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Dual Vector Space
I Let V be an m-dimensional vector space

I The dual vector space of V is the vector space

V∗ = { linear functions V→ R}

I There is a natural function

V× V∗ → R
(v , `) 7→ 〈`, v〉 = 〈v , `〉 = `(v)

I There is a natural linear map

V→ (V∗)∗

v 7→ fv ,

where
fv (`) = `(v)

I Easy to check this is an isomorphism



Dual Basis

I Given a basis of V,

B =
[
b1 . . . bm

]
the dual basis is the basis

B∗ =

β
1

...
βm

 ,
where

〈βk , bj〉 =

{
1 if j = k

0 if j 6= k

I Equivalently, for any v = a1b1 + · · · ambm ∈ V,

〈βk , v〉 = 〈βk , a1b1 + · · · ambm〉 = ak



The Dual Basis is a Basis of the Dual Vector Space
I If ` ∈ V∗, let

ck = 〈`, bk〉
I Recall that if v = akbk , then

〈βk , v〉 = ak

I Therefore, given ` ∈ V∗,

〈`, v〉 = 〈`, akbk〉
= ak〈`, bk〉
= 〈βk , v〉ck
= 〈ckβk , v〉

I Therefore, ` and ckβ
k define the same function on V, i.e.,

` = ckβ
k

I Moreover, ` = 0 if and only if c1 = · · · = cm = 0
I Therefore, (β1, . . . , βm) is a basis of V∗



Evaluation Using Basis and Dual Basis

If
v = vkbk and θ = θkβ

k ,

then

〈v , θ〉 = 〈v jbj , θkβk〉
= v jθk〈bj , βk〉
= vkθk



Tensors
I A tensor on a vector space V is a multilinear function on V.
I A 1-tensor is a linear function ` : V→ R and therefore a

covector.
I The set of all 1-tensors is V∗.
I A 2-tensor is a bilinear function

τ : V× V→ R
(v1, v2) 7→ τ(v1, v2).

I Bilinear means linear with respect to each input:

τ(v1 + w1, v2) = τ(v1, v2) + τ(w1, v2)

τ(c1v1, v2) = c1τ(v1, v2)

τ(v1, v2 + w2) = τ(v1, v2) + τ(v1,w2)

τ(v1, c2v2) = c2τ(v1, v2).

I The space of 2-tensors on V will be denoted

V∗ ⊗ V∗



Examples of 2-Tensors
I The dot product on a Euclidean vector space,

τ(v ,w) = v · w
is a 2-tensor

I Given a square matrix

M =

M11 · · · M1m
...

...
Mm1 · · · Mmm

 ,
the function τ : Rm × Rm → R defined by

τ(a, b) = aTMb

=
[
a1 · · · am

] M11 · · · M1m
...

...
Mm1 · · · Mmm


b

1

...
bm


=

m∑
j ,k=1

ajbkMjk = ajbkMjk is a 2-tensor



2-Tensor as a Matrix

I Consider a 2-tensor τ on an m-dimensional vector space V
I Given a basis (e1, . . . , em) of V, let

Mij = τ(ei , ej)

I If

v = a1e1 + · · ·+ amem and w = b1e1 + · · ·+ bmem,

then

τ(v ,w) = τ(a1e1 + · · ·+ amem, b
1e1 + · · ·+ bmem)

= aibjτ(ei , ej)

=
[
a1 · · · am

] M11 · · · M1m
...

...
Mm1 · · · Mmm


b

1

...
bm

 = aTMb



Tensor product

I Given `1, `2 ∈ V∗, define their tensor product to be the
2-tensor, which we denote by `1 ⊗ `2, to be

(`1 ⊗ `2)(v1, v2) = `1(v1)`2(v2)

I If v = vkbk and w = wkbk , then

(βj ⊗ βk)(v ,w) = βj(v)βk(w) = v jwk



Basis and Dimension of V∗ ⊗ V∗
I Given τ ∈ V∗ ⊗ V∗, let

Mjk = τ(bj , bk),

I Then for any v ,w ∈ V,

τ(v ,w) = τ(v jbj ,w
kbk)

= v jwkτ(bj , bk)

= (βj ⊗ βk)(v , 2)Mjk

= (Mjkβ
j ⊗ βk)(v ,w)

I Therefore, as functions,

τ = Mjkβ
j ⊗ βk ,

and τ = 0 if and only if Mjk = 0 for all 1 ≤ j , k ≤ m
I It follows that βj ⊗ βk , 1 ≤ j , k ≤ m form a basis of V∗ ⊗ V∗

I Therefore,
dimV∗ ⊗ V∗ = (dimV)2



Symmetric 2-tensors

I A 2-tensor τ is symmetric, if

τ(w , v) = τ(v ,w), ∀ v ,w ∈ V.

I A 2-tensor τ is symmetric if and only if the matrix M is
symmetric, i.e., MT = M

I The space of all symmetric 2-tensors is a linear subspace of
the vector space of 2-tensors

I The dot product is an example of a symmetric 2-tensor.



