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Tangent Space of a surface S

I Consider a surface S ⊂ Am, where m = 2 or 3
I The tangent space TpS at each point p is the vector space of

all possible velocity vectors at p.
I v ∈ TpS if and only if there is a curve c such that c(0) = p

and c ′(0) = p

I The tangent bundle is the disjoint union of all tangent spaces,

T∗S =
∐
p∈S

TpS

If v ∈ T∗S , then there is a unique point p ∈ S such that
v ∈ TpS

I A map V : S → T∗S such that V (p) ∈ TpS
I Given a coordinate map Φ : D → S ⊂ Am, there is a frame

(∂1, ∂2)
I A frame is an ordered pair of vector fields, (V1,V2), such that

for any p ∈ S , (V1(p),V2(p)) is a basis of TpS



Cotangent space

I The cotangent space at each p ∈ S is T ∗p S = (TpS)∗

I The cotangent bundle is the disjoint union of all cotangent
spaces,

T ∗S =
∐
p∈S

T ∗p S

If θ ∈ T ∗S , then there is a unique point p ∈ S such that
θ ∈ T ∗p S

I A 1-form is a map θ : S → T ∗S such that θ(p) ∈ T ∗p S

I Given a coordinate map Φ : D → S , the inverse map Φ−1

defines coordinate functions x i : Φ(D)→ R
I The differential of the coordinate functions define the

coordinate 1-forms (dx1, dx2)



Pullback of a Function
I Consider a function f (x1, x2) written with respect to

coordinates (x1, x2), like

f (x1, x2) = (x1)2 + (x2)2

I This defines a functionn f̃ = f ◦ Φ−1 : S → R, where

f̃ (p) = f (x1(p), x2(p))

I Conversely, given a function f̃ : S → R, we can define a
function f = f̃ ◦ Φ : D → R, where

f (x1, x2) = f̃ (Φ(x1, x2))

I We call f the pullback of f̃ by the map Φ

D S R
f

Φ f̃



Differential of Function Using Coordinates
I Given a function f (x1, x2), its differential is

df = ∂1f dx
1 + ∂2f dx

2

I Here, (x1, x2) : Φ(D)→ S and f (x1, x2) really means
f (x1(p), x2(p))

I So this formula shows how to write df in terms of the
coordinate functions (x1, x2) and their differentials

I Using this, we get all the standard rules of differentiation
I Sum: d(f + g) = df + dg
I Constant factor: d(cf ) = c df
I Product: d(fg) = g df + f dg

I Quotient: d
(

f
g

)
= g df−f dg

g2

I Chain:

d(u ◦ f ) = (u′ ◦ f )df

= u′(f (x1, x2)) (∂1f (x1, x2) dx1 + ∂2f (x1, x2) dx2)



Examples

I 1-forms

α = x dx + y dy

θ =
−y dx + x dy

x2 + y2

=

(
−y

x2 + y2

)
dx +

(
x

x2 + y2

)
dy

I Exterior derivative of a function

d(xy) = ∂x(xy) dx + ∂y (xy) dy = y dx + x dy

d(u2 + v2) = ∂u(u2 + v2) du + ∂v (u2 + v2) dv = 2u du + 2v dv



Line Integral of 1-form Along Oriented Curve

c(t)

v = c ′(t)

1

1

∂1

∂2

vθ(c(t)) = 0
θ(c(t)) = 1

θ(c(t)) = 2
θ(c(t)) = 3

θ(c(t)) = 4

I Suppose

c(t) =

(
t,

t

1 + t2

)
, t ∈ [0, 2]

and
θ = x2 dx1 − x1 dx2

I Calculate ∫
c
θ



Pullback of a 1-Form to a Parameterized Curve
I Given a 1-form θ on S and a curve c : I → S , we define the

pullback of θ by c to be the 1-form c∗θ on I , where

c∗θ = 〈θ(c(t)), c ′(t)〉 dt
I If

θ = a dx + b dy ,

then c∗θ is the 1-form on I you get if you replace x and y by
their parameterizations and calculate dx and dy using this
parameterization

c∗θ = a(x , y) dx + b(x , y) dy

= a(x(t), y(t)) x ′(t) dt + b(x(t), y(t)) y ′(t) dt

= (ax ′ + by ′) dt

I Example: If c(t) = (1 + t2, 2t), then

x = 1 + t2 and y = 2t

and therefore,

c∗(y2 dx+x y) = (2t)2(2t dt)+(1+t2) 2 dt = (8t3+2t2+2) dt



Line Integral of a 1-Form Along an Oriented Curve

I Consider an oriented interval I = [a, b], a parameterized curve
c : I → S and a 1-form θ

