MATH-UA 377 Differential Geometry Winding and Rotation Numbers of a Closed Curve

Deane Yang

Courant Institute of Mathematical Sciences
New York University
February 17, 2022

START RECORDING LIVE TRANSCRIPTION

Smooth Immersed Curves

- Recall that we have defined a smooth parameterized curve in an affine space \mathbb{A} to be a smooth map

$$
c: I \rightarrow \mathbb{A}
$$

where $\dot{c}(t) \neq 0$ for all $t \in I$

- Note that we allow the curve to intersect itself
- Such curves are also called immersed curves
- If a curve does not intersect itself, it is called an embedded curve

Winding versus Rotation Number of a Closed Planar Curve

- Winding number $W(p, C)$ of a closed planar curve $C \subset \mathbb{A}^{2}$ around a point $p \notin C$ is the number of times the curve goes counterclockwise around p

$$
\begin{aligned}
& W\left(p_{1}, C_{1}\right)=W\left(p_{5}, C_{2}\right)=0 \\
& W\left(p_{2}, C_{1}\right)=W\left(p_{4}, C_{2}\right)=1 \\
& W\left(p_{3}, C_{2}\right)=2
\end{aligned}
$$

- Rotation number $R(C)$ is the number of times the unit tangent vector rotates counterclockwise around the circle

$$
\begin{aligned}
& R\left(C_{1}\right)=1 \\
& R\left(C_{2}\right)=2
\end{aligned}
$$

"Obvious" Facts about the Winding and Rotation Numbers

- The winding number $W(C, p)$
- Depends on where p lies relative to the curve
- Equals zero if p lies outside the curve completely
- If p_{1} and p_{2} are points that can be connected by a curve that does not cross C, then

$$
W\left(C, p_{1}\right)=W\left(C, p_{2}\right)
$$

- If a curve C_{1} can be continuously deformed through a family of closed curves into another curve C_{2} without any of the curves crossing p, then

$$
W\left(C_{1}, p\right)=W\left(C_{2}, p\right)
$$

- The rotation number
- Remains unchanged under any smooth deformation of the curve

Derivative of Polar Angle

- A smooth curve $c:[0, T] \rightarrow \mathbb{E}^{2}$ can be written using polar coordinates relative to a point p not on the curve as

$$
c(t)=p+e_{1} x(t)+e_{2} y(2)=p+r(t)\left(e_{1} \cos (\theta(t))+e_{2} \sin (\theta(t))\right)
$$

where $r(t)$ is always nonzero

- Differentiating this, we get

$$
\begin{aligned}
e_{1} \dot{x}+e_{2} \dot{y} & =\dot{r}\left(e_{1} \cos \theta+e_{2} \sin \theta\right)+\dot{\theta}\left(-e_{1} r \sin \theta+e_{2} r \cos \theta\right) \\
& =\frac{\dot{r}}{r}\left(e_{1} x+e_{2} y\right)+\dot{\theta}\left(-e_{1} y+e_{2} x\right)
\end{aligned}
$$

- Therefore,

$$
\dot{\theta}=\frac{-y \dot{x}+x \dot{y}}{x^{2}+y^{2}} \text { and } \theta(T)-\theta(0)=\int_{t=0}^{t=T} \frac{-y \dot{x}+x \dot{y}}{x^{2}+y^{2}} d t
$$

Winding Number of a Closed Curve

- If $c:[0, T] \rightarrow \mathbb{E}^{2}$ is a closed curve and p does not lie on the curve, then

$$
\begin{aligned}
c(0)=c(T) & \Longrightarrow x(0)=x(T) \text { and } y(0)=y(T) \\
& \Longrightarrow r(0)=r(T) \text { and } \\
& \theta(T)-\theta(0)=2 \pi k, \text { for some integer } k
\end{aligned}
$$

- Therefore,

$$
\frac{1}{2 \pi} \int_{t=0}^{t=T} \frac{-y \dot{x}+x \dot{y}}{x^{2}+y^{2}} d t=\frac{1}{2 \pi} \int_{t=0}^{t=T} \dot{\theta}(t) d t=\theta(T)-\theta(0)=k
$$

