MATH-UA 377 Differential Geometry:
 Coordinate Vector Fields and 1-Forms
 Exterior Derivative of a Function
 Pullback of a 1-form to Parameterized Curve
 Line Integral of a 1-form
 Fundamental Theorem of Line Integrals

Deane Yang

Courant Institute of Mathematical Sciences
New York University

April 5, 2022

START RECORDING LIVE TRANSCRIPTION

Tangent Space of a surface S

- Consider a surface $S \subset \mathbb{A}^{m}$, where $m=2$ or 3
- The tangent space $T_{p} S$ at each point p is the vector space of all possible velocity vectors at p.
- $v \in T_{p} S$ if and only if there is a curve c such that $c(0)=p$ and $c^{\prime}(0)=p$
- The tangent bundle is the disjoint union of all tangent spaces,

$$
T_{*} S=\coprod_{p \in S} T_{p} S
$$

If $v \in T_{*} S$, then there is a unique point $p \in S$ such that $v \in T_{p} S$

- A map $V: S \rightarrow T_{*} S$ such that $V(p) \in T_{p} S$
- Given a coordinate map $\Phi: D \rightarrow S \subset \mathbb{A}^{m}$, there is a frame $\left(\partial_{1}, \partial_{2}\right)$
- A frame is an ordered pair of vector fields, $\left(V_{1}, V_{2}\right)$, such that for any $p \in S,\left(V_{1}(p), V_{2}(p)\right)$ is a basis of $T_{p} S$

Cotangent space

- The cotangent space at each $p \in S$ is $T_{p}^{*} S=\left(T_{p} S\right)^{*}$
- The cotangent bundle is the disjoint union of all cotangent spaces,

$$
T^{*} S=\coprod_{p \in S} T_{p}^{*} S
$$

If $\theta \in T^{*} S$, then there is a unique point $p \in S$ such that $\theta \in T_{p}^{*} S$

- A 1-form is a map $\theta: S \rightarrow T^{*} S$ such that $\theta(p) \in T_{p}^{*} S$
- Given a coordinate map $\Phi: D \rightarrow S$, the inverse map Φ^{-1} defines coordinate functions $x^{i}: \Phi(D) \rightarrow \mathbb{R}$
- The differential of the coordinate functions define the coordinate 1 -forms $\left(d x^{1}, d x^{2}\right)$

Pullback of a Function

- Consider a function $f\left(x^{1}, x^{2}\right)$ written with respect to coordinates $\left(x^{1}, x^{2}\right)$, like

$$
f\left(x^{1}, x^{2}\right)=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}
$$

- This defines a functionn $\tilde{f}=f \circ \Phi^{-1}: S \rightarrow \mathbb{R}$, where

$$
\tilde{f}(p)=f\left(x^{1}(p), x^{2}(p)\right)
$$

- Conversely, given a function $\tilde{f}: S \rightarrow \mathbb{R}$, we can define a function $f=\tilde{f} \circ \Phi: D \rightarrow \mathbb{R}$, where

$$
f\left(x^{1}, x^{2}\right)=\tilde{f}\left(\Phi\left(x^{1}, x^{2}\right)\right)
$$

- We call f the pullback of \tilde{f} by the map Φ

Differential of Function Using Coordinates

- Given a function $f\left(x^{1}, x^{2}\right)$, its differential is

$$
d f=\partial_{1} f d x^{1}+\partial_{2} f d x^{2}
$$

- Here, $\left(x^{1}, x^{2}\right): \Phi(D) \rightarrow S$ and $f\left(x^{1}, x^{2}\right)$ really means $f\left(x^{1}(p), x^{2}(p)\right)$
- So this formula shows how to write $d f$ in terms of the coordinate functions (x^{1}, x^{2}) and their differentials
- Using this, we get all the standard rules of differentiation
- Sum: $d(f+g)=d f+d g$
- Constant factor: $d(c f)=c d f$
- Product: $d(f g)=g d f+f d g$
- Quotient: $d\left(\frac{f}{g}\right)=\frac{g d f-f d g}{g^{2}}$
- Chain:

$$
\begin{aligned}
d(u \circ f) & =\left(u^{\prime} \circ f\right) d f \\
& =u^{\prime}\left(f\left(x^{1}, x^{2}\right)\right)\left(\partial_{1} f\left(x^{1}, x^{2}\right) d x^{1}+\partial_{2} f\left(x^{1}, x^{2}\right) d x^{2}\right)
\end{aligned}
$$

