MATH-UA 377 Differential Geometry Frenet-Serret frame and equations in \mathbb{E}^3 Spherical curves Space of great circles

Deane Yang

Courant Institute of Mathematical Sciences New York University

February 24, 2022

START RECORDING LIVE TRANSCRIPTION

Key Trick

- ▶ Suppose $v, w : I \rightarrow V$
- ▶ If |v| is constant, then so is $|v|^2 = v \cdot v$
- Differentiating,

$$0 = \frac{d}{dt}(v \cdot v) = 2v \cdot \dot{v} \implies v \cdot \dot{v} = 0$$

▶ If $v \cdot w$ is constant, then

$$0 = \frac{d}{dt}(v \cdot w) = \dot{v} \cdot w + v \cdot \dot{w}$$

▶ Therefore, if $v \cdot w$ is constant, then

$$\dot{\mathbf{v}} \cdot \mathbf{w} = -\mathbf{v} \cdot \dot{\mathbf{w}}$$

Frenet-Serret Frame for Parameterized Curve in \mathbb{E}^3

- ightharpoonup Fix an orientation on \mathbb{E}^3
- ▶ Let $c: I \to \mathbb{E}^3$ be a C^2 parameterized curve
- ▶ Assume, for any $t \in I$, $c'(t) \neq 0$ and set

$$\sigma = |c'|$$
 and $f_1 = \frac{c'}{|c'|}$

• Assume $f_1{}'(t) \neq 0$ and recall that since $f_1 \cdot f_1 = 1$,

$$f_1\cdot f_1'=0$$

- Let $f_2(t)$ be the unit vector in same direction as f_1
- Let $f_3(t)$ be the unique vector such that $(f_1(t), f_2(t), f_3(t))$ is a positively oriented orthonormal frame
- ▶ This is called the Frenet-Serret frame of the curve c
- ▶ It requires that $f_1' \neq 0$, which implies the curve is always changing direction

Curvature and Torsion

▶ Since $f_2(t)$ points in the same direction as $f_1'(t)$, there is a positive scalar function $\kappa: I \to (0, \infty)$ such that

$$f_1'(t) = \sigma \kappa(t) f_2(t)$$

- $\triangleright \kappa$ is called curvature
 - Measures rate of change of direction of curve
- ► Let

$$\tau = \frac{f_3 \cdot f_2'}{\sigma}$$

- ightharpoonup au is called torsion
 - Measures how fast the curve is twisting out of the plane spanned by f_1 and f_2

Deriving the Frenet-Serret equations

- $f_1' = \sigma \kappa f_2$
- ► Since $f_1 \cdot f_2 = 0$, $f_2 \cdot f_2 = 1$, and $f_3 \cdot f_2 = 0$,

$$f_1 \cdot f_2' = -f_1' \cdot f_2 = -\sigma \kappa$$

 $f_2 \cdot f_2' = 0$
 $f_3 \cdot f_2' = \sigma \tau$,

▶ It follows that

$$f_2' = -\sigma \kappa f_1 + \sigma \tau f_3$$

► Since $f_1 \cdot f_3 = 0$, $f_2 \cdot f_3 = 0$, and $f_3 \cdot f_3 = 1$,

$$f_1 \cdot f_3' = -f_1' \cdot f_3 = 0$$

 $f_2 \cdot f_3' = -f_2' \cdot f_3 = -\sigma \tau$
 $f_3 \cdot f_3' = 0$

▶ It follows that

$$f_3' = -\sigma \tau f_2$$

Frenet-Serret Equations for Curve in \mathbb{E}^3

► As a system of equations,

$$c' = \sigma f_1$$

$$f_1' = \sigma(\kappa f_2)$$

$$f_2' = \sigma(-\kappa f_1 + \tau f_3)$$

$$f_3' = \sigma(-\tau f_2)$$

Using matrices,

$$\frac{d}{dt}\begin{bmatrix}c & f_1 & f_2 & f_3\end{bmatrix} = \begin{bmatrix}f_1 & f_2 & f_3\end{bmatrix}\sigma\begin{bmatrix}1 & 0 & -\kappa & 0\\0 & \kappa & 0 & -\tau\\0 & 0 & \tau & 0\end{bmatrix}$$

