MATH-UA 377 Differential Geometry:
 Coordinate Vector Fields and 1-Forms
 Exterior Derivative of a Function in Coordinates Line Integral

Deane Yang

Courant Institute of Mathematical Sciences New York University

March 29-31, 2022

START RECORDING LIVE TRANSCRIPTION

Coordinates on a Parameterized Surface

- Let $S \subset \mathbb{A}^{m}$, where $m=2$ or 3 , be a parameterized surface and

$$
\Phi: D \rightarrow S
$$

be a coordinate map, where D is an open subset of \mathbb{R}^{2}

- The inverse map

$$
\Phi^{-1}: S \rightarrow D
$$

consists of scalar functions

$$
x^{1}: S \rightarrow \mathbb{R} \text { and } x^{2}: S \rightarrow \mathbb{R}
$$

where for each $p \in D$,

$$
\Phi\left(x^{1}(p), x^{2}(p)\right)=p
$$

or, equivalently,

$$
x^{1}\left(\Phi\left(y^{1}, y^{2}\right)\right)=y^{1} \text {, i.e., } x^{1} \Phi(s, t)=s
$$

Examples

- Standard coordinates on \mathbb{R}^{2}
- Parameter domain: $D=\mathbb{R}^{2}$
- Surface: $S=\mathbb{R}^{2}$
- Coordinate map is identity map, i.e.,

$$
\Phi\left(x^{1}, x^{2}\right)=\left(x^{1}, x^{2}\right)
$$

- Polar coordinates on \mathbb{R}^{2}
- Parameter domain: $D=(0, \infty) \times(-\pi, \pi)$
- Surface: $S=\mathbb{R}^{2} \backslash\{(0, y): y \leq 0\}$
- Coordinate map: $\Phi(r, \theta)=(r \cos \theta, r \sin \theta)$

Coordinate Vector fields on Surface

- Let $T_{p} S \subset \mathbb{V}^{m}$ be the tangent space of S at $p \in S$
- If $m=n 2$, then $T_{p} S=\mathbb{V}^{2}$
- A vector field on S is a map $V: S \rightarrow \mathbb{V}^{m}$ such that $V(p) \in T_{p} S$
- Given any point $p=\Phi\left(x^{1}, x^{2}\right) \in S$, we can define the curves

$$
c_{1}(t)=\Phi\left(x^{1}+t, x^{2}\right) \text { and } c_{2}(t)=\Phi\left(x^{1}, x^{2}+t\right)
$$

- $c_{1}(0)=c_{2}(0)=\Phi\left(x^{1}, x^{2}\right)=p$
- Velocity of each curve at p is

$$
c_{1}^{\prime}(0)=\partial_{1} \Phi\left(x^{1}, x^{2}\right) \text { and } c_{2}^{\prime}(0)=\partial_{2} \Phi\left(x^{1}, x^{2}\right)
$$

- Since Φ is nondegenerate, these two vectors are a basis of $T_{p} S$

Coordinate Vector Fields on Surface

- Coordinate vector fields of a coordinate map $\Phi\left(x^{1}, x^{2}\right)$ are ∂_{1} and ∂_{2}, where for each $p \in S$,

$$
\begin{aligned}
& \partial_{1}(p)=\partial_{1} \Phi\left(x^{1}(p), x^{2}(p)\right) \in T_{p} S \\
& \partial_{2}(p)=\partial_{2} \Phi\left(x^{1}(p), x^{2}(p)\right) \in T_{p} S
\end{aligned}
$$

Velocity of a Curve With Respect to Coordinates

- Consider a curve $c: I \rightarrow S$ such that $c(0)=p$ and $c^{\prime}(0)=v$
- There are functions $x^{1}: I \rightarrow \mathbb{R}$ and $x^{2}: I \rightarrow \mathbb{R}$ such that

$$
c(t)=\Phi\left(x^{1}(t), x^{2}(t)\right) \in S
$$

- On one hand, since $\left(\partial_{1}, \partial_{2}\right)$ is a basis of $T_{p} S$, the velocity of c at $t=0$ can be written as

$$
c^{\prime}(0)=v=v^{1} \partial_{1}+v^{2} \partial_{2}
$$

- On the other hand, by the chain rule,

$$
\begin{aligned}
c^{\prime}(0) & =\partial_{1} \Phi\left(x^{1}, x^{2}\right) \dot{x}^{1}(0)=\partial_{2} \Phi\left(x^{1}, x^{2}\right) \dot{x}^{2}(0) \\
& =\dot{x}^{1} \partial_{1}+\dot{x}^{2} \partial_{2}
\end{aligned}
$$

- Therefore, if $c(t)=\Phi\left(x^{1}(t), x^{2}(t)\right)$, then

$$
\dot{x}^{1}(0)=v^{1} \text { and } \dot{x}^{2}(0)=v^{2}
$$

Coordinate 1-forms on a Surface

- Given a function $f: S \rightarrow \mathbb{R}$, its exterior derivative is a 1-form $d f$, where for each $p \in S$ and $v \in T_{p} S$,

$$
\langle v, d f(p)\rangle=\left.\frac{d}{d t}\right|_{t=0} f(c(t))
$$

where c is a curve such that $c(0)=p$ and $c^{\prime}(0)=v$

- Therefore, if $d x^{1}$ is the differential of the coordinate function $x^{1}: S \rightarrow \mathbb{R}$ and $v=v^{1} \partial_{1}+v^{2} \partial_{2}$, then
$\left\langle v, d x^{1}(p)\right\rangle=\left.\frac{d}{d t}\right|_{t=0} x^{1}\left(\Phi\left(x^{1}(t), x^{2}(t)\right)=\left.\frac{d}{d t}\right|_{t=0} x^{1}(t)=\dot{x}^{1}=v^{1}\right.$
- It follows that for each $p \in S$,

$$
\left(d x^{1}(p), d x^{2}(p)\right) \text { is the basis of } T_{p}^{*} S
$$

dual to the basis

$$
\left(\partial_{1}(p), \partial_{2}(p)\right) \text { of } T_{p} S
$$

Pullback of a Function

- Consider a function $f\left(x^{1}, x^{2}\right)$ written with respect to coordinates $\left(x^{1}, x^{2}\right)$, like

$$
f\left(x^{1}, x^{2}\right)=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}
$$

