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Topology of R2

I We will denote a point in R2 sometimes by (x1, x2),
sometimes (x , y), sometimes (s, t), sometimes (u, v), and
sometimes something completely different

I An open ball or disk in R2 with center (x1
0 , x2

0 ) ∈ R2 and
radius r > 0 is the set

B((x1
0 , x2

0 ), r) = {(x1, x2) ∈ R2 : (x1−x1
0 )

2+(x2−x2
0 )

2 < r2}

I A set O2 ⊂ R2 is open if for each point (x1
0 , x2

0 ) ∈ O2, there
is a ball B((x1

0 , x2
0 ), r) ⊂ O2

I r > 0 might have to be very small



C1 Map and Its Partial Derivatives
I A map Φ : O2 → A3 is C1 if for each B((x1

0 , x2
0 ), r) ⊂ O2, the

maps

c1 : (−r , r) → A
t 7→ Φ(x1

0 + t, x2
0 )

c2 : (−r , r) → A
t 7→ Φ(x1

0 , x2
0 + t)

are C1

I The partial derivatives of the map Φ at a point (x0, y0) ∈ O2

are defined to be

∂1Φ(x1
0 , x2

0 ) =
d
dt

∣∣∣∣
t=0

Φ(x1
0 + t, x2

0 ) ∈ V3

∂2Φ(x1
0 , x2

0 ) =
d
dt

∣∣∣∣
t=0

Φ(x1
0 , x2

0 + t) ∈ V3

I Each partial derivative is a map ∂kΦ : O2 → V3



Jacobian of a map Φ : O2 → A3

I The Jacobian of a C1 map Φ : O2 → A3 is defined to be the
matrix of partial derivatives

∂Φ =
[
∂1Φ ∂2Φ

]
I For each (x1

0 , x2
0 ) ∈ O2, the Jacobian defines a linear map

∂Φ(x1
0 , x2

0 ) : R̂2 → V3

v = 〈v1, v2〉 7→ ∂Φ(x1
0 , x2

0 )v

=
[
∂1Φ ∂2Φ

] [v1

v2

]
= v1∂1Φ(x1

0 , x2
0 ) + v2∂2Φ(x1

0 , x2
0 )



Jacobian of a map Φ : O2 → R3

I A map Φ : O2 → R3 can be written as

Φ(x1, x2) = (Φ1(x1, x2),Φ2(x1, x2),Φ3(x1, x2)),

where each Φk is a scalar function on O2

I The Jacobian of Φ can be written as

∂Φ =
[
∂1Φ ∂2Φ

]
=

∂1Φ
1 ∂2Φ

1

∂1Φ
2 ∂2Φ

2

∂1Φ
3 ∂2Φ

3


I For each (x1

0 , x2
0 ) ∈ O2, the Jacobian defines a linear map

∂Φ(x1
0 , x2

0 ) : R̂2 → V3

v = 〈v1, v2〉 7→ ∂Φ(x1
0 , x2

0 )v

=

∂1Φ
1 ∂2Φ

1

∂1Φ
2 ∂2Φ

2

∂1Φ
3 ∂2Φ

3

[
v1

v2

]
= v1∂1Φ(x1

0 , x2
0 ) + v2∂2Φ(x1

0 , x2
0 )



Nondegenerate Map
I A C1 map Φ : O → A3 is nondegenerate if for each

(x1, x2) ∈ O, its Jacobian, which is a linear map

∂Φ(x1, x2) : R̂2 → V3,

has maximal rank (equal to 2)
I Equivalently, Φ is nondegenerate if for each (x1, x2) ∈ O, the

vectors
∂1Φ(x1, x2), ∂2Φ(x1, x2) ∈ V3

are linearly independent
I Equivalently, Φ is nondegenerate if for each (x1, x2) ∈ O, the

image of the linear map

∂Φ(x1, x2) : R̂2 → V3,

is a 2-dimensional subspace of V3



Parameterized Surface in A3

I Recall that a parameterized curve is a C1 map c : I → A3 that
has nonzero speed ċ(t) for every t ∈ I

I The 2-dimensional analogue of nonzero speed is nondengeracy
I The 2-dimensional analogue of an interval in R is an open set

in R2

I A parameterized surface is a nondegenerate injective map C1

map Φ : O → A3

I Example: Paraboloid

Φ(x , y) = (x , y , x2 + y2)

I Bad parameterization of paraboloid

Φ(s, t) = (s3, t3, s6 + t6)

I Bad surface: Cone

Φ(u, v) = (u3, v3, (u6 + v6)1/2)


