MATH-UA 377 Differential Geometry Curves in Euclidean 3-Space

Deane Yang

Courant Institute of Mathematical Sciences New York University

February 22, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

START RECORDING LIVE TRANSCRIPTION

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Frenet-Serret Frame for Parameterized Curve in \mathbb{E}^3

- Fix an orientation on \mathbb{E}^3
- Let $c: I \to \mathbb{E}^3$ be a C^2 parameterized curve
- Assume, for any $t \in I$, $c'(t) \neq 0$ and set

$$\sigma = |c'|$$
$$f_1 = \frac{c'}{|c'|}$$

- Assume f₁ '(t) ≠ 0 and let f₂(t) be the unit vector in same direction
- Since $f_1' \cdot f_1 = 0$, $f_2 \cdot f_1 = 0$
- For each $t \in I$, there is a unique vector $f_3(t)$ such that $F(t) = (f_1(t), f_2(t), f_3(t))$ is an oriented orthonormal frame
- This is called the Frenet-Serret frame of the curve c
- ▶ It requires that $f_1' \neq 0$, which implies the curve is always changing direction

First Two Frenet-Serret Equations

Since f₂(t) points in the same direction as f₁'(t), there is a positive scalar function κ : I → (0,∞) such that

$$f_1'(t) = \sigma \kappa(t) f_2(t)$$

Since $f_2' \cdot f_2 = 0$, there are scalar functions α and τ such that

$$f_2' = \sigma(\alpha f_1 + \tau f_3)$$

Since

$$0 = (f_1 \cdot f_2)' = f_1 \cdot f_2' + f_1' \cdot f_2 = \sigma(\alpha + \kappa),$$

it follows that $\alpha = -\kappa$

- κ is the rate of change of the direction of the curve and is called the curvature
- τ is the rate of change of f_2 in the direction of f_3 and is called the **torsion**
 - Torsion measures how fast the curve is twisting out of the plane spanned by f_1 and f_2