

MATH-UA 377 Differential Geometry
Euclidean Vector Space
Orthonormal Basis
Orthogonal Transformations
Orthogonal Matrices

Deane Yang

Courant Institute of Mathematical Sciences
New York University

February 8, 2022

START RECORDING LIVE TRANSCRIPTION

Euclidean Vector Space

- ▶ A Euclidean vector space consists of
 - ▶ A vector space \mathbb{V}
 - ▶ A positive definite symmetric bilinear function

$$\mathbb{V} \times \mathbb{V} \rightarrow \widehat{\mathbb{R}}$$

$$(v_1, v_2) \mapsto v_1 \cdot v_2$$

- ▶ Usually called inner product, but we say dot product
- ▶ No explicit formula for the dot product is provided or needed
- ▶ An abstract vector space itself does not come automatically with an inner product
- ▶ There are infinitely many possible inner products on a vector space

Important Special Values of Dot Product

- ▶ $v \cdot w = 0$ iff they are orthogonal, normal, perpendicular
- ▶ $v \cdot w = |v||w|$ iff there is a scalar $r \geq 0$ such that

either $v = rw$ or $w = rv$

- ▶ $v \cdot w = -|v||w|$ iff there is a scalar $r \leq 0$ such that

either $v = rw$ or $w = rv$

Dot Product With Respect to Basis

- ▶ Suppose \mathbb{V}^m is an abstract vector space with a dot product
- ▶ Suppose $E = (e_1, \dots, e_m)$ is a basis of \mathbb{V}^m
- ▶ The dot product of any two vectors

$$v = a^1 e_1 + \dots + a^m e_m = Ea$$

$$w = b^1 e_1 + \dots + b^m e_m = Eb$$

is

$$\begin{aligned} v \cdot w &= (a^1 e_1 + \dots + a^m e_m) \cdot (b^1 e_1 + \dots + b^m e_m) \\ &= a^1 b^1 e_1 \cdot e_1 + \dots + a^m b^1 (e_m \cdot e_1) \\ &\quad + \dots + a^1 b^m e_1 \cdot e_m + \dots + a^m b^m e_m \cdot e_m \\ &= \begin{bmatrix} a^1 & \dots & a^m \end{bmatrix} \begin{bmatrix} G_{11} & \dots & G_{1m} \\ \vdots & & \vdots \\ G_{m1} & \dots & G_{mm} \end{bmatrix} \begin{bmatrix} b^1 \\ \vdots \\ b^m \end{bmatrix} \\ &= a^t G b, \end{aligned}$$

where $G_{ij} = G_{ji} = e_i \cdot e_j$

Dot Product With Respect to Basis

- If $E = (e_1, \dots, e_m)$ is a basis of \mathbb{V} , then a dot product on \mathbb{V} is uniquely determined by the symmetric matrix

$$G = E^t E = \begin{bmatrix} G_{11} & \cdots & G_{1m} \\ \vdots & & \vdots \\ G_{m1} & \cdots & G_{mm} \end{bmatrix},$$

where $G_{ij} = e_i \cdot e_j$

- Observe that both indices of G are subscripts
- G is a positive definite symmetric 2-tensor written with respect to the basis E

Symmetric Bilinear Functions on $\widehat{\mathbb{R}}^2$

- On $\widehat{\mathbb{R}}^2$, if

$$Q(\langle a^1, a^2 \rangle, \langle b^1, b^2 \rangle) = 2a^1b^1 + 3a^2b^2 = \begin{bmatrix} a^1 & a^2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} b^1 \\ b^2 \end{bmatrix}$$

then

$$Q(a, a) = 2(a^1)^2 + 3(a^2)^2 \geq 0, \text{ and } Q(a, a) = 0 \implies a = 0$$

