MATH-UA 377 Differential Geometry Directional Derivative of a Function Differential of a Function

Deane Yang

Courant Institute of Mathematical Sciences
New York University
March 8, 2022

START RECORDING LIVE TRANSCRIPTION

Affine Coordinate Chart of Affine Space

- Given $p \in O$ and a basis $\left(e_{1}, \ldots, e_{m}\right)$ of \mathbb{V}, let

$$
\begin{aligned}
\Phi: \widehat{R}^{m} & \rightarrow \mathbb{A} \\
\left\langle a^{1}, \ldots, a^{m}\right\rangle & \mapsto p+e_{1} a^{1}+\cdots+e_{m} a^{m}
\end{aligned}
$$

- Φ is a parameterization of \mathbb{A} by \widehat{R}^{m}
- Φ is a coordinate chart for \mathbb{A}
- Φ is an affine map
- Given any two affine coordinate charts Φ_{1} and Φ_{2},

the map $\Phi_{2}^{-1} \circ \Phi_{1}: \widehat{R}^{m} \rightarrow \widehat{R}^{m}$ is an affine and therefore C^{∞} isomorphism of \widehat{R}^{m}

Open Subsets of Affine Space

- A set $O \subset \mathbb{A}$ is defined to be open if $\Phi^{-1}(O) \subset \widehat{R}^{m}$ is open

$$
\begin{array}{cc}
\widehat{R}^{m} \xrightarrow{\Phi} & \mathbb{A} \\
\cup & \\
& \cup \\
\Phi^{-1}(O) \xrightarrow{\Phi} & O
\end{array}
$$

- This definition does not depend on the affine coordinate chart used

C^{k} Functions on Affine Space
- A function $f: O \rightarrow \mathbb{R}$ is C^{k} if the function

$$
f \circ \Phi: \Phi^{-1}(O) \rightarrow \mathbb{R}
$$

is C^{k}

$$
\begin{array}{cc}
\widehat{R}^{m} \xrightarrow{\Phi} & \mathbb{A} \\
\cup & \cup \\
\Phi^{-1}(O) \xrightarrow{\Phi} & O \xrightarrow{f} \mathbb{R}
\end{array}
$$

- This definition does not depend on the affine coordinate charts used

Directional Derivative

- Consider a C^{1} function $f: \mathbb{A}^{m} \rightarrow \mathbb{R}$
- Given a curve $c: I \rightarrow \mathbb{A}^{m}$,

$$
f \circ c: I \rightarrow \mathbb{R}
$$

which can be differentiated

- Given $v \in \mathbb{V}^{m}$, define the directional derivative of f in the direction v at $p \in \mathbb{A}^{3}$ to be

$$
D_{v} f(p)=\left.\frac{d}{d t}\right|_{t=0}(f \circ c)(t)
$$

where c is a curve such that $c(0)=p$ and $\dot{c}(0)=v$

Parameterized Curve With Respect to Coordinates

- Since $\Phi\left(a^{1}, \ldots, a^{m}\right)=p+e_{k} a^{k}$,

$$
\left.(f \circ \Phi)\left(a^{1}, \ldots, a^{m}\right)\right)=f\left(p+e_{k} a^{k}\right)
$$

- Given a curve c, we can write

$$
c(t)=p+e_{k} a^{k}(t)
$$

- If $c(0)=p$ and $\dot{c}=v=v^{k} e_{k}$, then

$$
\begin{aligned}
\left\langle a^{1}(0), \ldots, a^{m}(0)\right\rangle & =0 \\
\left\langle\dot{a}^{1}(0), \ldots, \dot{a}^{m}\right\rangle & =\left\langle v^{1}, \ldots, v^{m}\right\rangle
\end{aligned}
$$

Directional Derivative With Respect To Coordinates

- By the chain rule,

$$
\begin{aligned}
D_{v} f(p) & =\left.\frac{d}{d t}\right|_{t=0} f(c(t)) \\
& =\left.\frac{d}{d t}\right|_{t=0}(f \circ \Phi)\left(a^{1}(t), \ldots, a^{m}(t)\right) \\
& =\partial_{k}(f \circ \Phi)(0) \dot{a}^{k}(0) \\
& =v^{k} \partial_{k}(f \circ \Phi)(0)
\end{aligned}
$$

