MATH-UA 377 Differential Geometry Directional Derivative of a Function Differential of a Function

Deane Yang

Courant Institute of Mathematical Sciences New York University

March 8, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

START RECORDING LIVE TRANSCRIPTION

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Affine Coordinate Chart of Affine Space

• Given
$$p \in O$$
 and a basis (e_1, \ldots, e_m) of \mathbb{V} , let

$$\Phi: \widehat{R}^m \to \mathbb{A}$$
$$\langle a^1, \dots, a^m \rangle \mapsto p + e_1 a^1 + \dots + e_m a^m$$

- Φ is a parameterization of \mathbb{A} by \widehat{R}^m
- Φ is a coordinate chart for A
- Φ is an affine map
- Given any two affine coordinate charts Φ₁ and Φ₂,

the map $\Phi_2^{-1} \circ \Phi_1 : \widehat{R}^m \to \widehat{R}^m$ is an affine and therefore C^{∞} isomorphism of \widehat{R}^m

Open Subsets of Affine Space

• A set $O \subset \mathbb{A}$ is defined to be **open** if $\Phi^{-1}(O) \subset \widehat{R}^m$ is open

This definition does not depend on the affine coordinate chart used

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

C^k Functions on Affine Space

• A function $f: O \to \mathbb{R}$ is C^k if the function

 $f\circ \Phi: \Phi^{-1}(\mathcal{O}) o \mathbb{R}$

is C^k

 This definition does not depend on the affine coordinate charts used

Directional Derivative

- Consider a C^1 function $f : \mathbb{A}^m \to \mathbb{R}$
- Given a curve $c: I \to \mathbb{A}^m$,

$$f \circ c : I \to \mathbb{R},$$

which can be differentiated

Given v ∈ V^m, define the directional derivative of f in the direction v at p ∈ A³ to be

$$D_{\nu}f(p)=\left.\frac{d}{dt}\right|_{t=0}(f\circ c)(t),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where c is a curve such that c(0) = p and $\dot{c}(0) = v$

Parameterized Curve With Respect to Coordinates

• Since
$$\Phi(a^1, \dots, a^m) = p + e_k a^k$$
,
 $(f \circ \Phi)(a^1, \dots, a^m)) = f(p + e_k a^k)$

► Given a curve *c*, we can write

$$c(t) = p + e_k a^k(t),$$

$$\bullet \text{ If } c(0) = p \text{ and } \dot{c} = v = v^k e_k, \text{ then}$$

$$\langle a^1(0), \dots, a^m(0) \rangle = 0$$

$$\langle \dot{a}^1(0), \dots, \dot{a}^m \rangle = \langle v^1, \dots, v^m \rangle$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ⊙

Directional Derivative With Respect To Coordinates

By the chain rule,

$$D_{v}f(p) = \frac{d}{dt}\Big|_{t=0} f(c(t))$$

= $\frac{d}{dt}\Big|_{t=0} (f \circ \Phi)(a^{1}(t), \dots, a^{m}(t))$
= $\partial_{k}(f \circ \Phi)(0)\dot{a}^{k}(0)$
= $v^{k}\partial_{k}(f \circ \Phi)(0)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Therefore, $D_v f(p)$ is a linear function of v

Differential of a Function on Affine Space

• This means that for each $p \in O$, there is a linear function

$$df(p): \mathbb{V} o \mathbb{R}$$

 $v \mapsto D_v f(p)$

- ► Recall that a linear function on V is an element of the dual space V*
- ► Therefore, for each p, df(p) ∈ V*, which is called the differential of f at p
- This in turn defines a map

$$df: O o \mathbb{V}^*$$

 $p \mapsto df(p)$

which is called the differential of f

C^k Coordinate Charts on a Surface

A set Ω ⊂ S is defined to be **open** if there is an open subset O ⊂ A³ such that

$$\Omega = S \cap O$$

- The image $\Phi(D) = S \cap O$ of any coordinate chart is open
- A surface is C^k if each coordinate chart Φ : D → S ∩ O ⊂ A is a C^k map
- This does not depend on the coordinate chart used
- If S is C^k and $\Phi_1(D) = \Phi_2(D)$, then $\Phi_2^{-1} \circ \Phi_1$ is C^k

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proved using implicit function theorem

C^k Functions on a Surface

• Consider a surface $S \subset \mathbb{A}^3$

• A function $f: S \to \mathbb{R}$ is C^k if for any coordinate chart $\Phi: D \to S \cap O$, the function $f \circ \Phi: D \to \mathbb{R}$ is C^k

This definition does not depend on the coordinate charts used

Directional Derivative of Function on a Surface

- Defined exactly as for function on affine space
- ▶ Consider a C^1 function $f : S \to \mathbb{R}$, a point $p \in S$, and a tangent vector $v \in T_pS$
- Let $c: (-\delta, \delta) \to S$ be a C^1 curve such that

$$c(0) = p \text{ and } c'(0) = v$$

The directional derivative of f in the direction v at p is

$$D_{v}f(p) = (f \circ c)'(0) = \left.\frac{d}{dt}\right|_{t=0} f(c(t))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Parameterized Curve on a Coordinate Chart

