MATH-UA 377 Differential Geometry Open set in \mathbb{R}^{2}
 C^{1} Map and its Partial Derivatives
 Parameterized Surface in \mathbb{V}^{3}

Deane Yang

Courant Institute of Mathematical Sciences
New York University
March 1, 2022

START RECORDING LIVE TRANSCRIPTION

Topology of \mathbb{R}^{2}

- We will denote a point in \mathbb{R}^{2} sometimes by $\left(x^{1}, x^{2}\right)$, sometimes (x, y), sometimes (s, t), sometimes (u, v), and sometimes something completely different
- An open ball or disk in \mathbb{R}^{2} with center $\left(x_{0}^{1}, x_{0}^{2}\right) \in \mathbb{R}^{2}$ and radius $r>0$ is the set
$B\left(\left(x_{0}^{1}, x_{0}^{2}\right), r\right)=\left\{\left(x^{1}, x^{2}\right) \in \mathbb{R}^{2}:\left(x^{1}-x_{0}^{1}\right)^{2}+\left(x^{2}-x_{0}^{2}\right)^{2}<r^{2}\right\}$
- A set $O^{2} \subset \mathbb{R}^{2}$ is open if for each point $\left(x_{0}^{1}, x_{0}^{2}\right) \in O^{2}$, there is a ball $B\left(\left(x_{0}^{1}, x_{0}^{2}\right), r\right) \subset O^{2}$
- $r>0$ might have to be very small

C^{1} Map and Its Partial Derivatives

- A map $\Phi: O^{2} \rightarrow \mathbb{A}^{3}$ is C^{1} if for each $B\left(\left(x_{0}^{1}, x_{0}^{2}\right), r\right) \subset O^{2}$, the maps

$$
\begin{aligned}
c_{1}:(-r, r) & \rightarrow \mathbb{A} \\
t & \mapsto \Phi\left(x_{0}^{1}+t, x_{0}^{2}\right) \\
c_{2}:(-r, r) & \rightarrow \mathbb{A} \\
t & \mapsto \Phi\left(x_{0}^{1}, x_{0}^{2}+t\right)
\end{aligned}
$$

are C^{1}

- The partial derivatives of the map Φ at a point $\left(x_{0}, y_{0}\right) \in O^{2}$ are defined to be

$$
\begin{aligned}
& \partial_{1} \Phi\left(x_{0}^{1}, x_{0}^{2}\right)=\left.\frac{d}{d t}\right|_{t=0} \Phi\left(x_{0}^{1}+t, x_{0}^{2}\right) \in \mathbb{V}^{3} \\
& \partial_{2} \Phi\left(x_{0}^{1}, x_{0}^{2}\right)=\left.\frac{d}{d t}\right|_{t=0} \Phi\left(x_{0}^{1}, x_{0}^{2}+t\right) \in \mathbb{V}^{3}
\end{aligned}
$$

- Each partial derivative is a map $\partial_{k} \Phi: O^{2} \rightarrow \mathbb{V}^{3}$

Jacobian of a map $\Phi: O^{2} \rightarrow \mathbb{A}^{3}$

- The Jacobian of a $C^{1} \operatorname{map} \Phi: O^{2} \rightarrow \mathbb{A}^{3}$ is defined to be the matrix of partial derivatives

$$
\partial \Phi=\left[\begin{array}{ll}
\partial_{1} \Phi & \partial_{2} \Phi
\end{array}\right]
$$

- For each $\left(x_{0}^{1}, x_{0}^{2}\right) \in O^{2}$, the Jacobian defines a linear map

$$
\begin{aligned}
\partial \Phi\left(x_{0}^{1}, x_{0}^{2}\right): \widehat{R}^{2} & \rightarrow \mathbb{V}^{3} \\
v=\left\langle v^{1}, v^{2}\right\rangle & \mapsto \partial \Phi\left(x_{0}^{1}, x_{0}^{2}\right) v \\
& =\left[\begin{array}{ll}
\partial_{1} \Phi & \partial_{2} \Phi
\end{array}\right]\left[\begin{array}{l}
v^{1} \\
v^{2}
\end{array}\right] \\
& =v^{1} \partial_{1} \Phi\left(x_{0}^{1}, x_{0}^{2}\right)+v^{2} \partial_{2} \Phi\left(x_{0}^{1}, x_{0}^{2}\right)
\end{aligned}
$$