- Therefore, $D_{v} f(p)$ is a linear function of v

Differential of a Function on Affine Space

- This means that for each $p \in O$, there is a linear function

$$
\begin{aligned}
d f(p): \mathbb{V} & \rightarrow \mathbb{R} \\
v & \mapsto D_{v} f(p)
\end{aligned}
$$

- Recall that a linear function on \mathbb{V} is an element of the dual space \mathbb{V}^{*}
- Therefore, for each $p, d f(p) \in V^{*}$, which is called the differential of f at p
- This in turn defines a map

$$
\begin{aligned}
d f: O & \rightarrow \mathbb{V}^{*} \\
p & \mapsto d f(p)
\end{aligned}
$$

which is called the differential of f

C^{k} Coordinate Charts on a Surface

- A set $\Omega \subset S$ is defined to be open if there is an open subset $O \subset \mathbb{A}^{3}$ such that

$$
\Omega=S \cap O
$$

- The image $\Phi(D)=S \cap O$ of any coordinate chart is open
- A surface is C^{k} if each coordinate chart $\Phi: D \rightarrow S \cap O \subset \mathbb{A}$ is a C^{k} map
- This does not depend on the coordinate chart used
- If S is C^{k} and $\Phi_{1}(D)=\Phi_{2}(D)$, then $\Phi_{2}^{-1} \circ \Phi_{1}$ is C^{k}

- Proved using implicit function theorem

C^{k} Functions on a Surface

- Consider a surface $S \subset \mathbb{A}^{3}$
- A function $f: S \rightarrow \mathbb{R}$ is C^{k} if for any coordinate chart $\Phi: D \rightarrow S \cap O$, the function $f \circ \Phi: D \rightarrow \mathbb{R}$ is C^{k}

- This definition does not depend on the coordinate charts used

Directional Derivative of Function on a Surface

- Defined exactly as for function on affine space
- Consider a C^{1} function $f: S \rightarrow \mathbb{R}$, a point $p \in S$, and a tangent vector $v \in T_{p} S$
- Let $c:(-\delta, \delta) \rightarrow S$ be a C^{1} curve such that

$$
c(0)=p \text { and } c^{\prime}(0)=v
$$

- The directional derivative of f in the direction v at p is

$$
D_{v} f(p)=(f \circ c)^{\prime}(0)=\left.\frac{d}{d t}\right|_{t=0} f(c(t))
$$

Parameterized Curve on a Coordinate Chart

- Let $\Phi: D \rightarrow S$ be a coordinate chart such that $\Phi(0)=p \in S$
- The parameterization defines a basis $\left(\partial_{1}, \partial_{2}\right)$ of $T_{p} S$
- Given curve $c: I \rightarrow \Phi(D) \subset S \cap O$, there is the curve

$$
\Phi^{-1} \circ c: I \rightarrow D \subset \mathbb{R}^{2}
$$

which can be written as

$$
\left(\Phi^{-1} \circ c\right)(t)=\left(a^{1}(t), a^{2}(t)\right)
$$

where $c(t)=\Phi\left(a^{1}(t), a^{2}(t)\right)$

Directional Derivative on a Coordinate Chart

$>$ If $\left(\Phi^{-1} \circ c\right)(t)=\left(a^{1}(t), a^{2}(t)\right)$, then

$$
\left(\Phi^{-1} \circ c\right)^{\prime}(t)=\left\langle\dot{a}^{1}(t), \dot{a}^{2}(t)\right\rangle
$$

- If $\Phi(0)=p$ and $\dot{c}(0)=v^{1} \partial_{1}+v^{2} \partial_{2}$, then

$$
\left\langle\dot{a}^{1}(0), \dot{a}^{2}(0)\right\rangle=\left\langle v^{1}, v^{2}\right\rangle
$$

