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Smooth Immersed Curves

▶ Recall that we have defined a smooth parameterized curve in
an affine space A to be a smooth map

c : I → A

where ċ(t) ̸= 0 for all t ∈ I
▶ Note that we allow the curve to intersect itself
▶ Such curves are also called immersed curves
▶ If a curve does not intersect itself, it is called an embedded

curve
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Winding versus Rotation Number of a Closed Planar Curve

p2
p1

C1

p3
p4

p5

C2

▶ Winding number W(p,C) of a closed planar curve C ⊂ A2

around a point p /∈ C is the number of times the curve goes
counterclockwise around p

W(p1,C1) = W(p5,C2) = 0
W(p2,C1) = W(p4,C2) = 1
W(p3,C2) = 2

▶ Rotation number R(C) is the number of times the unit
tangent vector rotates counterclockwise around the circle

R(C1) = 1
R(C2) = 2
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“Obvious” Facts about the Winding and Rotation Numbers

▶ The winding number W(C, p)
▶ Depends on where p lies relative to the curve
▶ Equals zero if p lies outside the curve completely
▶ If p1 and p2 are points that can be connected by a curve that

does not cross C, then

W(C, p1) = W(C, p2)

▶ If a curve C1 can be continuously deformed through a family of
closed curves into another curve C2 without any of the curves
crossing p, then

W(C1, p) = W(C2, p)
▶ The rotation number

▶ Remains unchanged under any smooth deformation of the
curve
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Derivative of Polar Angle

e1

e2

θ

c(t)

p

▶ A smooth curve c : [0,T] → E2 can be written using polar
coordinates relative to a point p not on the curve as
c(t) = p + e1x(t) + e2y(2) = p + r(t)(e1 cos(θ(t)) + e2 sin(θ(t))),
where r(t) is always nonzero

▶ Differentiating this, we get
e1ẋ + e2ẏ = ṙ(e1 cos θ + e2 sin θ) + θ̇(−e1r sin θ + e2r cos θ)

=
ṙ
r(e1x + e2y) + θ̇(−e1y + e2x)

▶ Therefore,

θ̇ =
−yẋ + xẏ
x2 + y2 and θ(T)− θ(0) =

∫ t=T

t=0

−yẋ + xẏ
x2 + y2 dt
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Winding Number of a Closed Curve
▶ If c : [0,T] → E2 is a closed curve and p does not lie on the

curve, then

c(0) = c(T) =⇒ x(0) = x(T) and y(0) = y(T)
=⇒ r(0) = r(T) and
θ(T)− θ(0) = 2πk, for some integer k

▶ Therefore,

1
2π

∫ t=T

t=0

−yẋ + xẏ
x2 + y2 dt = 1

2π

∫ t=T

t=0
θ̇(t) dt = θ(T)− θ(0) = k

▶ Equivalently, the line integral

1
2π

∫
C

−y dx + x dy
x2 + y2

is always an integer and equal to the winding number
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Winding Number is a Topological Invariant
▶ Suppose cδ : [0, 1] → E2 is a continuous family of closed

curves, parameterized by 0 ≤ δ ≤ 1
▶ In other words, for each 0 ≤ δ ≤ 1, the curve cδ satisfies

cδ(0) = cδ(1)
▶ If we define the polar angle θ such that for each 0 ≤ δ ≤ 1,

θδ(0) = 0

then
θδ(1) = 2πkδ

▶ On the other hand,

θδ(1)− θδ(0) =
∫ t=1

t=0

−yδ ẋδ + xδ ẏδ
x2
δ + y2

δ

dt

is a continuous function of δ
▶ Therefore, the winding number W(Cδ, p) = kδ is a constant

independent of δ
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Frenet-Serret Frame and Equations for Parameterized
Curve in E2

f1(t2)f2(t2)

c(t2)

f1(t1)

f2(t1)

c(t1)

▶ The Frenet-Serret frame for a parameterized curve c : I → E2

is an oriented orthonormal frame F = (f1, f2) along c such that

c′ = σf1

▶ The Frenet-Serret equations are

1
σ

d
dt

[
f1 f2

]
=

[
f1 f2

] [0 −κ
κ 0

]
,

where κ is the curvature function



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Rotation Angle of a Parameterized Curve

f1

e1

e2
f2

f1

f2

e1

e2

▶ Fix an orthonormal basis (e1, e2) of V2

▶ Consider a curve c : I → E2 with Frenet-Serret frame (f1, f2)
▶ The counterclockwise angle ϕ from e1 to f1 satisfies

[
f1 f2

]
=

[
e1 e2

] [cosϕ − sinϕ
sinϕ cosϕ

]
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Curvature is Normalized Rate of Change of Angle
▶ On one hand, the Frenet-Serret equations say

d
dt

[
f1 f2

]
=

[
f1 f2

] [0 −κ
κ 0

]
σ

▶ On the other hand,

d
dt

[
f1 f2

]
=

[
e1 e2

] [− sinϕ − cosϕ
cosϕ − sinϕ

]
ϕ̇

=
[
−e1 sinϕ+ e2 cosϕ −e1 cosϕ− e2 sinϕ

]
ϕ̇

=
[
f2 −f1

]
ϕ̇

=
[
f1 f2

] [0 −ϕ̇

ϕ̇ 0

]
▶ Therefore,

κ =
ϕ̇

σ
or ϕ̇ = σκ
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Rotation Number of a Smooth Closed Curve
▶ If a curve c : [0,T] → A2 is closed, then

c(0) = c(T)

▶ If a closed curve is smooth and oriented in the direction ċ,
then since ċ(0) and ċ(T) have the same orientation, they have
to point in the same direction

▶ Therefore,
ϕ(T)− ϕ(0) = 2πk,

where k is the rotation number of C
▶ Since

ϕ̇ = κσ,

the rotation number of C is equal to

R(C) = 1
2π

∫ t=T

t=0
κ(t)σ(t) dt
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Rotation Number is a Topological Invariant

▶ If cδ is a continuous family of curves parameterized by
δ ∈ [0, 1] such that the curvature function κδ and speed
function σδ are continuous functions of δ, then

R(Cδ) =
1

2π

∫ t=T

t=0
κδ(t)σδ(t) dt

is a continuous function of δ
▶ Since R(Cδ) is an integer, it must therefore be constant