- If

$$Q(\langle a^1, a^2 \rangle, \langle b^1, b^2 \rangle) = a^1b^1 = \begin{bmatrix} a^1 & a^2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} b^1 \\ b^2 \end{bmatrix}$$

then

$$Q(a, a) = (a^1)^2 \geq 0, \text{ but } Q(\langle 0, 1 \rangle, \langle 0, 1 \rangle) = 0$$

- If

$$Q(\langle a^1, a^2 \rangle, \langle b^1, b^2 \rangle) = a^1b^2 + a^2b^1 = \begin{bmatrix} a^1 & a^2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} b^1 \\ b^2 \end{bmatrix}$$

then

$$Q(\langle 1, -1 \rangle, \langle 1, -1 \rangle) = -2 < 0$$

Positive Definite Symmetric Bilinear Functions on $\widehat{\mathbb{R}}^2$

- ▶ A symmetric bilinear function

$$Q(\langle a^1, a^2 \rangle, \langle b^1, b^2 \rangle) = \begin{bmatrix} a^1 & a^2 \end{bmatrix} \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix} \begin{bmatrix} b^1 \\ b^2 \end{bmatrix}$$

is positive definite iff the following hold:

$$G_{11} > 0$$

$$G_{22} > 0$$

$$\det G = G_{11} G_{22} - (G_{12})^2 > 0$$

Important Special Case of Dot Product

- ▶ Suppose \mathbb{V} is a Euclidean vector space
- ▶ Suppose $L \subset \mathbb{V}$ is a linear subspace
- ▶ The dot product on \mathbb{V} can be restricted to L
- ▶ The dot product restricted on L is positive definite

Orthonormal Set

- ▶ A set S of vectors is orthonormal with respect to a dot product, if for any two vectors $v, w \in S$,

$$v \cdot w = \begin{cases} 1 & \text{if } v = w \\ 0 & \text{if } v \neq w \end{cases}$$

- ▶ The vectors in an orthonormal set are linearly independent
 - ▶ Suppose

$$a^1 v_1 + \cdots + a^k v_k = 0,$$

where $v_1, \dots, v_k \in S$ and $a^1, \dots, a^k \in \mathbb{R}$

- ▶ It follows that for each $1 \leq j \leq k$,

$$\begin{aligned} 0 &= v_j \cdot (a^1 v_1 + \cdots + a^k v_k) \\ &= a_1(v_j \cdot v_1) + \cdots + a^k(v_j \cdot v_k) \\ &= a^j \end{aligned}$$

- ▶ It follows that the number of elements in S is at most the dimension of the vector space

Orthonormal Basis

- If \mathbb{V} is Euclidean vector space, then a basis (e_1, \dots, e_m) is orthonormal if

$$e_i \cdot e_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

- Equivalently the matrix G is equal to the identity matrix

$$G = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

- If (e_1, \dots, e_m) is orthonormal and $v = v^1 e_1 + \cdots + v^m e_m$, then

$$v^i = v \cdot e_i$$

- Fundamental example: Standard basis of \mathbb{R}^m , for each $1 \leq i \leq m$,

$$e_i = \langle 0, \dots, 1, \dots \rangle$$

with a 1 in the i -th slot and 0s elsewhere

Constructing an Orthonormal Basis

- ▶ If a Euclidean vector space \mathbb{V} has dimension m , then it has at least one (not necessarily orthonormal) basis $F = (f_1, \dots, f_m)$.
- ▶ Set $e_1 = \frac{f_1}{|f_1|}$
- ▶ Set $h_1 = f_2 - (f_2 \cdot e_1)e_1$
- ▶ h_1 is nonzero and orthogonal to e_1
- ▶ Set $e_2 = \frac{h_1}{|h_1|}$
- ▶ Proceed by induction: Assume that e_1, \dots, e_k are orthonormal, where $1 \leq k < m$
- ▶ Set $h_{k+1} = f_{k+1} - (f_{k+1} \cdot e_1)e_1 - \dots - (f_{k+1} \cdot e_k)e_k$
- ▶ h_{k+1} is nonzero and orthogonal to e_1, \dots, e_k
- ▶ Set $e_{k+1} = \frac{h_{k+1}}{|h_{k+1}|}$
- ▶ e_1, \dots, e_{k+1} are orthonormal

