MATH-UA 377 Differential Geometry Spherical curves
 Spherical Crofton formula Fenchel's Theorem Fary-Milnor Theorem

Deane Yang

Courant Institute of Mathematical Sciences
New York University
March 1, 2022

START RECORDING LIVE TRANSCRIPTION

Space of Great Circles

- A great circle is the intersection of S with a plane through the origin
- Let \mathcal{G} be the space of all great circles in S
- For each $p \in S$, there is a corresponding great circle

$$
G_{p}=\left\{q \in S:\left(q-p_{0}\right) \cdot\left(p-p_{0}\right)=0\right\}
$$

- The map

$$
\begin{aligned}
g: S & \rightarrow \mathcal{G} \\
p & \mapsto G_{p}
\end{aligned}
$$

is 2 -to- 1

- Observe that given $p \in S$,

$$
p \in G_{q} \Longleftrightarrow q \in G_{p}
$$

- The area of a subset $\Omega \subset \mathcal{G}$ is equal to

$$
\operatorname{Area}_{\mathcal{G}}(\Omega)=\frac{1}{2} \operatorname{Area}_{S}\left(g^{-1}(\Omega)\right)
$$

Spherical Crofton formula

- Let $c:[0, \ell] \rightarrow S$ be a unit speed curve
- For each $p \in S$, let

$$
n_{c}(p)=\text { number of points in } G_{p} \cap c
$$

- The integral

$$
\int_{S} n_{c}(p) d A_{S}(p)
$$

is a measure of how many times great circles intersect the curve c

- One would expect longer curves to have more intersections
- The spherical Crofton formula confirms this:

$$
\int_{S} n_{c}(p) d A_{S}(p)=4 L(c)
$$

- This formula is useful for global theorems on closed space curves

Fenchel's Theorem (1929)

- If c is a closed curve in \mathbb{E}^{3} with nonvanishing curvature κ

$$
\int \kappa \sigma d s \geq 2 \pi
$$

- Setup of proof
- Use a unit speed parameterization $c:[0, \ell] \rightarrow \mathbb{E}^{3}$
- Let $\left(f_{1}, f_{2}, f_{3}\right)$ be the Frenet-Serret frame along c
- Observe that $f_{1}:[0, \ell] \rightarrow S$ is a curve on the unit sphere
- By the first Frenet-Serret equation, the speed of the curve f_{1} is

$$
\left|\dot{f}_{1}\right|=\left|\kappa f_{2}\right|=\kappa
$$

- Therefore, the length of the spherical curve f_{1} is

$$
\int_{s=0}^{s=\ell}\left|\dot{f}_{1}\right| d s=\int_{s=0}^{s=\ell} \kappa(s) d s
$$

- On the other hand, by the spherical Crofton formula,

$$
\int_{s=0}^{s=\ell}|\dot{f}| d s=\frac{1}{4} \int_{S^{2}} n_{f_{1}}(p) d A_{S}(p)
$$

Proof of Fenchel's Theorem

- It suffices to prove that $n_{f_{1}}(p) \geq 2$ for all $p \in S$
- Suppose there is a great circle G_{v} such that $n_{f_{1}}(v)=0$
- The curve f_{1} must lie in one of the hemispheres with boundary G_{v},

$$
H_{v}=\{u \in S: u \cdot v \geq 0\} \text { or } H_{-v}=\{u \in S: u \cdot v \leq 0\}
$$

It follows that

$$
\begin{aligned}
0 & \leq \int_{s=0}^{s=\ell} v \cdot f_{1} d s \\
& =\int_{s=0}^{s=\ell} v \cdot \dot{c} d s \\
& =\int_{s=0}^{s=\ell} \frac{d}{d s}(v \cdot(c(s)-c(0)) d s \\
& =v \cdot(c(\ell)-c(0))=0
\end{aligned}
$$

- It follows that $v \cdot f_{1}(s)=0$ for all $s \in[0, \ell]$, wihch implies the curve is planar
- The curve f_{1} must therefore cross any great cricle

