MATH-UA 377 Differential Geometry
Spherical curves
Spherical Crofton formula
Fenchel's Theorem
Fary-Milnor Theorem

Deane Yang

Courant Institute of Mathematical Sciences
New York University

March 1, 2022



START RECORDING
LIVE TRANSCRIPTION



Space of Great Circles

> A great circle is the intersection of S with a plane through the
origin

» Let G be the space of all great circles in S

» For each p € S, there is a corresponding great circle

Gp={q€S : (q—po) (p—po) =0}
» The map
g:5—-¢§G
p— Gp

is 2-to-1
» Observe that given p € S,

peE Gy <= qe€ Gy

» The area of a subset Q2 C G is equal to

Areag(Q) = %Areas(g_l(ﬂ))



Spherical Crofton formula

>
>

Let ¢ : [0,¢] — S be a unit speed curve
For each p € S, let

nc(p) = number of points in G, N ¢

The integral
[ nele) dhs(e)

is a measure of how many times great circles intersect the
curve ¢

One would expect longer curves to have more intersections

The spherical Crofton formula confirms this:

/5 ne(p) dAs(p) = 4L(c)

This formula is useful for global theorems on closed space
curves



Fenchel's Theorem (1929)

» If cis a closed curve in E3 with nonvanishing curvature s

/HU ds > 2,

» Setup of proof
> Use a unit speed parameterization ¢ : [0, /] — E3
> Let (f1, f, f3) be the Frenet-Serret frame along ¢
» Observe that f; : [0,¢] — S is a curve on the unit sphere
» By the first Frenet-Serret equation, the speed of the curve f; is

JAREAR:

» Therefore, the length of the spherical curve f; is

s=t s={
/ |f1|ds:/ k(s) ds
s=0 s=0

» On the other hand, by the spherical Crofton formula,

s={
- 1
| fids= 3 [ (o) aAs(e)
s S2

=0



Proof of Fenchel's Theorem

> It suffices to prove that ng(p) > 2 forall pe S

» Suppose there is a great circle G, such that ng(v) =0

» The curve f; must lie in one of the hemispheres with boundary
GVY

H, ={ueS : u-v>0torH_,={ues : u-v<0}
It follows that

s={
0< / v-fids
s=0

s=/
= / v-cds
s=0

s=/¢ d
:/5 2 (v (c(s) — <(0)) ds

=0
=v-(c(f)—c(0)=0
» It follows that v - fi(s) = 0 for all s € [0, ¢], wihch implies the
curve is planar
» The curve f; must therefore cross any great cricle



Fary-Milnor Theorem

Theorem
(Fary, 1949 and Milnor, 1950) If an embedded closed curve c is

knotted, then
/ kds > 4x
C



Spherical Curve
» Given pg € E3, let S be the unit sphere centered at py

S={peE® : |p—po| =1}

» Consider a unit speed curve ¢ : [0,/] — S
» Given an orientation on E3, there is a unique positively

oriented frame (e1, €2, €3) on the curve such that
e = ¢
€3 =Pp—Ppo
> e;3is normal to S, and e;, e are tangent to S

» From HW4, problem 4.3, we know there is a function
kg 1 [0,4] — R such that

d 0 —rg 1
o 1 & e]=ler & e]|rg 0 O
-1 0 0

» kg is called the geodesic curvature



Proof of Spherical Crofton Formula
» Consider the map
F:[0,4] x [0,2n] — S
(t,0) = po + er(t) cosf + ex(t)sinf € Gy
» For a fixed t, the map 6 — F(t,0) is a parameterization of
the great circle Gy
» On the other hand, c(t) € G; <= q € Gy
» Therefore,  — F(t,0) is a parameterization of all great

circles that contain c(t)
» It follows that for each p € S,

1
ne(p) = 5 number of points in F~1(p)

» If we view F as a multi-valued parameterization of S, then

/ Fdas =2 [ ne(p) dAg = [ ne(p) ds,
[0,4]x [0,27] G s

where
F*dAs = |F: x Fp|dt d6



Partial derivatives of F

» Recall that

€ = E2kg — €3
é2 = —€1kg

» Since F(t,0) = po + e1(t) cosd + ex(t)sinb,

F¢ = (e2kg — €3) cos ) + —er ke sin
= kg(—e1sinf + ey cosf) — e3cosf
Fop = —e1sinf + ey cos
F: x Fg = cosf(e3 x (e1sinf — ey cos b))
= cosf(exsinf + e; cos )
|F: x Fg| = |cosf)|



Spherical Crofton Formula

» Therefore,

/nc(p) dAp :/ F*dA
s [0,4]x[0,27]

t=¢ r6=2r
= / / | cos 0| df dt
t=0 J6=0
9_ us

=4/ 2 cos @ db
60=0

=44

» The spherical Crofton formula states that the length of a
curve ¢ in S is equal to

t=; /S ne(p) dAs(p)