Exterior 2-tensors

I A 2-tensor τ is antisymmetric or exterior, if

τ(w , v) = −τ(v ,w), ∀ v ,w ∈ V.

I If τ is antisymmetric, then τ(v , v) = 0.

I A 2-tensor τ is antisymmetric if and only if the matrix M is
antisymmetric, i.e., MT = −M

I The space of all antisymmetric 2-tensors is a linear subspace
of the space of 2-tensors

I An example of an antisymmetric 2-tensor on R2 is

δ(〈a1, a2〉, 〈b1, b2〉) = det

[
a1 b1

a2 b2

]
= a1b2 − a2b1.



Exterior 2-Tensor on 2-Dimensional Vector Space

I Let V be 2-dimensional

I Let τ be an exterior 2-tensor on V
I Let (e1, e2) be a basis of V
I c = τ(e1, e2)

I Given any vectors v = a1e1 + a2e2 and w = b1e1 + b2e2,

τ(v ,w) = τ(a1e1 + a2e2, b
1e1 + b2e2)

= a1b1τ(e1, e1) + a1b2τ(e1, e2) + a2b1τ(e2, e1) + a2b2τ(e2, e2)

= τ(e1, e2)(a1b2 − a2b1)

= c det

[
a1 b1

a2 b2

]
I The space of exterior 2-tensors on a 2-dimensional vector

space is a 1-dimensional vector space



Notation

I The space of 2-tensors on a vector space V is V∗ ⊗ V∗.

I The space of symmetric 2-tensors on V is S2V∗.

I The space of exterior 2-tensors on V is
∧2V∗.

I Given a 2-tensor τ and vectors v ,w ∈ V, we will write

τ(v ,w) = 〈τ, v ⊗ w〉 = 〈v ⊗ w , τ〉

I The symbol ⊗ has the following rules:

(a1v1 + a2v2)⊗ w = a1(v1 ⊗ w) + a2(v2 ⊗ w)

v ⊗ (b1w1 + b2w2) = b1(v ⊗ w1) + b2(v ⊗ w2)

I IMPORTANT: v ⊗ w 6= w ⊗ v unless v is a scalar product of
w or vice versa



Tensor product

I Given θ1, θ2 ∈ V∗, their tensor product is the 2-tensor θ1 ⊗ θ2
defined by

〈v ⊗ w , θ1 ⊗ θ2〉 = 〈v , θ1〉〈w , θ2〉.

I Note that θ2 ⊗ θ1 6= θ1 ⊗ θ2 unless one is a scalar product of
the other

I The symmetric product of θ1 and θ2 is the symmetric 2-tensor

θ1 ◦ θ2 = θ1 ⊗ θ2 + θ2 ⊗ θ1.

In particular, given any v ,w ∈ V,

〈v ⊗ w , θ1 ◦ θ2〉 = 〈v , θ1〉〈w , θ2〉+ 〈w , θ1〉〈v , θ2〉

I Note that θ2 ◦ θ1 = θ1 ◦ θ2.



Wedge product of two covectors

I The exterior or wedge product of θ1 and θ2 is the exterior
2-tensor

θ1 ∧ θ2 = θ1 ⊗ θ2 − θ2 ⊗ θ1.

I In particular,

〈v ⊗ w , θ1 ∧ θ2〉 = 〈v ⊗ w , θ1 ⊗ θ2 − θ2 ⊗ θ1〉
= 〈v , θ1〉〈w , θ2〉 − 〈w , θ1〉〈v , θ2〉

I θ2 ∧ θ1 = −θ1 ∧ θ2.

I θ ∧ θ = 0.



Exterior 2-tensors With Respect To Basis

I Let E = (e1, . . . , em) be a basis of V and Θ = (θ1, . . . , θm)
the dual basis

I The exterior 2-form θi ∧ θj has the following properties:

〈θi ∧ θj , ek ⊗ el〉 = 〈θi ⊗ θj − θj ⊗ θi , ek ⊗ el〉
= 〈θi , ek〉〈θj , el〉 − 〈θj , ek〉〈θi , el〉

=


1 if i = k and j = l

1 if i = l end j = k

0 otherwise

= δikδ
j
l − δ

j
kδ

i
l



Dimension of
∧2 V

I Suppose τ ∈
∧2V and

Mij = 〈τ, ei ⊗ ej〉 = −Mji

I Given v = aiei ,w = biei ∈ V,

〈τ, v ⊗ w〉 = 〈τ, (aiei )⊗ (bjej)〉
= aibj〈τ, ei ⊗ ej〉 = Mija

ibj

I On the other hand,

〈Mijθ
i ∧ θj , v ⊗ w〉 = Mij〈θi ∧ θj , (akek)⊗ (blel)〉

= Mija
kbl〈θi ∧ θj , ek ⊗ el〉

= Mij(a
ibj − ajbi ) = 2Mija

ibj

I Therefore, τ is uniquely determined by the matrix M,

τ =
1

2
Mijθ

i ∧ θj

I It follows that dim
2∧
V ∗ =

(
m

2

)
=

n(n − 1)

2