Orthogonal Maps

- ▶ If \mathbb{V}^m and \mathbb{W}^n are Euclidean vector spaces, a map

$$F : \mathbb{V}^m \rightarrow \mathbb{W}^n$$

is called *orthogonal*, if for any $v_1, v_2 \in \mathbb{V}$,

$$(F(v_1)) \cdot (F(v_2)) = v_1 \cdot v_2$$

- ▶ Equivalently, F is orthogonal if it preserves the magnitude of a vector and the angle between two vectors

An Orthogonal Map is Linear

- If a map $F: \mathbb{V}^m \rightarrow \mathbb{W}^n$ is orthogonal, then for any orthonormal basis (e_1, \dots, e_m) , the ordered set

$$(f_1, \dots, f_m) = (F(e_1), \dots, F(e_m))$$

is an orthonormal set, because

$$F(e_i) \cdot F(e_j) = e_i \cdot e_j = \delta_{ij}$$

- Consequence: $m \leq n$
- F is linear, because for any $v = a^1 e_1 + \dots + a^m e_m$,

$$\begin{aligned} f_i \cdot F(v) &= F(e_i) \cdot F(a^1 e_1 + \dots + a^m e_m) \\ &= e_i \cdot (a^1 e_1 + \dots + a^m e_m) \\ &= a^i \\ \implies F(v) &= a^1 f_1 + \dots + a^m f_m \\ &= a^1 F(e_1) + \dots + a^m F(e_m) \end{aligned}$$

Orthogonal matrices

- ▶ An orthogonal map $F: \mathbb{V}^m \rightarrow \mathbb{V}^m$ is called an orthogonal transformation
- ▶ If $E = (e_1, \dots, e_m)$ is an orthonormal basis, then so is

$$F = (f_1, \dots, f_m) = (F(e_1), \dots, F(e_m))$$

- ▶ There is an invertible square matrix M such that

$$F = EM$$

- ▶ Observe that if $M_k \in \mathbb{R}^m$ is the k -th column of M ,

$$\begin{aligned} f_i \cdot f_j &= (M_i^1 e_1 + \dots + M_i^m e_m) \cdot (M_j^1 e_1 + \dots + M_j^m e_m) \\ &= M_i^1 M_j^1 + \dots + M_i^m M_j^m \\ &= M_i \cdot M_j, \end{aligned}$$

- ▶ It follows that L is an orthogonal transformation if and only if the columns M_1, \dots, M_m form an orthonormal basis of \mathbb{R}^m
- ▶ This is equivalent to $M^T M = I$
- ▶ Any such matrix is called an orthogonal matrix
- ▶ Let $O(m)$ be the set of all orthogonal matrices

Orthogonal Transformations of $\widehat{\mathbb{R}}^2$

- ▶ A linear transformation $T: \widehat{\mathbb{R}}^2 \rightarrow \widehat{\mathbb{R}}^2$ given by

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

is orthogonal if

$$a^2 + c^2 = 1$$

$$b^2 + d^2 = 1$$

$$ac + bd = 0$$

- ▶ This holds if and only if there is an angle θ such that

$$M = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \text{ or } \begin{bmatrix} -\cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

- ▶ The matrix on the left is rotation counterclockwise by angle θ
- ▶ The matrix on the right is rotation counterclockwise by angle θ followed by a reflection about the y -axis

3-Dimensional Orthogonal Transformations

If $T: \mathbb{V}^3 \rightarrow \mathbb{V}^3$ is an orthogonal transformation, then

- ▶ There is a line ℓ through the origin (i.e., a 1-dimensional linear subspace) such that $T(\ell) = \ell$ and for any $v \in \ell$, $T(v) = \pm v$
- ▶ If $T(v) = v$ for any $v \in \ell$, then T is a rotation around ℓ