- Equivalently, the line integral

$$
\frac{1}{2 \pi} \int_{C} \frac{-y d x+x d y}{x^{2}+y^{2}}
$$

is always an integer and equal to the winding number

Winding Number is a Topological Invariant

- Suppose $c_{\delta}:[0,1] \rightarrow \mathbb{E}^{2}$ is a continuous family of closed curves, parameterized by $0 \leq \delta \leq 1$
- In other words, for each $0 \leq \delta \leq 1$, the curve c_{δ} satisfies

$$
c_{\delta}(0)=c_{\delta}(1)
$$

- If we define the polar angle θ such that for each $0 \leq \delta \leq 1$,

$$
\theta_{\delta}(0)=0
$$

then

$$
\theta_{\delta}(1)=2 \pi k_{\delta}
$$

- On the other hand,

$$
\theta_{\delta}(1)-\theta_{\delta}(0)=\int_{t=0}^{t=1} \frac{-y_{\delta} \dot{x}_{\delta}+x_{\delta} \dot{y}_{\delta}}{x_{\delta}^{2}+y_{\delta}^{2}} d t
$$

is a continuous function of δ

- Therefore, the winding number $W\left(C_{\delta}, p\right)=k_{\delta}$ is a constant independent of δ

Frenet-Serret Frame and Equations for Parameterized

 Curve in \mathbb{E}^{2}

- The Frenet-Serret frame for a parameterized curve c:I $\rightarrow \mathbb{E}^{2}$ is an oriented orthonormal frame $F=\left(f_{1}, f_{2}\right)$ along c such that

$$
c^{\prime}=\sigma f_{1}
$$

- The Frenet-Serret equations are

$$
\frac{1}{\sigma} \frac{d}{d t}\left[\begin{array}{ll}
f_{1} & f_{2}
\end{array}\right]=\left[\begin{array}{ll}
f_{1} & f_{2}
\end{array}\right]\left[\begin{array}{cc}
0 & -\kappa \\
\kappa & 0
\end{array}\right],
$$

where κ is the curvature function

Rotation Angle of a Parameterized Curve

- Fix an orthonormal basis $\left(e_{1}, e_{2}\right)$ of \mathbb{V}^{2}
- Consider a curve $c: I \rightarrow \mathbb{E}^{2}$ with Frenet-Serret frame $\left(f_{1}, f_{2}\right)$
- The counterclockwise angle ϕ from e_{1} to f_{1} satisfies

$$
\left[\begin{array}{ll}
f_{1} & f_{2}
\end{array}\right]=\left[\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right]\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
$$

Curvature is Normalized Rate of Change of Angle

- On one hand, the Frenet-Serret equations say

$$
\frac{d}{d t}\left[\begin{array}{ll}
f_{1} & f_{2}
\end{array}\right]=\left[\begin{array}{ll}
f_{1} & f_{2}
\end{array}\right]\left[\begin{array}{cc}
0 & -\kappa \\
\kappa & 0
\end{array}\right] \sigma
$$

- On the other hand,

$$
\begin{aligned}
\frac{d}{d t}\left[\begin{array}{ll}
f_{1} & f_{2}
\end{array}\right] & =\left[\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right]\left[\begin{array}{cc}
-\sin \phi & -\cos \phi \\
\cos \phi & -\sin \phi
\end{array}\right] \dot{\phi} \\
& =\left[\begin{array}{ll}
-e_{1} \sin \phi+e_{2} \cos \phi & -e_{1} \cos \phi-e_{2} \sin \phi
\end{array}\right] \dot{\phi} \\
& =\left[\begin{array}{ll}
f_{2} & -f_{1}
\end{array}\right] \dot{\phi} \\
& =\left[\begin{array}{ll}
f_{1} & f_{2}
\end{array}\right]\left[\begin{array}{cc}
0 & -\dot{\phi} \\
\dot{\phi} & 0
\end{array}\right]
\end{aligned}
$$

- Therefore,

$$
\kappa=\frac{\dot{\phi}}{\sigma} \text { or } \dot{\phi}=\sigma \kappa
$$

Rotation Number of a Smooth Closed Curve

- If a curve $c:[0, T] \rightarrow \mathbb{A}^{2}$ is closed, then

$$
c(0)=c(T)
$$

- If a closed curve is smooth and oriented in the direction \dot{c}, then since $\dot{c}(0)$ and $\dot{c}(T)$ have the same orientation, they have to point in the same direction
- Therefore,

$$
\phi(T)-\phi(0)=2 \pi k
$$

where k is the rotation number of C

- Since

$$
\dot{\phi}=\kappa \sigma,
$$

the rotation number of C is equal to

$$
R(C)=\frac{1}{2 \pi} \int_{t=0}^{t=T} \kappa(t) \sigma(t) d t
$$

Rotation Number is a Topological Invariant

- If c_{δ} is a continuous family of curves parameterized by $\delta \in[0,1]$ such that the curvature function κ_{δ} and speed function σ_{δ} are continuous functions of δ, then

$$
R\left(C_{\delta}\right)=\frac{1}{2 \pi} \int_{t=0}^{t=T} \kappa_{\delta}(t) \sigma_{\delta}(t) d t
$$

is a continuous function of δ

- Since $R\left(C_{\delta}\right)$ is an integer, it must therefore be constant

