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Key Trick

» Suppose v,w: | —V
» If |v| is constant, then so is |[V]? = v- v
» Differentiating,

O:%(V-V):2v-\'/:> v-v=20

» If v- wis constant, then
0O=—(v-w)=v-wt+v-w
7w
» Therefore, if v- wis constant, then

V-w=—v-w



Frenet-Serret Frame for Parameterized Curve in E3

» Fix an orientation on E3
» Let c: /— E3 be a (? parameterized curve
» Assume, for any t € I, (t) # 0 and set

o =|c| and flz‘g|

» Assume f1’(t) # 0 and recall that since 1 - 1 = 1,

h-h'=0

» Let f»(t) be the unit vector in same direction as f;’

> Let f3(t) be the unique vector such that (fi(t), f(t), f3(t)) is a
positively oriented orthonormal frame

» This is called the Frenet-Serret frame of the curve ¢

» It requires that f;’ # 0, which implies the curve is always
changing direction



Curvature and Torsion

» Since f>(t) points in the same direction as f;/(t), there is a
positive scalar function x : | — (0,00) such that

A (1) = or(t)fa(1)

» k is called curvature
» Measures rate of change of direction of curve

> Let ffy

g

» 7 is called torsion

» Measures how fast the curve is twisting out of the plane
spanned by f; and £,



Deriving the Frenet-Serret equations
> i’ =okh

» Sincei-H=0,fh-fh=1and f3-H =0,

fi-h'=-hR'-fh=—0ok
fh'=0
fi’;'f2,:0-7—a
> It follows that
f! = —oKkf +07h

» Sincefi-5=0,f-=0,and - =1,

Af'=—h'f=0
h-fi'=—h' f=—or
foh' =0

» It follows that

B =—oTh



Frenet-Serret Equations for Curve in E3

> As a system of equations,

d=of
fi' = o(kh)
f! =o(—kfL +7h)
f' = o(~1h)
» Using matrices,
d 1 0 —x O
&[c fi 1‘3]:[1‘1 f> fg}a 0k 0 -7
0 0 0

» A curve is planar if and only if its torsion is always zero



Example: Helix in R3

c(t)=p+ e cost+ ersint+ est
c(t) = —ersint+ ecost+e3 = o =|¢| = V2

1 . 1
fi = 7<—sin t, cos t, ]_> — fi = —<—COS t,—sin t, 0>

V2 V2
h = |;1| (—cost,—sint,0) = f = (sint, — cos t, 0)
1
f3—f1><f2——(smt—costl>
f
1A _fih 1

o o 2



Existence and Uniqueness Theorem
Given
» A C function o : [0, T] — (0,00)

» Continuous functions

k[0, T] = (0,0)
7:[0,T] =R
» A point p € E3 and a positively oriented orthonormal basis
(u1, U2, uz) of V3,

there is a unique C° curve c: [0, T] — E2 with speed o, curvature
K, torsion 7, and Frenet-Serret frame fi, f>, f3) such that

d0)=p
f(0) =y
£(0) = up
3(0) = u3



Curvature and Torsion Uniquely Determine Shape of Curve

» Suppose c; and ¢, are parameterized curves with the same
speed, curvature, torsion functions

» If F; is the Frenet-Serret frame of ¢; and F5 is the
Frenet-Serret frame of ¢, there is a unique rotation map
R: V3 — V3 such that F,(0) = R(F1(0))

» If R:E3 — E3 is the rigid motion given by

R(p) = c(0) + L(p — c1(0)),

then
> (Roc)(0) = c(0)
» The curve Ro ¢; has the same speed, curvature, and torsion
functions as ¢; and ¢
» The Frenet-Serret frames of Ro ¢; and ¢, are equal at t =0
» By the uniqueness theorem, ¢, = Ro ¢



Spherical Curve
» Given pg € E3, let S be the unit sphere centered at pg

S={pe® : |p—p|=1}

» Consider a unit speed curve c: [0,/ — S
» Given an orientation on E3, there is a unique positively
oriented frame (e1, 2, €3) on the curve such that

€ =-C
e =p— po
» e;3is normal to S, and e;, e are tangent to S

» From HWA4, problem 4.3, we know there is a function
kg : [0,€] = R such that

d 0 —krg 1
= &1 & &]=[e & e]|rg 0 0
-1 0 O

» kg is called the geodesic curvature



Space of Great Circles

> A great circle is the intersection of S with a plane through the
origin

» Let G be the space of all great circles in S

» For each p € S, there is a corresponding great circle

Gp={q€5 : (g—po)-(p—po) =0}
» The map
g:5—>¢§g
p— Gp

is 2-to-1
» Observe that given p€ S,

pc Gy < qe G,

» The area of a subset Q C G is equal to

Areag(Q) = %Areas(gfl(fz))