Examples

- 1-forms

$$
\begin{aligned}
\alpha & =x d x+y d y \\
\theta & =\frac{-y d x+x d y}{x^{2}+y^{2}} \\
& =\left(\frac{-y}{x^{2}+y^{2}}\right) d x+\left(\frac{x}{x^{2}+y^{2}}\right) d y
\end{aligned}
$$

- Exterior derivative of a function

$$
\begin{aligned}
d(x y) & =\partial_{x}(x y) d x+\partial_{y}(x y) d y=y d x+x d y \\
d\left(u^{2}+v^{2}\right) & =\partial_{u}\left(u^{2}+v^{2}\right) d u+\partial_{v}\left(u^{2}+v^{2}\right) d v=2 u d u+2 v d v
\end{aligned}
$$

Line Integral of 1-form Along Oriented Curve

- Suppose

$$
c(t)=\left(t, \frac{t}{1+t^{2}}\right), t \in[0,2]
$$

and

$$
\theta=x^{2} d x^{1}-x^{1} d x^{2}
$$

- Calculate

$$
\int_{c} \theta
$$

Pullback of a 1-Form to a Parameterized Curve

- Given a 1-form θ on S and a curve $c: I \rightarrow S$, we define the pullback of θ by c to be the 1 -form $c^{*} \theta$ on I, where

$$
c^{*} \theta=\left\langle\theta(c(t)), c^{\prime}(t)\right\rangle d t
$$

- If

$$
\theta=a d x+b d y
$$

then $c^{*} \theta$ is the 1 -form on I you get if you replace x and y by their parameterizations and calculate $d x$ and $d y$ using this parameterization

$$
\begin{aligned}
c^{*} \theta & =a(x, y) d x+b(x, y) d y \\
& =a(x(t), y(t)) x^{\prime}(t) d t+b(x(t), y(t)) y^{\prime}(t) d t \\
& =\left(a x^{\prime}+b y^{\prime}\right) d t
\end{aligned}
$$

- Example: If $c(t)=\left(1+t^{2}, 2 t\right)$, then

$$
x=1+t^{2} \text { and } y=2 t
$$

and therefore,
$c^{*}\left(y^{2} d x+x y\right)=(2 t)^{2}(2 t d t)+\left(1+t^{2}\right) 2 d t=\left(8 t^{3}+2 t^{2}\right.$ 丰 2$) d t$

Line Integral of a 1-Form Along an Oriented Curve

- Consider an oriented interval $I=[a, b]$, a parameterized curve $c: I \rightarrow S$ and a 1 -form θ
- The line integral of θ along the oriented curve is defined to be

$$
\int_{I} c=\int_{t=a}^{t=b} c^{*} \theta
$$

- By the chain rule (also known as substitution), the value of this integral is independent of the parameterization

Example

- Calculate

$$
\int_{C} x^{2} d x^{1}-x^{1} d x^{2}
$$

where C is the oriented curve with a parameterization

$$
c(t)=\left(t, \frac{t}{1+t^{2}}\right), 0 \leq t \leq 1
$$

- Write the curve as

$$
x^{1}=t \quad x^{2}=\frac{t}{1+t^{2}}
$$

- Their differentials are

$$
d x^{1}=d t \quad d x^{2}=\frac{1-t^{2}}{\left(1+t^{2}\right)^{2}} d t
$$

- Therefore,

$$
\begin{aligned}
\theta & =x^{2} d x^{1}-x^{1} d x^{2} \\
& =\frac{t}{1+t^{2}} d t-t\left(\frac{1-t^{2}}{\left(1+t^{2}\right)^{2}}\right) d t
\end{aligned}
$$

Example of Line Integral

- If $c(t)=(x(t), y(t))$, then, along the curve,

$$
d x=x^{\prime}(t) d t \quad d y=y^{\prime}(t) d t
$$

- If $\theta=a_{1}(x, y) d x+a_{2}(x, y) d y$, then, along the curve,

$$
\theta=a_{1}(x(t), y(t)) x^{\prime}(t) d t+a_{2}(x(t), y(t)) y^{\prime}(t) d t
$$

- Therefore,

$$
\int_{c} \theta=\int_{t=a}^{t=b}\left(a_{1}(x, y) x^{\prime}(t)+a_{2}(x, y) y^{\prime}(t)\right) d t
$$