A curve is planar if and only if its torsion is always zero

Example: Helix in \mathbb{R}^3

$$c(t) = p + e_1 \cos t + e_2 \sin t + e_3 t$$

$$\dot{c}(t) = -e_1 \sin t + e_2 \cos t + e_3 \implies \sigma = |\dot{c}| = \sqrt{2}$$

$$f_1 = \frac{1}{\sqrt{2}} \langle -\sin t, \cos t, 1 \rangle \implies \dot{f}_1 = \frac{1}{\sqrt{2}} \langle -\cos t, -\sin t, 0 \rangle$$

$$f_2 = \frac{\dot{f}_1}{|\dot{f}_1|} = \langle -\cos t, -\sin t, 0 \rangle \implies \dot{f}_2 = \langle \sin t, -\cos t, 0 \rangle$$

$$f_3 = f_1 \times f_2 = \frac{1}{\sqrt{2}} \langle \sin t, -\cos t, 1 \rangle$$

$$\kappa = \frac{|\dot{f}_1|}{\sigma} = \frac{1}{2} \text{ and } \tau = \frac{f_3 \cdot \dot{f}_2}{\sigma} = \frac{1}{2}$$

Existence and Uniqueness Theorem

Given

- ▶ A C^1 function $\sigma: [0, T] \to (0, \infty)$
- Continuous functions

$$\kappa: [0, T] \to (0, \infty)$$

$$\tau: [0, T] \to \mathbb{R}$$

A point $p \in \mathbb{E}^3$ and a positively oriented orthonormal basis (u_1, u_2, u_3) of \mathbb{V}^3 ,

there is a unique C^3 curve $c:[0,T]\to\mathbb{E}^3$ with speed σ , curvature κ , torsion τ , and Frenet-Serret frame f_1,f_2,f_3) such that

$$c(0) = p$$

 $f_1(0) = u_1$
 $f_2(0) = u_2$
 $f_3(0) = u_3$

Curvature and Torsion Uniquely Determine Shape of Curve

- Suppose c_1 and c_2 are parameterized curves with the same speed, curvature, torsion functions
- ▶ If F_1 is the Frenet-Serret frame of c_1 and F_2 is the Frenet-Serret frame of c_2 , there is a unique rotation map $R: \mathbb{V}^3 \to \mathbb{V}^3$ such that $F_2(0) = R(F_1(0))$
- ▶ If $R: \mathbb{E}^3 \to \mathbb{E}^3$ is the rigid motion given by

$$R(p) = c_2(0) + L(p - c_1(0)),$$

then

- $(R \circ c_1)(0) = c_2(0)$
- The curve $R \circ c_1$ has the same speed, curvature, and torsion functions as c_1 and c_2
- ▶ The Frenet-Serret frames of $R \circ c_1$ and c_2 are equal at t = 0
- ▶ By the uniqueness theorem, $c_2 = R \circ c_1$

Spherical Curve

▶ Given $p_0 \in \mathbb{E}^3$, let *S* be the unit sphere centered at p_0

$$S = \{ p \in \mathbb{E}^3 : |p - p_0| = 1 \}$$

- ▶ Consider a unit speed curve $c: [0, \ell] \rightarrow S$
- ▶ Given an orientation on \mathbb{E}^3 , there is a unique positively oriented frame (e_1, e_2, e_3) on the curve such that

$$e_1 = \cdot c$$

$$e_3 = p - p_0$$

- \triangleright e_3 is normal to S, and e_1, e_2 are tangent to S
- ► From HW4, problem 4.3, we know there is a function $\kappa_g: [0,\ell] \to \mathbb{R}$ such that

$$\frac{d}{dt}\begin{bmatrix}e_1 & e_2 & e_3\end{bmatrix} = \begin{bmatrix}e_1 & e_2 & e_3\end{bmatrix}\begin{bmatrix}0 & -\kappa_g & 1\\\kappa_g & 0 & 0\\-1 & 0 & 0\end{bmatrix}$$

 \triangleright κ_g is called the geodesic curvature

Space of Great Circles

- ▶ A great circle is the intersection of *S* with a plane through the origin
- ▶ Let \mathcal{G} be the space of all great circles in S
- ▶ For each $p \in S$, there is a corresponding great circle

$$G_p = \{ q \in S : (q - p_0) \cdot (p - p_0) = 0 \}$$

The map

$$g: S \to \mathcal{G}$$

$$p \mapsto G_p$$

is 2-to-1

▶ Observe that given $p \in S$,

$$p \in G_q \iff q \in G_p$$

▶ The area of a subset $\Omega \subset \mathcal{G}$ is equal to

$$\mathsf{Area}_{\mathcal{G}}(\Omega) = \frac{1}{2}\mathsf{Area}_{\mathcal{G}}(g^{-1}(\Omega))$$