- By the chain rule, the directional derivative of f is

$$
\begin{aligned}
D_{v}(p) & =(f \circ c)^{\prime}(0) \\
& =\left.\frac{d}{d t}\right|_{t=0}(f \circ \Phi) \circ\left(\Phi^{-1} \circ c\right)(t) \\
& =\left.\frac{d}{d t}\right|_{t=0}(f \circ \Phi)\left(a^{1}(t), a^{2}(t)\right) \\
& =v^{1} \partial_{1}(f \circ \Phi)(0,0)+v^{2} \partial_{2}(f \circ \Phi)(0,0) \\
& I \underbrace{\Phi^{-1} \circ c}_{f \circ c} D \xrightarrow{f \circ \Phi} \mathbb{R}
\end{aligned}
$$

The Differential of a Function

- Again, $v \mapsto D_{v} f(p)$ is a linear function of $v \in T_{p} S$
- Therefore, it defines an element $d f(p) \in T_{p}^{*} S$ such that

$$
\langle v, d f(p)\rangle=D_{v} f(p)
$$

- Please note that the notation $\langle\cdot, \cdot\rangle$ used here is different from the same notation used for a vector $\left\langle v^{1}, v^{2}\right\rangle \in \widehat{R}^{2}$
- Note that $d f$ is NOT a map from S to \mathbb{V}^{*}, because domain of

$$
d f(p): T_{p} \rightarrow \mathbb{R}
$$

is $T_{p} S$, which is only a subset of \mathbb{V}

- $d f$ is an example of a differential 1-form on the surface S

Inverse Coordinate Map

- We can write a coordinate chart as $\Phi\left(x^{1}, x^{2}\right)$, where $\left(x^{1}, x^{2}\right) \in D$ is an input parameter
- Conversely, the inverse to Φ is

$$
\begin{aligned}
\Phi^{-1}: S \cap O & \rightarrow D \subset \mathbb{R}^{2} \\
p & \mapsto\left(x^{1}(p), x^{2}(p)\right)
\end{aligned}
$$

where x^{1}, x^{2} are scalar functions on $S \cap O$

- We call x^{1} and x^{2} coordinate functions on $S \cap O$
- If $S=\mathbb{R}^{2}$, then $\left(x^{1}, x^{2}\right)$ are the standard coordinates on \mathbb{R}^{2}

Directional Derivative of a Coordinate Function

- A curve c in $S \cap O$ can be written as

$$
\left.c(t)=\Phi\left(a^{1}(t), a^{2}(t)\right), \text { where }\left(a^{1}(t), a^{2}(t)\right)=\left(\Phi^{-1} \circ c\right)(t)\right)
$$

- Equivalently,

$$
x^{k}(c(t))=a^{k}(t), k=1,2
$$

- By the chain rule,

$$
\dot{c}=\dot{a}^{1} \partial_{1} \Phi+\dot{a}^{2} \partial_{2} \Phi
$$

- It follows that if $c(0)=p$ and $v=\dot{c}(0)=v^{1} \partial_{1}+v^{2} \partial_{2}$, then

$$
\begin{aligned}
D_{v} x^{1}(p) & =\left.\frac{d}{d t}\right|_{t=0} x^{1}(c(t)) \\
& =\left.\frac{d}{d t}\right|_{t=0} a^{1}(t) \\
& =\dot{a}^{1}(0) \\
& =v^{1}
\end{aligned}
$$

Differential of a Coordinate Function

- Given a coordinate chart $\Phi: D \rightarrow S \cap O, p \in \Phi(D)$, and $v=v^{1} \partial_{1}+\in T_{p} S$, we have shown that

$$
\begin{aligned}
\left\langle v, d x^{i}\right\rangle & =D_{v} x^{i}(p) \\
& =v^{i}
\end{aligned}
$$

- In particular,

$$
\left\langle\partial_{j}, d x^{i}\right\rangle=\delta_{j}^{i}
$$

- This implies that $\left(d x^{1}, d x^{2}\right)$ is the basis of $T_{p}^{*} S$ dual to the basis of $\left(\partial_{1}, \partial_{2}\right)$

