MATH-UA 377 Differential Geometry Curves in Euclidean 3-Space

Deane Yang
Courant Institute of Mathematical Sciences
New York University

February 22, 2022

START RECORDING LIVE TRANSCRIPTION

Frenet-Serret Frame for Parameterized Curve in \mathbb{E}^{3}

- Fix an orientation on \mathbb{E}^{3}
- Let $c: I \rightarrow \mathbb{E}^{3}$ be a C^{2} parameterized curve
- Assume, for any $t \in I, c^{\prime}(t) \neq 0$ and set

$$
\begin{aligned}
\sigma & =\left|c^{\prime}\right| \\
f_{1} & =\frac{c^{\prime}}{\left|c^{\prime}\right|}
\end{aligned}
$$

- Assume $f_{1}{ }^{\prime}(t) \neq 0$ and let $f_{2}(t)$ be the unit vector in same direction
- Since $f_{1}{ }^{\prime} \cdot f_{1}=0, f_{2} \cdot f_{1}=0$
- For each $t \in I$, there is a unique vector $f_{3}(t)$ such that $F(t)=\left(f_{1}(t), f_{2}(t), f_{3}(t)\right)$ is an oriented orthonormal frame
- This is called the Frenet-Serret frame of the curve c
- It requires that $f_{1}{ }^{\prime} \neq 0$, which implies the curve is always changing direction

First Two Frenet-Serret Equations

- Since $f_{2}(t)$ points in the same direction as $f_{1}{ }^{\prime}(t)$, there is a positive scalar function $\kappa: I \rightarrow(0, \infty)$ such that

$$
f_{1}^{\prime}(t)=\sigma \kappa(t) f_{2}(t)
$$

- Since $f_{2}{ }^{\prime} \cdot f_{2}=0$, there are scalar functions α and τ such that

$$
f_{2}^{\prime}=\sigma\left(\alpha f_{1}+\tau f_{3}\right)
$$

- Since

$$
0=\left(f_{1} \cdot f_{2}\right)^{\prime}=f_{1} \cdot f_{2}^{\prime}+f_{1}^{\prime} \cdot f_{2}=\sigma(\alpha+\kappa)
$$

it follows that $\alpha=-\kappa$

- κ is the rate of change of the direction of the curve and is called the curvature
- τ is the rate of change of f_{2} in the direction of f_{3} and is called the torsion
- Torsion measures how fast the curve is twisting out of the plane spanned by f_{1} and f_{2}

