MATH-UA 377 Differential Geometry Parameterized Surface in \mathbb{V}^{3}
 Coordinate Charts
 Global Surface in \mathbb{A}^{3}
 Tangent Space of a Surface

Deane Yang

Courant Institute of Mathematical Sciences
New York University
March 3, 2022

START RECORDING LIVE TRANSCRIPTION

Embeddings

- Change of notation: Let $D \subset \mathbb{R}^{2}$ be an open set
- Consider a $C^{1} \operatorname{map} \Phi: D \rightarrow \mathbb{A}^{3}$
- Φ is nondegenerate if for every $\left(x^{1}, x^{2}\right) \in D$, the linear map

$$
\partial \Phi\left(x^{1}, x^{2}\right): \widehat{R}^{2} \rightarrow \mathbb{V}^{3}
$$

has rank 2

- Φ is an embedding if it is nondegenerate and injective

Parameterized Surface in \mathbb{A}^{3}

- A parameterized surface consists of the following:
- A set $S \subset O$
- An embedding $\Phi: D \rightarrow \mathbb{A}^{3}$, such that

$$
\Phi(D)=S
$$

- Example: Paraboloid in \mathbb{R}^{3}

$$
\begin{aligned}
S & =\left\{z=x^{2}+y^{2}\right\} \\
\Phi(x, y) & =\left(x, y, x^{2}+y^{2}\right)
\end{aligned}
$$

- Bad parameterization of paraboloid

$$
\Phi(s, t)=\left(s^{3}, t^{3}, s^{6}+t^{6}\right)
$$

- Bad surface: Cone

$$
\begin{aligned}
S & =\left\{z=\sqrt{x^{2}+y^{2}}\right\} \\
\Phi(u, v) & =\left(u, v, \sqrt{u^{2}+v^{2}}\right)
\end{aligned}
$$

Global Surface in \mathbb{A}^{3}

- A sphere in \mathbb{E}^{3} is NOT a parameterized surface
- A circle is also not a parameterized curve
- Need a more general definition of a surface
- A sphere is a union of overlapping parameterized surfaces
- A parameterized surface is also called a coordinate chart
- Idea: A surface should be covered by a collection of overlapping coordinate charts

Precise Definition of a C^{k} Surface in \mathbb{A}^{3}

- Given a set $S \subset \mathbb{A}^{3}$, a coordinate chart on S consists of the following:
- An open domain $D \subset \mathbb{R}^{2}$
- An open subset $O \subset \mathbb{R}^{3}$
- A C^{k} embedding $\Phi: D o \rightarrow O$
such that

$$
\Phi(D)=S \cap O
$$

- A set $S \subset \mathbb{A}^{3}$ is a C^{k} surface if for each $p \in S$, there is a coordinate chart containing p

Sphere as Union of 6 Coordinate Charts

- $S=\left\{x^{2}+y^{2}+z^{2}=1\right\} \subset \mathbb{R}^{3}$ is a sphere of radius 1
- $D=\left\{(s, t) \in \mathbb{R}^{2}: s^{2}+t^{2}<1\right\}$ is a circular disk of radius 1
- Define open sets $O_{k} \subset \mathbb{R}^{3}, k=1,2,3,4,5,6$, where

$$
\begin{aligned}
& O_{1}=\{(x, y, z): z>0\} \\
& O_{2}=\{(x, y, z): \\
& O_{3}=\{(x, y, z): y>0\} \\
& O_{4}=\{(x, y, z): y<0\} \\
& O_{5}=\{(x, y, z): x>0\} \\
& O_{6}=\{(x, y, z): x<0\}
\end{aligned}
$$

- Each O_{k} is an open half-space lying on one side of a coordinate plane
- $S \cap O_{k}$ is an open hemisphere, which can be parameterized as a graph of the corresponding coordinate plane
- Since each point $(x, y, z) \in S$ has at least one nonzero coordinate, it lies in at least one of $O_{1}, O_{2}, O_{3}, O_{4}, O_{5}, O_{6}$

Sphere as Union of 6 Coordinate Charts

- Define coordinate maps $\Phi_{k}: D \rightarrow S \cap O_{k}, k=1,2,3,4,5,6$, where

$$
\begin{aligned}
& \Phi_{1}(s, t)=\left(s, t, \sqrt{1-s^{2}-t^{2}}\right) \\
& \Phi_{2}(s, t)=\left(s, t,-\sqrt{1-s^{2}-t^{2}}\right) \\
& \Phi_{3}(s, t)=\left(s, \sqrt{1-s^{2}-t^{2}}, t\right) \\
& \Phi_{4}(s, t)=\left(s,-\sqrt{1-s^{2}-t^{2}}, t\right) \\
& \Phi_{5}(s, t)=\left(\sqrt{1-s^{2}-t^{2}}, s, t\right) \\
& \Phi_{6}(s, t)=\left(-\sqrt{1-s^{2}-t^{2}}, s, t\right)
\end{aligned}
$$

