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Coordinates on a Parameterized Surface
I Let S ⊂ Am, where m = 2 or 3, be a parameterized surface

and
Φ : D → S

be a coordinate map, where D is an open subset of R2

I The inverse map
Φ−1 : S → D

consists of scalar functions

x1 : S → R and x2 : S → R,

where for each p ∈ D,

Φ(x1(p), x2(p)) = p

or, equivalently,

x1(Φ(y1, y2)) = y1, i.e., x1Φ(s, t) = s



Examples

I Standard coordinates on R2

I Parameter domain: D = R2

I Surface: S = R2

I Coordinate map is identity map, i.e.,

Φ(x1, x2) = (x1, x2)

I Polar coordinates on R2

I Parameter domain: D = (0,∞)× (−π, π)
I Surface: S = R2\{(0, y) : y ≤ 0}
I Coordinate map: Φ(r , θ) = (r cos θ, r sin θ)



Coordinate Vector fields on Surface

I Let TpS ⊂ Vm be the tangent space of S at p ∈ S
I If m = n2, then TpS = V2

I A vector field on S is a map V : S → Vm such that
V (p) ∈ TpS

I Given any point p = Φ(x1, x2) ∈ S , we can define the curves

c1(t) = Φ(x1 + t, x2) and c2(t) = Φ(x1, x2 + t)

I c1(0) = c2(0) = Φ(x1, x2) = p

I Velocity of each curve at p is

c ′1(0) = ∂1Φ(x1, x2) and c ′2(0) = ∂2Φ(x1, x2)

I Since Φ is nondegenerate, these two vectors are a basis of TpS



Coordinate Vector Fields on Surface

I Coordinate vector fields of a coordinate map Φ(x1, x2) are ∂1

and ∂2, where for each p ∈ S ,

∂1(p) = ∂1Φ(x1(p), x2(p)) ∈ TpS

∂2(p) = ∂2Φ(x1(p), x2(p)) ∈ TpS



Velocity of a Curve With Respect to Coordinates
I Consider a curve c : I → S such that c(0) = p and c ′(0) = v

I There are functions x1 : I → R and x2 : I → R such that

c(t) = Φ(x1(t), x2(t)) ∈ S

I On one hand, since (∂1, ∂2) is a basis of TpS , the velocity of
c at t = 0 can be written as

c ′(0) = v = v1∂1 + v2∂2

I On the other hand, by the chain rule,

c ′(0) = ∂1Φ(x1, x2)ẋ1(0) = ∂2Φ(x1, x2)ẋ2(0)

= ẋ1∂1 + ẋ2∂2

I Therefore, if c(t) = Φ(x1(t), x2(t)), then

ẋ1(0) = v1 and ẋ2(0) = v2



Coordinate 1-forms on a Surface
I Given a function f : S → R, its exterior derivative is a 1-form

df , where for each p ∈ S and v ∈ TpS ,

〈v , df (p)〉 =
d

dt

∣∣∣∣
t=0

f (c(t)),

where c is a curve such that c(0) = p and c ′(0) = v

I Therefore, if dx1 is the differential of the coordinate function
x1 : S → R and v = v1∂1 + v2∂2, then

〈v , dx1(p)〉 =
d

dt

∣∣∣∣
t=0

x1(Φ(x1(t), x2(t)) =
d

dt

∣∣∣∣
t=0

x1(t) = ẋ1 = v1

I It follows that for each p ∈ S ,

(dx1(p), dx2(p)) is the basis of T ∗p S

dual to the basis

(∂1(p), ∂2(p)) of TpS



Pullback of a Function
I Consider a function f (x1, x2) written with respect to

coordinates (x1, x2), like

f (x1, x2) = (x1)2 + (x2)2

I This defines a functionn f̃ = f ◦ Φ−1 : S → R, where

f̃ (p) = f (x1(p), x2(p))

I Conversely, given a function f̃ : S → R, we can define a
function f = f̃ ◦ Φ : D → R, where

f (x1, x2) = f̃ (Φ(x1, x2))

I We call f the pullback of f̃ by the map Φ

D S R
f

Φ f̃



Differential of Function Using Coordinates

I Given p ∈ S and v = v1∂1 + v2∂2 ∈ TpS , the exterior
derivative of f̃ is

〈v , df̃ (p)〉 =
d

dt

∣∣∣∣
t=0

f̃ (c(t))

=
d

dt

∣∣∣∣
t=0

f (x1(t), x2(t))

= ẋ1∂1f + ẋ2∂2f

= v1∂1f + v2∂2f

= 〈v1∂1 + v2∂2, dx
1 ∂1f + dx2 ∂2f 〉

= 〈v , dx1 ∂1f + dx2 ∂2f 〉

I Since this holds for any v ∈ TpS , we get

df̃ = ∂1f dx
1 + ∂2f dx

2



Exterior Derivative of a Function

I Therefore,
df̃ = dx1∂1f + dx2∂2f

I It follows that, given a function f : D → R,

I For convenience, we will also write f̃ as just f

I So when we write f (x1, x2), we sometimes really mean
f (x1(p), x2(p))



Confusing notation

I Depending on the context, there two possible meanings of
f (x1, x2)

I If there is no abstract surface anywhere, then f (x1, x2) is just
a function on a domain in R2

I If there is an abstract surface and a coordinate map Φ(x1, x2),
then f (x1, x2) is the function f̃ (p) = f (x1(p), x2(p))

I Either way,
df = ∂1f dx

1 + ∂2f dx
2

I If we write f as f (s, t), then

df = ∂s f ds + ∂t f dt



Examples

I 1-forms

α = x dx + y dy

θ =
−y dx + x dy

x2 + y2

=

(
−y

x2 + y2

)
dx +

(
x

x2 + y2

)
dy

I Exterior derivative of a function

d(xy) = ∂x(xy) dx + ∂y (xy) dy = y dx + x dy

d(u2 + v2) = ∂u(u2 + v2) du + ∂v (u2 + v2) dv = 2u du + 2v dv



Line Integral of a Vector Field along a Curve

I Recall that in Calculus III a line integral was an integral of a
vector field V along a parameterized curve c : [a, b]→ Rm:∫

c
V · d~r =

∫ t=b

t=a
V (c(t)) · c ′(t) dt

I This requires the dot product, which we want to avoid

I Observation: For each t, the integrand is a linear function of
c ′(t) ∈ R̂m

I Therefore, the integrand is the value of a 1-form evaluated on
the vector c ′(t)

I Conclusion: The natural dot-product-free thing to integrate is
a differential 1-form



Abstract Definition of a Line Integral
I Let C ⊂ S be an oriented curve in S with a parameterization

c : [tstart, tend]→ S

I We do not assume that tstart ≤ tend

I Given a 1-form θ on S , we write the line integral of θ on C to
be ∫

C
θ

I The abstract definition of the line integral is∫
c
θ =

∫ t=b

t=a
〈θ(c(t)), c ′(t)〉 dt

I This shows that the value of the line integral does not depend
on the coordinates on S

I The value of the integral also does not depend on the
parameterization of C