- This defines a functionn $\tilde{f}=f \circ \Phi^{-1}: S \rightarrow \mathbb{R}$, where

$$
\tilde{f}(p)=f\left(x^{1}(p), x^{2}(p)\right)
$$

- Conversely, given a function $\tilde{f}: S \rightarrow \mathbb{R}$, we can define a function $f=\tilde{f} \circ \Phi: D \rightarrow \mathbb{R}$, where

$$
f\left(x^{1}, x^{2}\right)=\tilde{f}\left(\Phi\left(x^{1}, x^{2}\right)\right)
$$

- We call f the pullback of \tilde{f} by the map Φ

Differential of Function Using Coordinates

- Given $p \in S$ and $v=v^{1} \partial_{1}+v^{2} \partial_{2} \in T_{p} S$, the exterior derivative of \tilde{f} is

$$
\begin{aligned}
\langle v, d \tilde{f}(p)\rangle & =\left.\frac{d}{d t}\right|_{t=0} \tilde{f}(c(t)) \\
& =\left.\frac{d}{d t}\right|_{t=0} f\left(x^{1}(t), x^{2}(t)\right) \\
& =\dot{x}^{1} \partial_{1} f+\dot{x}^{2} \partial_{2} f \\
& =v^{1} \partial_{1} f+v^{2} \partial_{2} f \\
& =\left\langle v^{1} \partial_{1}+v^{2} \partial_{2}, d x^{1} \partial_{1} f+d x^{2} \partial_{2} f\right\rangle \\
& =\left\langle v, d x^{1} \partial_{1} f+d x^{2} \partial_{2} f\right\rangle
\end{aligned}
$$

- Since this holds for any $v \in T_{p} S$, we get

$$
d \tilde{f}=\partial_{1} f d x^{1}+\partial_{2} f d x^{2}
$$

Exterior Derivative of a Function

- Therefore,

$$
d \tilde{f}=d x^{1} \partial_{1} f+d x^{2} \partial_{2} f
$$

- It follows that, given a function $f: D \rightarrow \mathbb{R}$,
- For convenience, we will also write \tilde{f} as just f
- So when we write $f\left(x^{1}, x^{2}\right)$, we sometimes really mean $f\left(x^{1}(p), x^{2}(p)\right)$

Confusing notation

- Depending on the context, there two possible meanings of $f\left(x^{1}, x^{2}\right)$
- If there is no abstract surface anywhere, then $f\left(x^{1}, x^{2}\right)$ is just a function on a domain in \mathbb{R}^{2}
- If there is an abstract surface and a coordinate map $\Phi\left(x^{1}, x^{2}\right)$, then $f\left(x^{1}, x^{2}\right)$ is the function $\tilde{f}(p)=f\left(x^{1}(p), x^{2}(p)\right)$
- Either way,

$$
d f=\partial_{1} f d x^{1}+\partial_{2} f d x^{2}
$$

- If we write f as $f(s, t)$, then

$$
d f=\partial_{s} f d s+\partial_{t} f d t
$$

Examples

- 1-forms

$$
\begin{aligned}
\alpha & =x d x+y d y \\
\theta & =\frac{-y d x+x d y}{x^{2}+y^{2}} \\
& =\left(\frac{-y}{x^{2}+y^{2}}\right) d x+\left(\frac{x}{x^{2}+y^{2}}\right) d y
\end{aligned}
$$

- Exterior derivative of a function

$$
\begin{aligned}
d(x y) & =\partial_{x}(x y) d x+\partial_{y}(x y) d y=y d x+x d y \\
d\left(u^{2}+v^{2}\right) & =\partial_{u}\left(u^{2}+v^{2}\right) d u+\partial_{v}\left(u^{2}+v^{2}\right) d v=2 u d u+2 v d v
\end{aligned}
$$

Line Integral of a Vector Field along a Curve

- Recall that in Calculus III a line integral was an integral of a vector field V along a parameterized curve $c:[a, b] \rightarrow \mathbb{R}^{m}$:

$$
\int_{c} V \cdot d \vec{r}=\int_{t=a}^{t=b} V(c(t)) \cdot c^{\prime}(t) d t
$$

- This requires the dot product, which we want to avoid
- Observation: For each t, the integrand is a linear function of $c^{\prime}(t) \in \widehat{\mathbb{R}}^{m}$
- Therefore, the integrand is the value of a 1-form evaluated on the vector $c^{\prime}(t)$
- Conclusion: The natural dot-product-free thing to integrate is a differential 1-form

Abstract Definition of a Line Integral

- Let $C \subset S$ be an oriented curve in S with a parameterization

$$
c:\left[t_{\text {start }}, t_{\mathrm{end}}\right] \rightarrow S
$$

- We do not assume that $t_{\text {start }} \leq t_{\text {end }}$
- Given a 1-form θ on S, we write the line integral of θ on C to be

$$
\int_{C} \theta
$$

- The abstract definition of the line integral is

$$
\int_{c} \theta=\int_{t=a}^{t=b}\left\langle\theta(c(t)), c^{\prime}(t)\right\rangle d t
$$

- This shows that the value of the line integral does not depend on the coordinates on S
- The value of the integral also does not depend on the parameterization of C