Jacobian of a map $\Phi: O^{2} \rightarrow \mathbb{R}^{3}$

- A map $\Phi: O^{2} \rightarrow \mathbb{R}^{3}$ can be written as

$$
\Phi\left(x^{1}, x^{2}\right)=\left(\Phi^{1}\left(x^{1}, x^{2}\right), \Phi^{2}\left(x^{1}, x^{2}\right), \Phi^{3}\left(x^{1}, x^{2}\right)\right),
$$

where each Φ^{k} is a scalar function on O^{2}

- The Jacobian of Φ can be written as

$$
\partial \Phi=\left[\begin{array}{ll}
\partial_{1} \Phi & \partial_{2} \Phi
\end{array}\right]=\left[\begin{array}{ll}
\partial_{1} \Phi^{1} & \partial_{2} \Phi^{1} \\
\partial_{1} \Phi^{2} & \partial_{2} \Phi^{2} \\
\partial_{1} \Phi^{3} & \partial_{2} \Phi^{3}
\end{array}\right]
$$

- For each $\left(x_{0}^{1}, x_{0}^{2}\right) \in O^{2}$, the Jacobian defines a linear map

$$
\begin{aligned}
\partial \Phi\left(x_{0}^{1}, x_{0}^{2}\right): \widehat{R}^{2} & \rightarrow \mathbb{V}^{3} \\
v=\left\langle v^{1}, v^{2}\right\rangle & \mapsto \partial \Phi\left(x_{0}^{1}, x_{0}^{2}\right) v \\
& =\left[\begin{array}{ll}
\partial_{1} \Phi^{1} & \partial_{2} \Phi^{1} \\
\partial_{1} \Phi^{2} & \partial_{2} \Phi^{2} \\
\partial_{1} \Phi^{3} & \partial_{2} \Phi^{3}
\end{array}\right]\left[\begin{array}{l}
v^{1} \\
v^{2}
\end{array}\right] \\
& =v^{1} \partial_{1} \Phi\left(x_{0}^{1}, x_{0}^{2}\right)+v^{2} \partial_{2} \Phi\left(x_{0}^{1}, x_{0}^{2}\right)
\end{aligned}
$$

Nondegenerate Map

- A C^{1} map $\Phi: O \rightarrow \mathbb{A}^{3}$ is nondegenerate if for each $\left(x^{1}, x^{2}\right) \in O$, its Jacobian, which is a linear map

$$
\partial \Phi\left(x^{1}, x^{2}\right): \widehat{R}^{2} \rightarrow \mathbb{V}^{3}
$$

has maximal rank (equal to 2)

- Equivalently, Φ is nondegenerate if for each $\left(x^{1}, x^{2}\right) \in O$, the vectors

$$
\partial_{1} \Phi\left(x^{1}, x^{2}\right), \partial_{2} \Phi\left(x^{1}, x^{2}\right) \in \mathbb{V}^{3}
$$

are linearly independent

- Equivalently, Φ is nondegenerate if for each $\left(x^{1}, x^{2}\right) \in O$, the image of the linear map

$$
\partial \Phi\left(x^{1}, x^{2}\right): \widehat{R}^{2} \rightarrow \mathbb{V}^{3}
$$

is a 2-dimensional subspace of \mathbb{V}^{3}

Parameterized Surface in \mathbb{A}^{3}

- Recall that a parameterized curve is a $C^{1} \operatorname{map} c: I \rightarrow \mathbb{A}^{3}$ that has nonzero speed $\dot{c}(t)$ for every $t \in I$
- The 2-dimensional analogue of nonzero speed is nondengeracy
- The 2-dimensional analogue of an interval in \mathbb{R} is an open set in \mathbb{R}^{2}
- A parameterized surface is a nondegenerate injective map C^{1} $\operatorname{map} \Phi: O \rightarrow \mathbb{A}^{3}$
- Example: Paraboloid

$$
\Phi(x, y)=\left(x, y, x^{2}+y^{2}\right)
$$

- Bad parameterization of paraboloid

$$
\Phi(s, t)=\left(s^{3}, t^{3}, s^{6}+t^{6}\right)
$$

- Bad surface: Cone

$$
\Phi(u, v)=\left(u^{3}, v^{3},\left(u^{6}+v^{6}\right)^{1 / 2}\right)
$$

