MATH-UA 377 Differential Geometry Curves in Affine and Euclidean Space

Deane Yang

Courant Institute of Mathematical Sciences New York University

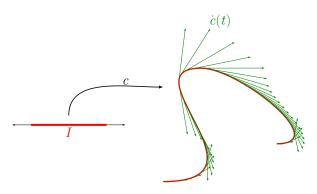
February 10, 2022

START RECORDING LIVE TRANSCRIPTION

Geometric Properties of a Curve in Affine or Euclidean Space

- Use parameterized curves
- ► A geometric property of a curve should not depend on the parameterization
- ► An affine geometric property of a curve does not depend on affine transformations of the curve
- ► A Euclidean geometric property of a curve does not depend on isometries of the curve

Parameterized Curve in Affine Space



- ▶ A parameterized curve is a C^2 map $c: I \to \mathbb{A}^m$, where $I \subset \mathbb{R}$ is a connected nonempty interval
- The velocity of c is defined to be the derivative of c, $v = \dot{c}: I \to \mathbb{V}^m$, where

$$v(t) = \dot{c}(t) = \lim_{h \to 0} \frac{c(t+h) - c(t)}{h} \in \mathbb{V}^m$$

Reconstruct Curve From Velocity

- ▶ Consider a parameterized curve $c:[a,b]\to \mathbb{A}^m$ that starts at c(a)=p and has velocity $\dot{c}=v$
- ▶ The Fundamental Theorem of Calculus says that if a function $f:[a,b]\to\mathbb{R}$ has a continuous derivative $\dot{f}:[a,b]\to\mathbb{R}$, then for any $t\in[a,b]$,

$$f(t) = f(a) + \int_{s=a}^{s=b} \dot{f}(s) ds$$

▶ The same holds for a map $c:[a,b] \to \mathbb{A}^m$ and therefore for any $t \in [a,b]$,

$$c(t) = c(a) + \int_{s=a}^{s=t} \dot{c}(s) dx$$
$$= p + \int_{s=a}^{s=t} v(s) ds$$

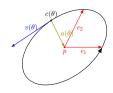
Velocity and Acceleration

- If the velocity always points in the same direction, then the curve is straight
- ► The acceleration of *c* is defined to be the second derivative of *c*:

$$a(t) = \dot{v}(t) = \ddot{c}(t) = \lim_{h \to 0} \frac{\dot{c}(t+h) - \dot{c}(t)}{h}$$

- ▶ If the acceleration is always pointing in the same direction as the velocity, then the curve is straight
- ▶ If acceleration points in a different direction from velocity, then the curve turns

Parameterized Ellipse



▶ Given a point $p \in \mathbb{A}^2$ and a basis (e_1, e_2) of \mathbb{V}^2 , consider the curve

$$c(\theta) = p + e_1 \cos \theta + e_2 \sin \theta,$$

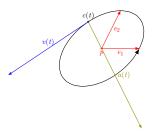
► The velocity is

$$v(\theta) = \dot{c}(\theta) = -e_1 \sin \theta + e_2 \cos \theta$$

► The acceleration is

$$a(\theta) = \ddot{c}(\theta) = -e_1 \cos \theta - e_2 \sin \theta = -(c(\theta) - p)$$

Parameterized Ellipse



▶ Given $p \in \mathbb{A}^2$ and a basis (e_1, e_2) of \mathbb{V}^2 , let

$$c(t) = p + e_1 \cos 2t + e_2 \sin 2t$$

The velocity is

$$v(t) = \dot{c}(t) = 2(-e_1 \sin 2t + e_2 \cos 2t)$$

▶ The acceleration is

$$a(t) = \ddot{c}(t) = -4(e_1 \cos 2t + e_2 \sin 2t) = -4(c(t) - p)$$

Parameterized Ellipse

▶ Given $p \in \mathbb{A}^2$ and a basis (e_1, e_2) of \mathbb{V}^2 , let

$$c(t) = p + e_1 \cos t^2 + e_2 \sin t^2$$

The velocity is

$$v(t) = \dot{c}(t) = 2t(-e_1 \sin t^2 + e_2 \cos t^2)$$

► The acceleration is

$$a(t) = \ddot{c}(t)$$

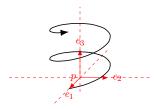
$$= 2(-e_1 \sin t^2 + e_2 \cos t^2) - 2t(e_1 \cos t^2 + e_2 \sin t^2)$$

$$= 2u(t) - 2t(c(t) - p),$$

where

$$u(t) = -e_1 \sin t^2 + e_2 \cos t^2$$

Helix in Affine 3-Space



▶ Given $p \in \mathbb{A}^3$ and a basis (e_1, e_2, e_3) of \mathbb{V}^3 , let

$$c(\theta) = e_1 \cos(\theta) + e_2 \sin(\theta) + e_3 \theta, \ 0 \le \theta \le 2\pi$$