Fary-Milnor Theorem

Theorem
(Fary, 1949 and Milnor, 1950) If an embedded closed curve c is knotted, then

$$
\int_{c} \kappa d s \geq 4 \pi
$$

Spherical Curve

- Given $p_{0} \in \mathbb{E}^{3}$, let S be the unit sphere centered at p_{0}

$$
S=\left\{p \in \mathbb{E}^{3}:\left|p-p_{0}\right|=1\right\}
$$

- Consider a unit speed curve $c:[0, \ell] \rightarrow S$
- Given an orientation on \mathbb{E}^{3}, there is a unique positively oriented frame $\left(e_{1}, e_{2}, e_{3}\right)$ on the curve such that

$$
\begin{aligned}
& e_{1}=\dot{c} \\
& e_{3}=p-p_{0}
\end{aligned}
$$

- e_{3} is normal to S, and e_{1}, e_{2} are tangent to S
- From HW4, problem 4.3, we know there is a function $\kappa_{g}:[0, \ell] \rightarrow \mathbb{R}$ such that

$$
\frac{d}{d t}\left[\begin{array}{lll}
e_{1} & e_{2} & e_{3}
\end{array}\right]=\left[\begin{array}{lll}
e_{1} & e_{2} & e_{3}
\end{array}\right]\left[\begin{array}{ccc}
0 & -\kappa_{g} & 1 \\
\kappa_{g} & 0 & 0 \\
-1 & 0 & 0
\end{array}\right]
$$

- κ_{g} is called the geodesic curvature

Proof of Spherical Crofton Formula

- Consider the map

$$
\begin{aligned}
F:[0, \ell] \times[0,2 \pi] & \rightarrow S \\
(t, \theta) & \mapsto p_{0}+e_{1}(t) \cos \theta+e_{2}(t) \sin \theta \in G_{c(t)}
\end{aligned}
$$

- For a fixed t, the map $\theta \mapsto F(t, \theta)$ is a parameterization of the great circle $G_{c(t)}$
- On the other hand, $c(t) \in G_{q} \Longleftrightarrow q \in G_{c(t)}$
- Therefore, $\theta \mapsto F(t, \theta)$ is a parameterization of all great circles that contain $c(t)$
- It follows that for each $p \in S$,

$$
n_{c}(p)=\frac{1}{2} \text { number of points in } F^{-1}(p)
$$

- If we view F as a multi-valued parameterization of S, then

$$
\int_{[0, \ell] \times[0,2 \pi]} F^{*} d A_{S}=2 \int_{\mathcal{G}} n_{c}(p) d A_{\mathcal{G}}=\int_{S} n_{c}(p) d A_{S},
$$

where

$$
F^{*} d A_{S}=\left|F_{t} \times F_{\theta}\right| d t d \theta
$$

Partial derivatives of F

- Recall that

$$
\begin{aligned}
& \dot{e}_{1}=e_{2} \kappa_{g}-e_{3} \\
& \dot{e}_{2}=-e_{1} \kappa_{g}
\end{aligned}
$$

- Since $F(t, \theta)=p_{0}+e_{1}(t) \cos \theta+e_{2}(t) \sin \theta$,

$$
\begin{aligned}
F_{t} & =\left(e_{2} \kappa_{g}-e_{3}\right) \cos \theta+-e_{1} \kappa_{t} \sin \theta \\
& =\kappa_{g}\left(-e_{1} \sin \theta+e_{2} \cos \theta\right)-e_{3} \cos \theta \\
F_{\theta} & =-e_{1} \sin \theta+e_{2} \cos \theta \\
F_{t} \times F_{\theta} & =\cos \theta\left(e_{3} \times\left(e_{1} \sin \theta-e_{2} \cos \theta\right)\right) \\
& =\cos \theta\left(e_{2} \sin \theta+e_{1} \cos \theta\right) \\
\left|F_{t} \times F_{\theta}\right| & =|\cos \theta|
\end{aligned}
$$

Spherical Crofton Formula

- Therefore,

$$
\begin{aligned}
\int_{S} n_{c}(p) d A_{p} & =\int_{[0, \ell] \times[0,2 \pi]} F^{*} d A \\
& =\int_{t=0}^{t=\ell} \int_{\theta=0}^{\theta=2 \pi}|\cos \theta| d \theta d t \\
& =4 \ell \int_{\theta=0}^{\theta=\frac{\pi}{2}} \cos \theta d \theta \\
& =4 \ell
\end{aligned}
$$

- The spherical Crofton formula states that the length of a curve c in S is equal to

$$
\ell=\frac{1}{4} \int_{S} n_{c}(p) d A_{S}(p)
$$

