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Geometric Properties of a Curve in Affine or Euclidean
Space

» Use parameterized curves

» A geometric property of a curve should not depend on the
parameterization

» An affine geometric property of a curve does not depend on
affine transformations of the curve

» A Euclidean geometric property of a curve does not depend
on isometries of the curve



Parameterized Curve in Affine Space

» A parameterized curve is a C? map c¢: I — A™, where ] C R
is a connected nonempty interval

» The velocity of ¢ is defined to be the derivative of ¢,
v=-c:I—= V™ where

c(t+ h) — c(t)

o(t) = &(t) = lim

evym



Reconstruct Curve From Velocity

» Consider a parameterized curve ¢ : [a, b] — A™ that starts at
c(a) = p and has velocity ¢ = v

> The Fundamental Theorem of Calculus says that if a function
f :[a, b] — R has a continuous derivative f : [a, b)) — R, then
for any t € [a, b],

s=b
=@+ [ o) as

» The same holds for a map ¢ : [a, b] — A™ and therefore for
any t € [a, b],



Velocity and Acceleration

» If the velocity always points in the same direction, then the
curve is straight

» The acceleration of ¢ is defined to be the second derivative of
c:

a(t) = i(t) = é(t) = mw

> If the acceleration is always pointing in the same direction as
the velocity, then the curve is straight

» If acceleration points in a different direction from velocity,
then the curve turns



Parameterized Ellipse

» Given a point p € A? and a basis (ey, e2) of V2, consider the
curve
c(f) =p+ e1cosh + exsind,

» The velocity is
v(0) = ¢(0) = —ersinf + ez cos b
» The acceleration is

a(f) = ¢(0) = —ej cos — egsinf = —(c(0) — p)



Parameterized Ellipse

» Given p € A% and a basis (er, e2) of V2, let
c(t) =p+ €1 cos2t + exsin 2t

» The velocity is



Parameterized Ellipse

» Given p € A% and a basis (er, e2) of V2, let
c(t) = p+ e1 cos t? + eysin t*
P> The velocity is
v(t) = &(t) = 2t(—ey sin t% + eg cos t2)
» The acceleration is

a(t) = &(t)
= 2(—e; sin t? + ey cos t?) — 2t( ey cos t2 + ey sin t2)
= 2u(t) = 2t(c(t) - p),

where
u(t) = —ey sin t* 4 ey cos 2



Helix in Affine 3-Space

» Given p € A3 and a basis (e1, ez, e3) of V3, let
c(0) = ey cos(0) + ezsin(f) + ez, 0 <0 <27
» The velocity is v(0) = —e; sin(f) + ez cos(0) + e3
» The acceleration is a(f) = —ej cos(0) — ez sin(0)
> If A3 = R3, p= (07070)' €1 = <17070>' €2 = <07 170>,
ez = (0,0, 1), then the formulas above become

c(0) = (cosb,sin b, 0)

v(0) = (—sinf,cos b, 1)

a(f) = (—cosf,—sinb,0)



Assume Nonzero Velocity

€ €2
c(t) = e12t + eqt? c(t) = e12t° + eyt
e(t) = e12 + ex2t e(t) = e110t* + 92t
c(0)=e12+e0#0 ¢(0) = €10 + €20

» If v(t) = 0 for some ¢, then the shape of the curve at ¢(t) can
have a kink

> We will always assume that a parameterized curve c: I — A™
is C? (so acceleration can be defined) and, for every t € I,

e(t) £ 0



Parameterized Curve in Euclidean Space

» A parameterized curve in E™ is a C? map ¢: I — E™ such
that ¢(t) # 0, for every t € T

» The speed o : I — [0,00) is defined to be the magnitude of
velocity,

a(t) = |v(t)| = [e(?)]
» For each t € I, since v(t) # 0, the speed is always positive,
a(t)=lv(t)] >0

