R over R is
defined to be∫

R
f (x) dx =

∫ x1=b1

x1=a1

(∫ x2=b2

x2=a2

f (x1, x2) dx2

)
dx1.



Fubini Theorem

I The order of itegration over a rectangle does not matter.

I

∫ x1=b1

x1=a1

(∫ x2=b2

x2=a2

f (x1, x2) dx2

)
dx1

=

∫ x2=b2

x2=a2

(∫ x1=b1

x1=a1

f (x1, x2) dx1

)
dx2.



Integration over a rectangular region in R3

I Consider a 3-dimensional rectangular region,

R = [a1, b1]× [a2, b2]× [a3, b3]

I The integral of a continuous function f : R → R over R is
defined to be∫

R
f (x) dx

=

∫ x1=b1

x1=a1

(∫ x2=b2

x2=a2

(∫ x3=b3

x3=a3

f (x1, x2, x3) dx3

)
dx2

)
dx1

=

∫ x2=b2

x2=a2

(∫ x1=b1

x1=a1

(∫ x3=b3

x3=a3

f (x1, x2, x3) dx3

)
dx1

)
dx2

=

∫ x2=b2

x2=a2

(∫ x3=b3

x1=a3

(∫ x1=b1

x1=a1

f (x1, x2, x3) dx1

)
dx3

)
dx2

= · · ·



Example

x1

x2

(1, 1)(−2, 1)

(1,−1)(−2,−1)

I Let R = [−2, 1]× [−1, 1]
I Consider the integral∫

R
4xy − 3y2 dx dy =

∫ x=1

x=−2

∫ y=1

y=−1
4xy − 3y2 dy dx

=

∫ x=1

x=−2
2xy2 − y3

∣∣y=1

y=−1
dx

=

∫ x=1

x=−2
(2x − 1)− (2x + 1) dx

=

∫ x=1

x=−2
−2 dx

= −6



Oriented Parallelogram

I Given a point p ∈ A2 and a basis (v1, v2), we can define a
parallelogram

P(p, v1, v2){p + t1v1 + t2v2 : 0 ≤ t1, t2 ≤ 1}

I The corners are at p, p + v1, p + v2, p + v1 + v2

I An oriented parallelogram is the parallelogram P together
with the orientation of (v1, v2)



Integral of a Constant 2-Form on an Oriented
Parallelogram

I Let (∂1, ∂2) be the standard basis of R̂2

I Let (dx1, dx2) be the dual basis
I The integral of a constant 2-form

Θ = c dx1 ∧ dx2

over an oriented parallelogram P(p, v ,w), where

v = v1∂1 + v2∂2,w = w1∂1 + w2∂2 ∈ R̂2

is defined to be∫
R

Θ = 〈v ⊗ w ,Θ〉

= 〈c dx1 ∧ dx2, v ⊗ w〉
= c(〈dx1, v〉〈dx2,w〉 − 〈dx2, v〉〈dx1,w〉
= c(v1w2 − v2w1)

= c(signed area of R)



Integration of a 2-form over a small oriented rectangle
I A positively oriented rectangle is a parallelogram

P(p, a∂1, b∂2)

I Chop R into small rectangles Pij = P(pij , ai∂1, bj∂2),
1 ≤ i , j ≤ N.

I ai ai + ε

bj

bj + δ

x1

x2

∫
Rij

Θ ' 〈Θ(ai , bj), (ε∂1)⊗ (δ∂2)〉

= 〈f (ai , bj)dx
1 ∧ dx2), εδ∂1 ⊗ ∂2〉

= f (ai , bj)εδ〈dx1 ∧ dx2〉
= f (ai , bj)(area of Rij)



Integration of a 2-form over an oriented rectangle

I The integral of Θ over a rectangular region R is defined to be∫
R

Θ = lim
N→∞

∑
1≤i ,j≤N

∫
Rij

Θ

= lim
N→∞

∑
1≤i ,j≤N

∫
Rij

f (ai , bj) area(Rij)

=

∫ x1=p1+a

x1=p1

∫ x2=p2+b

x2=p2

f (x1, x2) dx2 dx1



Integration of 2-form on a rectangle in practice

I Let Θ = f dx1 ∧ dx2.

I Let R = [a1, b1]× [a2, b2].

I ∫
R

Θ =

∫ x1=b1

x1=a1

(∫ x2=b2

x2=a2

f (x1, x2) dx2

)
dx1

=

∫ x2=b2

x2=a2

(∫ x1=b1

x1=a1

f (x1, x2) dx1

)
dx2

I Higher dimensional integral over a rectangular region
(Cartesian product of intervals) is defined similarly



Order matters!
I Before you do the integration, you must write the m-form

with the dx1, . . . , dxm in the correct order.
I ∫

R
f (x1, x2) dx1 ∧ dx2 =

∫ x1=b1

x1=a1

(∫ x2=b2

x2=a2

f (x1, x2) dx2

)
dx1

=

∫ x2=b2

x2=a2

(∫ x1=b1

x1=a1

f (x1, x2) dx1

)
dx2

I But∫
R
f (x1, x2) dx2 ∧ dx1 = −

∫
R
f (x1, x2) dx1 ∧ dx2

= −
∫ x1=b1

x1=a1

(∫ x2=b2

x2=a2

f (x1, x2) dx2

)
dx1

= −
∫ x2=b2

x2=a2

(∫ x1=b1

x1=a1

f (x1, x2) dx1

)
dx2



Example

I Suppose R = [−4, 1]× [0, 4].