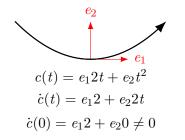
- ► The velocity is $v(\theta) = -e_1 \sin(\theta) + e_2 \cos(\theta) + e_3$
- ▶ The acceleration is $a(\theta) = -e_1 \cos(\theta) e_2 \sin(\theta)$
- ▶ If $\mathbb{A}^3 = \mathbb{R}^3$, p = (0,0,0), $e_1 = \langle 1,0,0 \rangle$, $e_2 = \langle 0,1,0 \rangle$, $e_3 = \langle 0,0,1 \rangle$, then the formulas above become

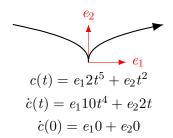
$$c(\theta) = (\cos \theta, \sin \theta, \theta)$$

$$v(\theta) = \langle -\sin \theta, \cos \theta, 1 \rangle$$

$$a(\theta) = \langle -\cos \theta, -\sin \theta, 0 \rangle$$

Assume Nonzero Velocity





- ▶ If v(t) = 0 for some t, then the shape of the curve at c(t) can have a kink
- ▶ We will always assume that a parameterized curve $c: I \to \mathbb{A}^m$ is C^2 (so acceleration can be defined) and, for every $t \in I$, $\dot{c}(t) \neq 0$

Parameterized Curve in Euclidean Space

- A parameterized curve in \mathbb{E}^m is a C^2 map $c:I\to\mathbb{E}^m$ such that $\dot{c}(t)\neq 0$, for every $t\in I$
- ▶ The speed $\sigma: I \to [0, \infty)$ is defined to be the magnitude of velocity,

$$\sigma(t) = |v(t)| = |\dot{c}(t)|$$

▶ For each $t \in I$, since $v(t) \neq 0$, the speed is always positive,

$$\sigma(t) = |v(t)| > 0$$

Since speed is the derivative of distance with respect to time, define the length of a curve $c:[t_0,t_1]\to\mathbb{E}^m$ to be

$$\ell = \int_{t=t_0}^{t=t_1} \sigma(t) \ dt = \int_{t=t_0}^{t=t_1} |\dot{c}(t)| \ dt$$

Speed and Arclength Functions

▶ Given a curve $c:[a,b] \to \mathbb{E}^m$ and $t \in [a,b]$, the arclength function, relative to t_0 , is defined to be $s:[a,b] \to \mathbb{R}$, where

$$s(t) = \int_{\tau=t_0}^{\tau=t} |\dot{c}(\tau)| d\tau$$
$$= \int_{\tau=t_0}^{\tau=t} \sigma(\tau) d\tau$$

- $\mathbf{b} \quad s(t) = \begin{cases} \text{distance from } s(t_0) \text{ to } s(t) \text{ if } t \geq t_0 \\ -(\text{distance from } s(t_0) \text{ to } s(t))) \text{ if } t \geq t_0 \end{cases}$
- ightharpoonup Since $\sigma > 0$, the arclength function is strictly increasing

Acceleration

▶ The velocity of a curve $c: I \to \mathbb{E}^m$ can be written as

$$v = \dot{c} = \sigma u$$

where σ is the speed and

$$u = \frac{\dot{c}}{|\dot{c}|}$$

is a unit vector giving the direction of the curve at each point

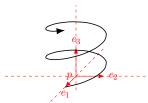
Therefore, the acceleration is given by

$$a = \dot{v} = \dot{\sigma}u + \sigma\dot{u}$$

- $\dot{\sigma}$ measures the rate of change of speed, which is unrelated to the shape of the curve and therefore not geometric
- iu measures the rate of change of direction, which contains geometric information but also depends on the speed
- ▶ Observe that, since $|u|^2 = 1$,

$$0 = \frac{d}{dt}(u \cdot u) = 2u \cdot \dot{u} \implies u \perp \dot{u}$$

Example: Helix in Euclidean 3-Space



 $lackbox{ Given }p\in\mathbb{E}^3$ and an orthonormal basis (e_1,e_2,e_3) of \mathbb{V}^3 ,

