MATH-UA 377 Differential Geometry Orientation of Affine Space Orientation and Curvature of a Curve in \mathbb{E}^2 Frenet-Serret Frame and Equations Deane Yang Courant Institute of Mathematical Sciences New York University February 15, 2022 ## START RECORDING LIVE TRANSCRIPTION #### Oriented Basis of \mathbb{R}^2 - ▶ A basis (f_1, f_2) of \mathbb{R}^2 is called *positively oriented*, if the vector f_2 is f_1 rotated counterclockwise by an angle less than π - Otherwise, the basis has negative orientation - ▶ If (f_1, f_2) has positive orientation, then - \blacktriangleright $(f_2, f_1), (-f_1, f_2), (f_1, -f_2)$ have negative orientation - $(-f_1, -f_2)$, $(f_2, -f_1)$, $(-f_2, f_1)$ have positive orientation #### Facts About Oriented Bases of \mathbb{R}^2 - ▶ The standard basis $(\langle 1, 0 \rangle, \langle 0, 1 \rangle)$ has positive orientation - ▶ If E and F are bases, then there is an invertible matrix M such that F = EM. - If det M > 0, then E and F have the same orientation - ▶ If det M < 0, then they have opposite orientations #### Oriented Bases of an Abstract Vector Space \mathbb{V}^m - ightharpoonup There is no standard basis of \mathbb{V}^2 - ▶ If E and F = EM are bases, then we say they have the same orientation if det M > 0. - ▶ The set \mathcal{B} of all bases of \mathbb{V}^2 is the union of two disjoint subsets, $$\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$$ where E and F = EM are in the same subset if and only if det M > 0 and in different subsets if and only if det M < 0 - An orientation on \mathbb{V}^m is choosing one of the two subsets and saying that the bases in that subset have positive orientation - ► An orientation of an affine space is defined to be an orientation of its tangent space #### Oriented Bases of \mathbb{V}^2 Suppose the basis $$\begin{bmatrix} f_1 & f_2 \end{bmatrix}$$ has positive orientation ▶ The following bases also have positive orientation: $$\begin{bmatrix} -f_1 & -f_2 \end{bmatrix} = \begin{bmatrix} f_1 & f_2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$ $$\begin{bmatrix} -f_2 & f_1 \end{bmatrix} = \begin{bmatrix} f_1 & f_2 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$ ▶ The following bases have negative orientation: $$\begin{bmatrix} f_1 & -f_2 \end{bmatrix} = \begin{bmatrix} f_1 & f_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$ $$\begin{bmatrix} f_2 & f_1 \end{bmatrix} = \begin{bmatrix} f_1 & f_2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$ #### Orientation of a Curve in \mathbb{A}^m - ▶ Suppose $c : [a, b] \rightarrow \mathbb{A}^m$ is a parameterized curve - An orientation of c is a choice of direction along the curve, either \dot{c} or $-\dot{c}$ - ▶ This is equivalent to choosing which endpoint, c(a) or c(b), is the start of the curve and which is the end - Standard orientation: - ightharpoonup The direction \dot{c} - ▶ If a < b, then c(a) is the start and c(b) is the end #### Frenet-Serret-Frame along Unit Speed Curve in \mathbb{E}^2 - ightharpoonup Choose an orientation on \mathbb{E}^2 - ▶ Suppose $\hat{c}: I \to \mathbb{E}^2$ is a unit speed curve with the standard orientation - ▶ For each $s \in I$, - $\blacktriangleright \text{ Let } \hat{f}_1(s) = \hat{c}'(s)$ - ► There is a unique vector $\hat{f}_2(s)$ such that $(\hat{f}_1(s), \hat{f}_2(s))$ is a positively oriented orthonormal basis of \mathbb{V}^2 - (\hat{f}_1, \hat{f}_2) is called an adapted positively oriented orthonormal frame along the curve \hat{c} - $ightharpoonup (\hat{f}_1, \hat{f}_2)$ is also called a Frenet-Serret frame #### Oriented Curvature of an Oriented Unit Speed Curve in \mathbb{E}^2 - Let (\hat{f}_1, \hat{f}_2) be a Frenet-Serret frame along an oriented unit speed curve $c: I \to \mathbb{E}^2$ - ► Recall that since $\hat{f}_1 \cdot \hat{f}_1 = 1$, $0 = \frac{d}{ds}(\hat{f}_1 \cdot \hat{f}_1) = 2\hat{f}_1' \cdot \hat{f}_1$ - $ightharpoonup \hat{f}_1'(s)$ must point in the same or opposite direction to $\hat{f}_2(s)$ - ▶ Therefore, there is a scalar function $\hat{\kappa}$ such that $$\hat{f}_1'(s) = \hat{\kappa}(s)\hat{f}_2(s)$$ - \triangleright $\hat{\kappa}$ is called the oriented curvature function - lacksquare In picture above, $\hat{\kappa}(s_1)>0$ and $\hat{\kappa}(s_2)<0$ #### Frenet-Serret Equations of Unit Speed Curve in \mathbb{E}^2 - ▶ Let (\hat{f}_1, \hat{f}_2) be a Frenet-Serret frame along an oriented unit speed curve $c: I \to \mathbb{E}^2$ - If we differentiate the equations $$\hat{\textit{f}}_{1}\cdot\hat{\textit{f}}_{1}=\hat{\textit{f}}_{2}\cdot\hat{\textit{f}}_{2}=1 \text{ and } \hat{\textit{f}}_{1}\cdot\hat{\textit{f}}_{2},$$ we get $$\hat{f}_1' \cdot \hat{f}_1 = 0$$ $$\hat{f}_2' \cdot \hat{f}_2 = 0$$ $$\hat{f}_1' \cdot \hat{f}_2 + \hat{f}_1 \cdot \hat{f}_2' = 0$$ - By the definition of curvature and equations above, - $\hat{f}_1' = \hat{\kappa} \hat{f}_2$ - $\hat{f_2}' = \hat{af_1}$ for some scalar function a - $(\hat{\kappa}\hat{f}_2)\cdot\hat{f}_2+\hat{f}_1\cdot(\hat{af}_1)=0$, which implies $a=-\hat{\kappa}$ #### Frenet-Serret Equations of Unit Speed Curve in \mathbb{E}^2 - ▶ Let (\hat{f}_1, \hat{f}_2) be a Frenet-Serret frame along an oriented unit speed curve $c: I \to \mathbb{E}^2$ - lacktriangle The Frenet-Serret equations for a unit speed curve in \mathbb{E}^2 are $$\hat{f}_1' = \hat{\kappa} \hat{f}_2$$ $$\hat{f}_2' = -\hat{\kappa} \hat{f}_1$$ Equivalently $$\frac{d}{ds} \begin{bmatrix} \hat{f}_1 & \hat{f}_2 \end{bmatrix} = \begin{bmatrix} \hat{f}_1 & \hat{f}_2 \end{bmatrix} \begin{bmatrix} 0 & -\hat{\kappa} \\ \hat{\kappa} & 0 \end{bmatrix}$$ #### Frenet-Serret Frame for Parameterized Curve - ightharpoonup Let \mathbb{E}^2 be oriented Euclidean space - ▶ The Frenet-Serret frame of a C^2 parameterized curve $c: I \to \mathbb{E}^2$ is the unique positively oriented orthonormal frame (f_1, f_2) such that $$f_1 = \frac{c'}{|c'|}$$ If \hat{c} is the unit speed parameterization of the same curve and $\hat{E} = (\hat{f}_1, \hat{f}_2)$ is the Frenet-Serret frame for \hat{c} , then $$c(t) = \hat{c}(s(t))$$ and $F(t) = \widehat{F}(s(t))$, where s(t) is the