I ∫
R

(x + y) dy ∧ dx = −
∫
R

(x + y) dx ∧ dy

= −
∫ x=1

x=−4

(∫ y=4

y=0
x + y dy

)
dx

= −
∫ x=1

x=−4

(
xy +

y2

2

∣∣∣∣y=4

y=0

)
dx

= −
∫ x=1

x=−4
4x + 8 dx

= − (2x2 + 8x)
∣∣x=1

x=−4

= −((2 + 8)− (32− 32)) = −10



Example
I Suppose R = [0, 1]× [0, 4].
I Suppose θ = x dx + y dy and φ = y dx − x dy .∫

R
θ ∧ φ =

∫
R

(x dx + y dy) ∧ (y dx − x dy)

=

∫
R
−x2 dx ∧ dy + y2 dy ∧ dx

= −
∫
R

(x2 + y2) dx ∧ dy

= −
∫ y=4

y=0

(∫ x=1

x=0
(x2 + y2) dx

)
dy

= −
∫ y=4

y=0

(
x3

3
+ y2x

∣∣∣∣x=1

x=0

)
dy

= −
∫ y=4

y=0

1

3
+ y2 dy = −

(
y

3
+

y3

3

∣∣∣∣y=4

y=0

)
=

4

3
+

64

3

= −68

3



Orientation of the boundary of a rectangle

I Consider a rectangle with standard orientation

R

(x0, y0) (x0 + a, y0)

(x0, y0 + b) (x0 + b, y0 + b)

x

y

I The oriented boundary of R is the boundary with the
orientation where R lies to the left of the curve



Line integral of 1-form around boundary of rectangle

The line integral of θ = P(x , y) dx + Q(x , y) dy along the oriented
boundary ∂R is∫

∂R
θ =

∫ x=x0+a

x=x0

P(x , y0) dx +

∫ y=y0+b

y=y0

Q(x0 + a, y) dy∫ x=x0

x=x0+a
P(x , y0 + b) +

∫ y=y0

y=y0+b
Q(x0, y) dy



Fundamental theorem of calculus on a rectangle

∫
∂R
θ =

∫ x=x0+a

x=x0

P(x , y0) dx +

∫ y=y0+b

y=y0

Q(x0 + a, y) dy

+

∫ x=x0

x=x0+a
P(x , y0 + b) +

∫ y=y0

y=y0+b
Q(x0, y) dy

=

∫ y=y0+b

y=y0

Q(x0 + b, y)− Q(x0, y) dy

−
∫ x=x+0+a

x=x0

P(x , y0 + b)− P(x , y0) dx

=

∫ y=y0+b

y=y0

∫ x=x0+b

x=x0

∂xQ(x , y) dx dy

−
∫ x=x0+a

x=x0

∫ y=y0+b

y=y0

∂yP(x , y) dy dx

=

∫
R
∂xQ − ∂yP dx dy =

∫
R
∂xQ − ∂yP dx ∧ dy



Exterior derivative of a 1-form
I Given a 1-form

θ = P(x , y) dx + Q(x , y) dy

on an open domain D ⊂ R2, its exterior derivative is defined
to be the 2-form

dθ = (∂xQ − ∂yP) dx ∧ dy

I Another way to write the definition is

dθ = dP ∧ dx + dQ ∧ dy

because

dP ∧ dx + dQ ∧ dy = (∂xP dx + ∂yP dy) ∧ dx

+ (∂xQ dx + ∂yQ dy) ∧ dy

= ∂yP dy ∧ dx + ∂xQ dx ∧ dy

= (∂xQ − ∂yP) dx ∧ dy



Fundamental theorem of calculus on a rectangle

I Let ∂R be the boundary of R, oriented so that R lies to the
left of the boundary.

I Let θ be a 1-form on an open set containing R.

I Since the formulas match, we get the Fundamental Theorem
of Calculus on a rectange:∫

R
dθ =

∫
∂R
θ.

I If θ = P dx + Q dy , then this is∫
R

(Qx − Py ) dx ∧ dy =

∫
∂R

P dx + Q dy ,

which is also known as Green’s Theorem for a rectangle



Integration of 2-form over a surface parameterized by a
rectangle

I Let Φ : D → Am be a coordinate map, where D is an open
subset of R2

I Let S = Φ(D) be the surface parameterized by Φ

I Let R ⊂ D be a rectangle

I If Θ is a 2-form on D, then∫
Φ(R)

Θ =

∫
R

Φ∗Θ.



Integration using Polar Coordinates
I Let D = (0,∞)× (−π, π) ⊂ R2

I Let Φ : D → R2 be the coordinate map given by polar
coordinates:

Φ(r , θ) = (r cos θ, r sin θ) or (x , y) = (r cos θ, r sin θ)

I If Θ = f (x , y) dx ∧ dy , then

Φ∗Θ = f (r cos θ, r sin θ)d(r cos θ)∧d(r sin θ) = f (r cos θ, r sin θ)r dr∧dθ

I Therefore, If R ⊂ (0,∞)× (−π, π) is a rectangle and
S = Φ(R), then∫

S
Θ =

∫
S
f (x , y) dx ∧ dy

=

∫
R

Φ∗Θ

=

∫
R
f (r cos θ, r sin θ)r dr ∧ dθ



Example

I Iff R = [r1, r2]× [θ,θ2] ⊂ D,S = Φ(R) and
Θ = (x2 + y2) dx ∧ dy , then∫

S
Θ =

∫
R

Φ∗Θ

=

∫ r=r2

r=r1

∫ θ=θ2

θ=θ1

r2(r dr ∧ dθ)

=

∫ r=r2

r=r1

∫ θ=θ2

θ=θ1

r3 dr dθ

=

∫ r=r2

r=r1

r3 dr

∫ θ=θ2

θ=θ1

dθ

=
1

4
(r4

2 − r4
1 )(θ2 − θ1)


