MATH-UA 377 Differential Geometry Orientation of Affine Space Orientation and Curvature of a Curve in \mathbb{E}^2 Frenet-Serret Frame and Equations

Deane Yang

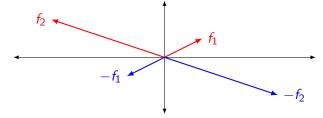
Courant Institute of Mathematical Sciences New York University

February 15, 2022

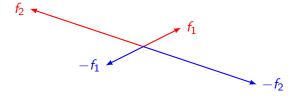
START RECORDING LIVE TRANSCRIPTION

Oriented Basis of \mathbb{R}^2

- ▶ A basis (f_1, f_2) of \mathbb{R}^2 is called *positively oriented*, if the vector f_2 is f_1 rotated counterclockwise by an angle less than π
- Otherwise, the basis has negative orientation
- ▶ If (f_1, f_2) has positive orientation, then
 - \blacktriangleright $(f_2, f_1), (-f_1, f_2), (f_1, -f_2)$ have negative orientation
 - $(-f_1, -f_2)$, $(f_2, -f_1)$, $(-f_2, f_1)$ have positive orientation



Facts About Oriented Bases of \mathbb{R}^2



- ▶ The standard basis $(\langle 1, 0 \rangle, \langle 0, 1 \rangle)$ has positive orientation
- ▶ If E and F are bases, then there is an invertible matrix M such that F = EM.
 - If det M > 0, then E and F have the same orientation
 - ▶ If det M < 0, then they have opposite orientations

Oriented Bases of an Abstract Vector Space \mathbb{V}^m

- ightharpoonup There is no standard basis of \mathbb{V}^2
- ▶ If E and F = EM are bases, then we say they have the same orientation if det M > 0.
- ▶ The set \mathcal{B} of all bases of \mathbb{V}^2 is the union of two disjoint subsets,

$$\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$$

where E and F = EM are in the same subset if and only if det M > 0 and in different subsets if and only if det M < 0

- An orientation on \mathbb{V}^m is choosing one of the two subsets and saying that the bases in that subset have positive orientation
- ► An orientation of an affine space is defined to be an orientation of its tangent space

Oriented Bases of \mathbb{V}^2

Suppose the basis

$$\begin{bmatrix} f_1 & f_2 \end{bmatrix}$$

has positive orientation

▶ The following bases also have positive orientation:

$$\begin{bmatrix} -f_1 & -f_2 \end{bmatrix} = \begin{bmatrix} f_1 & f_2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$\begin{bmatrix} -f_2 & f_1 \end{bmatrix} = \begin{bmatrix} f_1 & f_2 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

▶ The following bases have negative orientation:

$$\begin{bmatrix} f_1 & -f_2 \end{bmatrix} = \begin{bmatrix} f_1 & f_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$\begin{bmatrix} f_2 & f_1 \end{bmatrix} = \begin{bmatrix} f_1 & f_2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

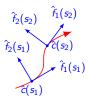
Orientation of a Curve in \mathbb{A}^m

- ▶ Suppose $c : [a, b] \rightarrow \mathbb{A}^m$ is a parameterized curve
- An orientation of c is a choice of direction along the curve, either \dot{c} or $-\dot{c}$
- ▶ This is equivalent to choosing which endpoint, c(a) or c(b), is the start of the curve and which is the end
- Standard orientation:
 - ightharpoonup The direction \dot{c}
 - ▶ If a < b, then c(a) is the start and c(b) is the end

Frenet-Serret-Frame along Unit Speed Curve in \mathbb{E}^2

- ightharpoonup Choose an orientation on \mathbb{E}^2
- ▶ Suppose $\hat{c}: I \to \mathbb{E}^2$ is a unit speed curve with the standard orientation
- ▶ For each $s \in I$,
 - $\blacktriangleright \text{ Let } \hat{f}_1(s) = \hat{c}'(s)$
 - ► There is a unique vector $\hat{f}_2(s)$ such that $(\hat{f}_1(s), \hat{f}_2(s))$ is a positively oriented orthonormal basis of \mathbb{V}^2
 - (\hat{f}_1, \hat{f}_2) is called an adapted positively oriented orthonormal frame along the curve \hat{c}
 - $ightharpoonup (\hat{f}_1, \hat{f}_2)$ is also called a Frenet-Serret frame