• Let $\Phi: D \to S$ be a coordinate chart such that $\Phi(0) = p \in S$

- The parameterization defines a basis (∂_1, ∂_2) of $T_p S$
- Given curve $c: I \to \Phi(D) \subset S \cap O$, there is the curve

$$\Phi^{-1} \circ c : I o D \subset \mathbb{R}^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

which can be written as

$$(\Phi^{-1} \circ c)(t) = (a^{1}(t), a^{2}(t)),$$

where $c(t) = \Phi(a^{1}(t), a^{2}(t))$
 $I \xrightarrow{c} S \cap O \xleftarrow{\Phi} D$
 $\Phi^{-1} \circ c$

Directional Derivative on a Coordinate Chart If $(\Phi^{-1} \circ c)(t) = (a^1(t), a^2(t))$, then $(\Phi^{-1} \circ c)'(t) = \langle \dot{a}^1(t), \dot{a}^2(t) \rangle$ If $\Phi(0) = p$ and $\dot{c}(0) = v^1 \partial_1 + v^2 \partial_2$, then $\langle \dot{a}^1(0), \dot{a}^2(0) \rangle = \langle v^1, v^2 \rangle$

By the chain rule, the directional derivative of f is

$$D_{v}(p) = (f \circ c)'(0)$$

$$= \frac{d}{dt}\Big|_{t=0} (f \circ \Phi) \circ (\Phi^{-1} \circ c)(t)$$

$$= \frac{d}{dt}\Big|_{t=0} (f \circ \Phi)(a^{1}(t), a^{2}(t))$$

$$= v^{1}\partial_{1}(f \circ \Phi)(0, 0) + v^{2}\partial_{2}(f \circ \Phi)(0, 0)$$

$$I \xrightarrow{\Phi^{-1} \circ c} D \xrightarrow{f \circ \Phi} \mathbb{R}$$

foc

・ロト ・雪 ・ ・ 雪 ・ ・ 雪 ・ ・ 日 ・

The Differential of a Function

• Again, $v \mapsto D_v f(p)$ is a linear function of $v \in T_p S$

• Therefore, it defines an element $df(p) \in T_p^*S$ such that

$$\langle v, df(p) \rangle = D_v f(p)$$

- ▶ Please note that the notation $\langle \cdot, \cdot \rangle$ used here is **different** from the same notation used for a vector $\langle v^1, v^2 \rangle \in \widehat{R}^2$
- ▶ Note that df is **NOT** a map from S to V^* , because domain of

$$df(p): T_p \to \mathbb{R}$$

is T_pS , which is only a subset of \mathbb{V}

df is an example of a **differential** 1-form on the surface S

Inverse Coordinate Map

• We can write a coordinate chart as $\Phi(x^1, x^2)$, where $(x^1, x^2) \in D$ is an input parameter

Conversely, the inverse to Φ is

$$\Phi^{-1}: S \cap O o D \subset \mathbb{R}^2$$
 $p \mapsto (x^1(p), x^2(p)),$

where x^1 , x^2 are scalar functions on $S \cap O$ • We call x^1 and x^2 coordinate functions on $S \cap O$ • If $S = \mathbb{R}^2$, then (x^1, x^2) are the standard coordinates on \mathbb{R}^2

Directional Derivative of a Coordinate Function

• A curve c in $S \cap O$ can be written as

$$c(t) = \Phi(a^{1}(t), a^{2}(t))$$
, where $(a^{1}(t), a^{2}(t)) = (\Phi^{-1} \circ c)(t))$

Equivalently,

$$x^{k}(c(t)) = a^{k}(t), \ k = 1, 2$$

By the chain rule,

$$\dot{c} = \dot{a}^1 \partial_1 \Phi + \dot{a}^2 \partial_2 \Phi$$

▶ It follows that if c(0) = p and $v = \dot{c}(0) = v^1 \partial_1 + v^2 \partial_2$, then

$$D_{v}x^{1}(p) = \left. \frac{d}{dt} \right|_{t=0} x^{1}(c(t))$$
$$= \left. \frac{d}{dt} \right|_{t=0} a^{1}(t)$$
$$= \dot{a}^{1}(0)$$
$$= v^{1}$$

Differential of a Coordinate Function

• Given a coordinate chart $\Phi: D \to S \cap O$, $p \in \Phi(D)$, and $v = v^1 \partial_1 + \in T_p S$, we have shown that

$$\langle v, dx^i \rangle = D_v x^i(p)$$

= v^i

In particular,

$$\langle \partial_j, dx^i \rangle = \delta^i_j$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

► This implies that (dx¹, dx²) is the basis of T^{*}_pS dual to the basis of (∂₁, ∂₂)