I The line integral of θ along the oriented curve is defined to be∫
I
c =

∫ t=b

t=a
c∗θ

I By the chain rule (also known as substitution), the value of
this integral is independent of the parameterization



Example
I Calculate ∫

C
x2 dx1 − x1 dx2,

where C is the oriented curve with a parameterization

c(t) =

(
t,

t

1 + t2

)
, 0 ≤ t ≤ 1

I Write the curve as

x1 = t x2 =
t

1 + t2

I Their differentials are

dx1 = dt dx2 =
1− t2

(1 + t2)2
dt

I Therefore,

θ = x2 dx1 − x1 dx2

=
t

1 + t2
dt − t

(
1− t2

(1 + t2)2

)
dt

=
−2t3 dt

(1 + t2)2

I The integral can now be calculated using substitution:∫
c
θ =

∫ t=2

t=0

−2t3 dt

(1 + t2)2



Example of Line Integral

I If c(t) = (x(t), y(t)), then, along the curve,

dx = x ′(t) dt dy = y ′(t) dt

I If θ = a1(x , y) dx + a2(x , y) dy , then, along the curve,

θ = a1(x(t), y(t))x ′(t) dt + a2(x(t), y(t))y ′(t) dt

I Therefore,∫
c
θ =

∫ t=b

t=a
(a1(x , y)x ′(t) + a2(x , y)y ′(t)) dt



Line Integral is independent of Parameterization
I Suppose we reparameterize c : [a, b]→ R2 by a new

parameter s,
c̃(s) = c(t(s)), α ≤ s ≤ β,

where t(α) = a and t(β) = b
I By the chain rule,

c̃ ′(s) = c ′(t(s))t ′(s)

I The line integral of the new parameterized curve is∫
c̃
θ =

∫ s=β

s=α
〈θ(c̃(s)), c̃ ′(s)〉 ds

=

∫ s=β

s=α
〈θ(c(t(s))), c ′(t(s))t ′(s)〉 ds

=

∫ s=β

s=α
〈θ(c(t(s))), c ′(t(s))〉t ′(s) ds

=

∫ t=b

t=a
〈θ(c(t)), c ′(t)〉dt =

∫
c
θ



Line Integral of 1-form Along Oriented Curve

c(b)

c(a)

I In the definition of a line integral∫
c
θ =

∫ t=b

t=a
〈θ(c(t)), c ′(t)〉 dt,

we do NOT have to assume that a ≤ b

I If c : [a, b] is a parameterization of an oriented curve, we can
set a to be the starting value of the parameter and b to be
the ending value of the parameter

I In other words, c(a) is the start of the curve and c(b) is the
end of the curve



Example

1

1

C

I Suppose we want to compute

∫
C

(x1 + 1) dx2 + (x2 − 1) dx1

I We can parameterize C by

c(t) = (t, t), 0 ≤ t ≤ 1,

where the start of C is c(1) and the end of C is c(0)
I Then ∫

C
x1 dx2 − x2 dx1 =

∫ t=0

t=1
(t + 1) dt + (t − 1) dt

=

∫ t=0

t=1
2t dt = t2

∣∣t=0

t=1
= −1



Fundamental Theorem of Line Integrals

I Suppose θ = df , where f : S → R
I Along a curve c : [a, b]→ S ,

df = ∂1f dx
1 + ∂2f dx

2

= (∂1f (x1, x2)(x1)′(t) + ∂2f (x1, x2)(x2)′(t)) dt

=

(
d

dt
f (x1(t), x2(t))

)
dt

= (f ◦ c)′(t) dt

I Therefore, by the Fundamental Theorem of Calculus,∫
c
df =

∫ t=b

t=a

(
d

dt
f (x1(t), x2(t))

)
dt

= f (x1(b), x2(b))− f (x1(a), x2(s))

= f (c(b))− f (c(a))



Example

I Let c : [a, b]→ R2 be a curve that starts at (−1, 2) and ends
at (5, 7)

I Suppose we want to calculate∫
c
x2 dx1 + x1 dx2

I Since d(x1x2) = x2 dx1 + x1 dx2,∫
c
x2 dx1 + x1 dx2 =

∫
c
d(x1x2)

= x1(b)x2(b)− x1(a)x2(a)

= 5(7)− (−1)(2)

= 37



Consequences

I The fundamental theorem of line integrals says∫
c
df = f (end of c)− f (start of c)

I If c1 and c2 are two curves that start at the same point and
end at the same point, then∫

c1

df =

∫
c2

df

I If c is a closed curve (i.e., its start and end points are the
same), then ∫

c
df = 0