» Since speed is the derivative of distance with respect to time,
define the length of a curve c: [ty, t1]] — E™ to be

t=1t1 t=1;
z:/ (1) dt:/ e(0)] dt
t=tp t=to



Speed and Arclength Functions

» Given a curve c¢: [a,b] — E™ and t € [a, b], the arclength
function, relative to %, is defined to be s: [a, b] — R, where

> s(1) = distance from s(tp) to s(t) if t > &
| —(distance from s(ty) to s(t))) if t > o

» Since o > 0, the arclength function is strictly increasing



Acceleration

» The velocity of a curve ¢: I — E™ can be written as
V= ¢ =0ou,
where o is the speed and
¢
U= —
I
is a unit vector giving the direction of the curve at each point
» Therefore, the acceleration is given by

a=0V=0u+ou
P> & measures the rate of change of speed, which is unrelated to
the shape of the curve and therefore not geometric
» i measures the rate of change of direction, which contains

geometric information but also depends on the speed
» Observe that, since |ul> =1,

d
Ozi(u-u):2u-u = uluw



Example: Helix in Euclidean 3-Space

» Given p € E3 and an orthonormal basis (ey, ea, e3) of V3,

c(0) = e1 cos(f) + exsin() + ez 0
v(f) = —e1sin() + e2 cos(f) + e3
o(f) =2

u(f) = \f( e1 sin(f) + ez cos(f) + e3)
() = —\2(@1 cos(0) + ey sin())

a(0) = —ey cos(0) — ey sin(6)
=d(0)u(f) + o (0)u(h)



Example: Same Helix With Different Parameterization

¢(t) = ey cos(t 4 3t%) + ey sin(t + 3t2) + e3(t + 3t%)
3(t) = (1 + 6t)(—ep sin(t + 3t%) + ez cos(t + 3t%) + e3)
5(t) = (1+66)V2

o(t) = 6v2

u(t) = 7( ep sin(t 4 3t%) + eq cos(t + 3t%) + e3)
u'(t) = —(1+ 6t)i(el cos(t + 3t%) + ey sin(t 4 3t%))

V2
a(t) = 6(—ey sin(t + 3t%) + ey cos(t + 3t%) + e3)
— (1 +6t)*(eg cos(t + 3t%) + ey sin(t + 3t2))

="o(t)u(t) + & (t)u(t)



Speed is not Geometric But Arclength is

> A curve has many different parameterizations

» The shape of a curve does not depend on the speed of a
parameterization

> A geometrically invariant parameterization is by arclength

> Given 0 < s </, let ¢(s) € E™ be the point on the curve
whose distance along the curve from the start of the curve is
equal to s

» If ¢ is differentiable, then this means that

/ ()] ds = s,
7=0

» Differentiating this, we get
ag(s) =1

P Arclength parameterization is also called unit speed
parameterization



Example: Arclength Parameterization of Helix

> Helix in E?
c(6) = e1 cos(f) + ezsin(f) + e3 0
v(0) = —ey1 sin(f) + ez cos(f) + e3
o(f) = V2

» Suppose s(0) is the arclength of curve from ¢(0) to ¢(6)
> Since 5(0) = o() = v/2 and 5(0) =0,

s(8) = V26

» We want ¢(s(0)) = ¢(6) and therefore

&(s) = ¢ <\/§> = e1 cos <\j§> exsin (é) e %



Shape of a Curve in Euclidean Space

» The arclength parameterization is a unique parameterization
defined purely in terms of the geometric structure of the curve

» Acceleration measures how curved the curve is

> With respect to a unit speed parameterization,

v(s) = ou
=u
a=
=1

» Recall that 2-u =0

» Define the curvature function k : I — [0,00) to be



Example: Curvature of Helix

» Unit speed parameterization of helix in E?

(s) = e cos <¢§> © eysin (ﬁ) rac
o(s) = \}5 <61 in (é) + o cos <}) ., 63)

2
1= oon () o ()

» The curvature of this helix is