Sphere as Union of 6 Coordinate Charts

- Each $\Phi_{k}(D)$ is an open hemisphere
- Every point in S lies in one of the $\Phi_{k}(D)$, because
- If $(x, y, z) \in S$, then at least one of the coordinates is nonzero
- Say $x<0$
- Then $y^{2}+z^{2}=1-x^{2}<1$ and therefore $(y, z) \in D$ and

$$
(x, y, z)=\Phi_{6}(y, z) \in \Phi_{5}(D)
$$

- In problem 4 of Homework 6, only two coordinate charts are used

Tangent Space at Point on Surface

- Let $S \subset \mathbb{A}^{3}$ be a C^{1} surface and $p \in S$
- The tangent space at $p \in S$, denoted $T_{p} S$, is the set of all possible velocity vectors of C^{1} curves in S that pass through p
- Since a curve in S is also a curve in \mathbb{A}^{3}, its velocity at p is in the tangent space \mathbb{V}^{3}
- Therefore, $T_{p} S \subset \mathbb{V}^{3}$

Tangent Space at a Point on a Surface

- Let $S \subset \mathbb{A}^{3}$ be a C^{1} surface and $p \in S$
- A vector $v \in \mathbb{V}^{3}$ lies in the tangent space $T_{p} S$ if there is a C^{1} curve $\mathrm{c}:(-\delta, \delta) \rightarrow S$ such that

$$
c(0)=p \text { and } c^{\prime}(0)=v
$$

Tangent Vectors with Respect to a Coordinate Chart

- Suppose $\Phi: D \rightarrow S$ is a coordinate chart with $\Phi(0,0)=p$
- The velocity vectors of the curves $c_{1}(t)=\Phi(t, 0)$ and $c_{2}(t)=\Phi(0, t)$ are the partial derivatives of Φ :

$$
c_{1}^{\prime}(0)=\partial_{1} \Phi(0,0) \text { and } c_{2}^{\prime}(0)=\partial_{2} \Phi(0,0)
$$

- Given any vector $\left\langle v^{1}, v^{2}\right\rangle \in \mathbb{R}^{2}$, if

$$
c(t)=\Phi\left(v^{1} t, v^{2} t\right)
$$

then

$$
c^{\prime}(0)=\partial \Phi(0,0)\left(\left\langle v^{1}, v^{2}\right\rangle\right)=v^{1} \partial_{1} \Phi(0,0)+v^{2} \partial_{2} \Phi(0,0)
$$

Tangent Space at point on a Surface is a 2D Vector Space

- The Jacobian at p is a rank 2 linear map

$$
\begin{aligned}
\partial \Phi(0,0): \mathbb{R}^{2} & \rightarrow T_{p} S \subset \mathbb{V}^{3} \\
\left\langle v^{1}, v^{2}\right\rangle & \mapsto v^{1} \partial_{1} \Phi(0,0)+v^{2} \partial_{2} \Phi(0,0)
\end{aligned}
$$

- In fact, it is a linear isomorphism, and $T_{p} S$ is 2-dimensional
- Therefore, $\partial_{1} \Phi$ and $\partial_{2} \Phi$ are a basis of $T_{p} S$
- For convenience, we often write $\partial_{1}=\partial_{1} \Phi$ and $\partial_{2} \Phi$

Tangent Space at a Point on Sphere

- Let $p_{0} \in \mathbb{E}^{3}, R>0$, and

$$
S=\left\{p \in \mathbb{E}^{3}:\left(p-p_{0}\right) \cdot\left(p-p_{0}\right)=R^{2}\right\}
$$

- Given $p \in S, v \in T_{p} S$, consider any C^{1} curve $c:(-\delta, \delta) \rightarrow S$ such that $c(0)=p$ and $c^{\prime}(0)=v$
- Since $\left(c(t)-p_{0}\right) \cdot\left(c(t)-p_{0}\right)=R^{2}$,

$$
0=\left.\frac{d}{d t}\right|_{t=0}\left(c(t)-p_{0}\right) \cdot\left(c(t)-p_{0}\right)=2\left(c(0)-p_{0}\right) \cdot c^{\prime}(t)=2\left(p-p_{0}\right) \cdot v
$$

- Therefore, any tangent vector $v \in T_{p} S$ is orthogonal to $p-p_{0} \in \mathbb{V}^{3}$
- Since the space of all vectors in \mathbb{V}^{3} that are orthogonal to a fixed nonzero vector $p-p_{0}$ is 2 -dimensional, we conclude that

$$
T_{p} S=\left\{v \in \mathbb{V}^{3}: v \cdot\left(p-p_{0}\right)=0\right\}
$$

Tangent Space at a Point on a Sphere

Tangent Bundle

- Each $p \in S$ has its own tangent space $T_{p} S$
- Given two different points $p_{1}, p_{2} \in S$, there is no direct relationship between their tangent spaces
- There is no natural way to move a vector $v \in T_{p_{1}} S$ to $T_{p_{2}} S$
- Unless they are the same
- If $S \subset \mathbb{A}^{3}$ is an affine plane, then
- $T_{p} S=T_{q} S$ for any $p, q \in S$
- The disjoint union of the tangent spaces of all points on a surface is called the tangent bundle,

$$
T_{*} S=\coprod_{p \in S} T_{p} S
$$