arclength function #### Frenet-Serret Equations for Parameterized Curve ▶ Since $s'(t) = \sigma(t)$ and using the chain rule, $$c'(t) = \hat{c}'(s(t))s'(t)$$ $$= \sigma(t)\hat{f}_{1}(s(t))$$ $$= \sigma(t)f_{1}(t)$$ $$f_{1}'(t) = \hat{f}_{1}'(s(t))s'(t)$$ $$= \sigma(t)\hat{\kappa}(s(t))\hat{f}_{2}(s(t))$$ $$= \sigma(t)\kappa(t)f_{2}(t)$$ $$f_{2}'(t) = \hat{f}_{2}'(s(t))s'(t)$$ $$= -\sigma\hat{\kappa}(s(t))\hat{f}_{1}(s(t))$$ $$= -\sigma\kappa(t)f_{1}(t),$$ where $\kappa(t) = \hat{\kappa}(s(t))$ is the curvature at $c(t) = \hat{c}(s(t))$ ### Frenet-Serret Frame and Equations for Parameterized Curve in \mathbb{E}^2 ▶ The Frenet-Serret frame for a parameterized curve $c: I \to \mathbb{E}^2$ is an adapted oriented orthonormal frame $E = (f_1, f_2)$ along c such that $$c' = \sigma f_1$$ ► The Frenet-Serret equations are $$\frac{1}{\sigma} \frac{d}{dt} \begin{bmatrix} f_1 & f_2 \end{bmatrix} = \begin{bmatrix} f_1 & f_2 \end{bmatrix} \begin{bmatrix} 0 & -\kappa \\ \kappa & 0 \end{bmatrix}$$ #### Example: Frenet-Serret Frame of a Circle ▶ Given a point $p \in \mathbb{E}^2$ and an orthonormal basis (e_1, e_2) of \mathbb{V}^2 , a parameterization of the circle with radius R and center $p \in \mathbb{E}^2$ is $$c(t) = e_1(R\cos t) + e_2(R\sin t)$$ Its velocity is $$\dot{c}(t) = R(-e_1 \sin t + e_2 \cos t)$$ and its speed is $$\sigma = |\dot{c}| = R$$ ▶ The Frenet-Serret frame is $$f_1(t) = \frac{\dot{c}(t)}{|\dot{c}(t)|} = -e_1 \sin t + e_2 \cos t$$ $f_2(t) = -e_1 \cos t - e_2 \sin t$ #### Frenet-Serret Equations for a Circle ▶ Differentiating the Frenet-Serret frame, we get $$\begin{split} \frac{1}{\sigma}\frac{d}{dt}\left[f_1 \quad f_2\right] &= \frac{1}{R}\frac{d}{dt}\left[-e_1\sin t + e_2\cos t \quad -e_1\cos t - e_2\sin t\right] \\ &= \frac{1}{R}\left[-e_1\cos t - e_2\sin t \quad e_1\sin t - e_2\cos t\right] \\ &= \frac{1}{R}\left[f_2 \quad -f_1\right] \\ &= \left[f_1 \quad f_2\right]\begin{bmatrix}0 & -\frac{1}{R}\\ \frac{1}{R} & 0\end{bmatrix} \end{split}$$ ▶ The curvature of a circle of radius R is $\kappa = \frac{1}{R}$ #### Example: Spiral ▶ Given $p \in \mathbb{E}^2$ and an orthonormal basis (e_1, e_2) of \mathbb{V}^2 , $$c(t) = e_1(t\cos t) + e_2(t\sin t)$$ is a spiral Its velocity is $$\dot{c}(t) = e_1(\cos t - t\sin t) + e_2(\sin t + t\cos t)$$ and its speed is given by $$\sigma^2 = (\cos t - t \sin t)^2 + (\sin t + t \cos t)^2 = 1 + t^2$$ #### Frenet-Serret Frame of a Spiral $$f_1(t) = rac{\dot{c}(t)}{|\dot{c}(t)|}$$ $$= rac{e_1(\cos t - t\sin t) + e_2(\sin t + t\cos t)}{\sqrt{1 + t^2}}$$ $f_2(t) = rac{-e_1(\sin t + t\cos t) + e_2(\cos t - t\sin t)}{\sqrt{1 + t^2}}$ #### Curvature of a Spiral $$\dot{f}_1 = rac{e_1(-2\sin t - t\cos t) + e_2(2\cos t - t\sin t)}{\sqrt{1+t^2}} - rac{t}{(1+t^2)}f_1$$ ► Therefore, $$\kappa = \frac{1}{\sigma} f_2 \cdot \dot{f}_1$$ $$= \frac{(\sin t + t \cos t)(2 \sin t + t \cos t)}{(1 + t^2)^{3/2}}$$ $$+ \frac{(\cos t - t \sin t)(2 \cos t - t \sin t)}{(1 + t^2)^{3/2}}$$ $$= \frac{2 + t^2}{(1 + t^2)^{3/2}}$$ $$= (1 + t^2)^{-3/2} + (1 + t^2)^{-1/2}$$