Oriented Curvature of an Oriented Unit Speed Curve in \mathbb{E}^2



- Let (\hat{f}_1, \hat{f}_2) be a Frenet-Serret frame along an oriented unit speed curve $c: I \to \mathbb{E}^2$
- ► Recall that since $\hat{f}_1 \cdot \hat{f}_1 = 1$, $0 = \frac{d}{ds}(\hat{f}_1 \cdot \hat{f}_1) = 2\hat{f}_1' \cdot \hat{f}_1$
- $ightharpoonup \hat{f}_1'(s)$ must point in the same or opposite direction to $\hat{f}_2(s)$
- ▶ Therefore, there is a scalar function $\hat{\kappa}$ such that

$$\hat{f}_1'(s) = \hat{\kappa}(s)\hat{f}_2(s)$$

- \triangleright $\hat{\kappa}$ is called the oriented curvature function
- lacksquare In picture above, $\hat{\kappa}(s_1)>0$ and $\hat{\kappa}(s_2)<0$

Frenet-Serret Equations of Unit Speed Curve in \mathbb{E}^2

- ▶ Let (\hat{f}_1, \hat{f}_2) be a Frenet-Serret frame along an oriented unit speed curve $c: I \to \mathbb{E}^2$
- If we differentiate the equations

$$\hat{\textit{f}}_{1}\cdot\hat{\textit{f}}_{1}=\hat{\textit{f}}_{2}\cdot\hat{\textit{f}}_{2}=1 \text{ and } \hat{\textit{f}}_{1}\cdot\hat{\textit{f}}_{2},$$

we get

$$\hat{f}_1' \cdot \hat{f}_1 = 0$$

$$\hat{f}_2' \cdot \hat{f}_2 = 0$$

$$\hat{f}_1' \cdot \hat{f}_2 + \hat{f}_1 \cdot \hat{f}_2' = 0$$

- By the definition of curvature and equations above,
 - $\hat{f}_1' = \hat{\kappa} \hat{f}_2$
 - $\hat{f_2}' = \hat{af_1}$ for some scalar function a
 - $(\hat{\kappa}\hat{f}_2)\cdot\hat{f}_2+\hat{f}_1\cdot(\hat{af}_1)=0$, which implies $a=-\hat{\kappa}$

Frenet-Serret Equations of Unit Speed Curve in \mathbb{E}^2

- ▶ Let (\hat{f}_1, \hat{f}_2) be a Frenet-Serret frame along an oriented unit speed curve $c: I \to \mathbb{E}^2$
- lacktriangle The Frenet-Serret equations for a unit speed curve in \mathbb{E}^2 are

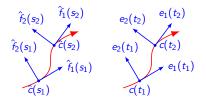
$$\hat{f}_1' = \hat{\kappa} \hat{f}_2$$

$$\hat{f}_2' = -\hat{\kappa} \hat{f}_1$$

Equivalently

$$\frac{d}{ds} \begin{bmatrix} \hat{f}_1 & \hat{f}_2 \end{bmatrix} = \begin{bmatrix} \hat{f}_1 & \hat{f}_2 \end{bmatrix} \begin{bmatrix} 0 & -\hat{\kappa} \\ \hat{\kappa} & 0 \end{bmatrix}$$

Frenet-Serret Frame for Parameterized Curve



- ightharpoonup Let \mathbb{E}^2 be oriented Euclidean space
- ▶ The Frenet-Serret frame of a C^2 parameterized curve $c: I \to \mathbb{E}^2$ is the unique positively oriented orthonormal frame (f_1, f_2) such that

$$f_1 = \frac{c'}{|c'|}$$

If \hat{c} is the unit speed parameterization of the same curve and $\hat{E} = (\hat{f}_1, \hat{f}_2)$ is the Frenet-Serret frame for \hat{c} , then

$$c(t) = \hat{c}(s(t))$$
 and $F(t) = \widehat{F}(s(t))$,

where s(t) is the arclength function

Frenet-Serret Equations for Parameterized Curve

▶ Since $s'(t) = \sigma(t)$ and using the chain rule,

$$c'(t) = \hat{c}'(s(t))s'(t)$$

$$= \sigma(t)\hat{f}_{1}(s(t))$$

$$= \sigma(t)f_{1}(t)$$

$$f_{1}'(t) = \hat{f}_{1}'(s(t))s'(t)$$

$$= \sigma(t)\hat{\kappa}(s(t))\hat{f}_{2}(s(t))$$

$$= \sigma(t)\kappa(t)f_{2}(t)$$

$$f_{2}'(t) = \hat{f}_{2}'(s(t))s'(t)$$

$$= -\sigma\hat{\kappa}(s(t))\hat{f}_{1}(s(t))$$

$$= -\sigma\kappa(t)f_{1}(t),$$

where $\kappa(t) = \hat{\kappa}(s(t))$ is the curvature at $c(t) = \hat{c}(s(t))$