$$c(\theta) = e_1 \cos(\theta) + e_2 \sin(\theta) + e_3 \theta$$

$$v(\theta) = -e_1 \sin(\theta) + e_2 \cos(\theta) + e_3$$

$$\sigma(\theta) = \sqrt{2}$$

$$u(\theta) = \frac{1}{\sqrt{2}} (-e_1 \sin(\theta) + e_2 \cos(\theta) + e_3)$$

$$\dot{u}(\theta) = -\frac{1}{\sqrt{2}} (e_1 \cos(\theta) + e_2 \sin(\theta))$$

$$a(\theta) = -e_1 \cos(\theta) - e_2 \sin(\theta)$$

$$= \dot{\sigma}(\theta) u(\theta) + \sigma(\theta) \dot{u}(\theta)$$

Example: Same Helix With Different Parameterization

$$\tilde{c}(t) = e_1 \cos(t+3t^2) + e_2 \sin(t+3t^2) + e_3(t+3t^2)$$

$$\tilde{v}(t) = (1+6t)(-e_1 \sin(t+3t^2) + e_2 \cos(t+3t^2) + e_3)$$

$$\tilde{\sigma}(t) = (1+6t)\sqrt{2}$$

$$\tilde{\sigma}(t) = 6\sqrt{2}$$

$$\tilde{u}(t) = \frac{1}{\sqrt{2}}(-e_1 \sin(t+3t^2) + e_2 \cos(t+3t^2) + e_3)$$

$$\tilde{u}'(t) = -(1+6t)\frac{1}{\sqrt{2}}(e_1 \cos(t+3t^2) + e_2 \sin(t+3t^2))$$

$$\tilde{a}(t) = 6(-e_1 \sin(t+3t^2) + e_2 \cos(t+3t^2) + e_3)$$

$$- (1+6t)^2(e_1 \cos(t+3t^2) + e_2 \sin(t+3t^2))$$

$$= \tilde{\sigma}(t)\tilde{u}(t) + \tilde{\sigma}(t)\tilde{u}(t)$$

Speed is not Geometric But Arclength is

- ▶ A curve has many different parameterizations
- ► The shape of a curve does not depend on the speed of a parameterization
- ► A geometrically invariant parameterization is by arclength
- ▶ Given $0 \le s \le \ell$, let $\hat{c}(s) \in \mathbb{E}^m$ be the point on the curve whose distance along the curve from the start of the curve is equal to s
- lacktriangle If \hat{c} is differentiable, then this means that

$$\int_{\tau=0}^{\tau=s} |\hat{\sigma}(s)| \, ds = s,$$

▶ Differentiating this, we get

$$\hat{\sigma}(s) = 1$$

 Arclength parameterization is also called unit speed parameterization

Example: Arclength Parameterization of Helix

ightharpoonup Helix in \mathbb{E}^3

$$c(\theta) = e_1 \cos(\theta) + e_2 \sin(\theta) + e_3 \theta$$
$$v(\theta) = -e_1 \sin(\theta) + e_2 \cos(\theta) + e_3$$
$$\sigma(\theta) = \sqrt{2}$$

- ▶ Suppose $s(\theta)$ is the arclength of curve from c(0) to $c(\theta)$
- ▶ Since $\dot{s}(\theta) = \sigma(\theta) = \sqrt{2}$ and s(0) = 0,

$$s(\theta) = \sqrt{2}\theta$$

• We want $\hat{c}(s(\theta)) = c(\theta)$ and therefore

$$\hat{c}(s) = c\left(\frac{s}{\sqrt{2}}\right) = e_1 \cos\left(\frac{s}{\sqrt{2}}\right) + e_2 \sin\left(\frac{s}{\sqrt{2}}\right) + e_3 \frac{s}{\sqrt{2}}$$

Shape of a Curve in Euclidean Space

- The arclength parameterization is a unique parameterization defined purely in terms of the geometric structure of the curve
- ▶ Acceleration measures how curved the curve is
- With respect to a unit speed parameterization,

$$v(s) = \sigma u$$

$$= u$$

$$a = \dot{v}$$

$$= \dot{u}$$

- ightharpoonup Recall that $\dot{u} \cdot u = 0$
- ▶ Define the curvature function $\kappa: I \to [0, \infty)$ to be

$$\kappa(s) = |\dot{u}(s)| = |a(s)|$$

Example: Curvature of Helix

lackbox Unit speed parameterization of helix in \mathbb{E}^3

$$c(s) = e_1 \cos\left(\frac{s}{\sqrt{2}}\right) + e_2 \sin\left(\frac{s}{\sqrt{2}}\right) + e_3 \frac{s}{\sqrt{2}}$$
$$v(s) = \frac{1}{\sqrt{2}} \left(-e_1 \sin\left(\frac{s}{\sqrt{2}}\right) + e_2 \cos\left(\frac{s}{\sqrt{2}}\right) + e_3\right)$$
$$a(s) = \frac{1}{2} \left(e_1 \cos\left(\frac{s}{\sqrt{2}}\right) + e_2 \sin\left(\frac{s}{\sqrt{2}}\right)\right)$$

► The curvature of this helix is

$$\kappa(s) = |a(s)| = \frac{1}{2}$$