Line Integral is independent of Parameterization

- Suppose we reparameterize $c:[a, b] \rightarrow \mathbb{R}^{2}$ by a new parameter s,

$$
\tilde{c}(s)=c(t(s)), \alpha \leq s \leq \beta
$$

where $t(\alpha)=a$ and $t(\beta)=b$

- By the chain rule,

$$
\tilde{c}^{\prime}(s)=c^{\prime}(t(s)) t^{\prime}(s)
$$

- The line integral of the new parameterized curve is

$$
\begin{aligned}
\int_{\tilde{c}} \theta & =\int_{s=\alpha}^{s=\beta}\left\langle\theta(\tilde{c}(s)), \tilde{c}^{\prime}(s)\right\rangle d s \\
& =\int_{s=\alpha}^{s=\beta}\left\langle\theta(c(t(s))), c^{\prime}(t(s)) t^{\prime}(s)\right\rangle d s \\
& =\int_{s=\alpha}^{s=\beta}\left\langle\theta(c(t(s))), c^{\prime}(t(s))\right\rangle t^{\prime}(s) d s \\
& =\int_{t=a}^{t=b}\left\langle\theta(c(t)), c^{\prime}(t)\right\rangle d t=\int_{c} \theta
\end{aligned}
$$

Line Integral of 1-form Along Oriented Curve

- In the definition of a line integral

$$
\int_{c} \theta=\int_{t=a}^{t=b}\left\langle\theta(c(t)), c^{\prime}(t)\right\rangle d t
$$

we do NOT have to assume that $a \leq b$

- If $c:[a, b]$ is a parameterization of an oriented curve, we can set a to be the starting value of the parameter and b to be the ending value of the parameter
- In other words, $c(a)$ is the start of the curve and $c(b)$ is the end of the curve

Example

- Suppose we want to compute $\int_{C}\left(x^{1}+1\right) d x^{2}+\left(x^{2}-1\right) d x^{1}$
- We can parameterize C by

$$
c(t)=(t, t), 0 \leq t \leq 1
$$

where the start of C is $c(1)$ and the end of C is $c(0)$

- Then

$$
\begin{aligned}
\int_{C} x^{1} d x^{2}-x^{2} d x^{1} & =\int_{t=1}^{t=0}(t+1) d t+(t-1) d t \\
& =\int_{t=1}^{t=0} 2 t d t=\left.t^{2}\right|_{t=1} ^{t=0}=-1
\end{aligned}
$$

Fundamental Theorem of Line Integrals

- Suppose $\theta=d f$, where $f: S \rightarrow \mathbb{R}$
- Along a curve $c:[a, b] \rightarrow S$,

$$
\begin{aligned}
d f & =\partial_{1} f d x^{1}+\partial_{2} f d x^{2} \\
& =\left(\partial_{1} f\left(x^{1}, x^{2}\right)\left(x^{1}\right)^{\prime}(t)+\partial_{2} f\left(x^{1}, x^{2}\right)\left(x^{2}\right)^{\prime}(t)\right) d t \\
& =\left(\frac{d}{d t} f\left(x^{1}(t), x^{2}(t)\right)\right) d t \\
& =(f \circ c)^{\prime}(t) d t
\end{aligned}
$$

- Therefore, by the Fundamental Theorem of Calculus,

$$
\begin{aligned}
\int_{c} d f & =\int_{t=a}^{t=b}\left(\frac{d}{d t} f\left(x^{1}(t), x^{2}(t)\right)\right) d t \\
& =f\left(x^{1}(b), x^{2}(b)\right)-f\left(x^{1}(a), x^{2}(s)\right) \\
& =f(c(b))-f(c(a))
\end{aligned}
$$

Example

- Let $c:[a, b] \rightarrow \mathbb{R}^{2}$ be a curve that starts at $(-1,2)$ and ends at $(5,7)$
- Suppose we want to calculate

$$
\int_{c} x^{2} d x^{1}+x^{1} d x^{2}
$$

- Since $d\left(x^{1} x^{2}\right)=x^{2} d x^{1}+x^{1} d x^{2}$,

$$
\begin{aligned}
\int_{c} x^{2} d x^{1}+x^{1} d x^{2} & =\int_{c} d\left(x^{1} x^{2}\right) \\
& =x^{1}(b) x^{2}(b)-x^{1}(a) x^{2}(a) \\
& =5(7)-(-1)(2) \\
& =37
\end{aligned}
$$

Consequences

- The fundamental theorem of line integrals says

$$
\int_{c} d f=f(\text { end of } c)-f(\text { start of } c)
$$

- If c_{1} and c_{2} are two curves that start at the same point and end at the same point, then

$$
\int_{c_{1}} d f=\int_{c_{2}} d f
$$

- If c is a closed curve (i.e., its start and end points are the same), then

$$
\int_{c} d f=0
$$