Frenet-Serret Frame and Equations for Parameterized Curve in \mathbb{E}^2

▶ The Frenet-Serret frame for a parameterized curve $c: I \to \mathbb{E}^2$ is an adapted oriented orthonormal frame $E = (f_1, f_2)$ along c such that

$$c' = \sigma f_1$$

► The Frenet-Serret equations are

$$\frac{1}{\sigma} \frac{d}{dt} \begin{bmatrix} f_1 & f_2 \end{bmatrix} = \begin{bmatrix} f_1 & f_2 \end{bmatrix} \begin{bmatrix} 0 & -\kappa \\ \kappa & 0 \end{bmatrix}$$

Example: Frenet-Serret Frame of a Circle

▶ Given a point $p \in \mathbb{E}^2$ and an orthonormal basis (e_1, e_2) of \mathbb{V}^2 , a parameterization of the circle with radius R and center $p \in \mathbb{E}^2$ is

$$c(t) = e_1(R\cos t) + e_2(R\sin t)$$

Its velocity is

$$\dot{c}(t) = R(-e_1 \sin t + e_2 \cos t)$$

and its speed is

$$\sigma = |\dot{c}| = R$$

▶ The Frenet-Serret frame is

$$f_1(t) = \frac{\dot{c}(t)}{|\dot{c}(t)|} = -e_1 \sin t + e_2 \cos t$$

 $f_2(t) = -e_1 \cos t - e_2 \sin t$

Frenet-Serret Equations for a Circle

▶ Differentiating the Frenet-Serret frame, we get

$$\begin{split} \frac{1}{\sigma}\frac{d}{dt}\left[f_1 \quad f_2\right] &= \frac{1}{R}\frac{d}{dt}\left[-e_1\sin t + e_2\cos t \quad -e_1\cos t - e_2\sin t\right] \\ &= \frac{1}{R}\left[-e_1\cos t - e_2\sin t \quad e_1\sin t - e_2\cos t\right] \\ &= \frac{1}{R}\left[f_2 \quad -f_1\right] \\ &= \left[f_1 \quad f_2\right]\begin{bmatrix}0 & -\frac{1}{R}\\ \frac{1}{R} & 0\end{bmatrix} \end{split}$$

▶ The curvature of a circle of radius R is $\kappa = \frac{1}{R}$

Example: Spiral

▶ Given $p \in \mathbb{E}^2$ and an orthonormal basis (e_1, e_2) of \mathbb{V}^2 ,

$$c(t) = e_1(t\cos t) + e_2(t\sin t)$$

is a spiral

Its velocity is

$$\dot{c}(t) = e_1(\cos t - t\sin t) + e_2(\sin t + t\cos t)$$

and its speed is given by

$$\sigma^2 = (\cos t - t \sin t)^2 + (\sin t + t \cos t)^2 = 1 + t^2$$

Frenet-Serret Frame of a Spiral

$$f_1(t) = rac{\dot{c}(t)}{|\dot{c}(t)|}$$

$$= rac{e_1(\cos t - t\sin t) + e_2(\sin t + t\cos t)}{\sqrt{1 + t^2}}$$
 $f_2(t) = rac{-e_1(\sin t + t\cos t) + e_2(\cos t - t\sin t)}{\sqrt{1 + t^2}}$

Curvature of a Spiral

$$\dot{f}_1 = rac{e_1(-2\sin t - t\cos t) + e_2(2\cos t - t\sin t)}{\sqrt{1+t^2}} - rac{t}{(1+t^2)}f_1$$

► Therefore,

$$\kappa = \frac{1}{\sigma} f_2 \cdot \dot{f}_1$$

$$= \frac{(\sin t + t \cos t)(2 \sin t + t \cos t)}{(1 + t^2)^{3/2}}$$

$$+ \frac{(\cos t - t \sin t)(2 \cos t - t \sin t)}{(1 + t^2)^{3/2}}$$

$$= \frac{2 + t^2}{(1 + t^2)^{3/2}}$$

$$= (1 + t^2)^{-3/2} + (1 + t^2)^{-1/2}$$