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Euclidean Vector Space

▶ A Euclidean vector space consists of
▶ A vector space V
▶ A positive definite symmetric bilinear function

V× V → R̂
(v1, v2) 7→ v1 · v2

▶ Usually called inner product, but we say dot product
▶ No explicit formula for the dot product is provided or needed

▶ An abstract vector space itself does not come automatically
with an inner product

▶ There are infinitely many possible inner products on a vector
space
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Important Special Values of Dot Product

▶ v · w = 0 iff they are orthogonal, normal, perpendicular
▶ v · w = |v||w| iff there is a scalar r ≥ 0 such that

either v = rw or w = rv

▶ v · w = −|v||w| iff there is a scalar r ≤ 0 such that

either v = rw or w = rv
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Dot Product With Respect to Basis
▶ Suppose Vm is an abstract vector space with a dot product
▶ Suppose E = (e1, . . . , em) is a basis of Vm

▶ The dot product of any two vectors
v = a1e1 + · · ·+ amem = Ea
w = b1e1 + · · ·+ bmem = Eb

is
v · w = (a1e1 + · · ·+ amem) · (b1e1 + · · · bmem)

= a1b1e1(·e1) + · · ·+ amb1(em · e1)

+ · · ·+ a1bme1 · em + · · · ambmem · em

=
[
a1 · · · am]

G11 · · · G1m
... ...

Gm1 · · · Gmm


b1

...
bm


= atGb,

where Gij = Gji = ei · ej
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Dot Product With Respect to Basis

▶ If E = (e1, . . . , em) is a basis of V, then a dot product on V is
uniquely determined by the symmetric matrix

G = EtE =

G11 · · · G1m
... ...

Gm1 · · · Gmm

 ,

where Gij = ei · ej
▶ Observe that both indices of G are subscripts
▶ G is a positive definite symmetric 2-tensor written with

respect to the basis E
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Symmetric Bilinear Functions on R̂2

▶ On R̂2, if

Q(〈a1, a2〉, 〈b1, b2〉) = 2a1b1 + 3a2b2 =
[
a1 a2] [2 0

0 3

] [
b1

b2

]
then
Q(a, a) = 2(a1)2 + 3(a2)2 ≥ 0, and Q(a, a) = 0 =⇒ a = 0

▶ If

Q(〈a1, a2〉, 〈b1, b2〉) = a1b1 =
[
a1 a2] [1 0

0 0

] [
b1

b2

]
then

Q(a, a) = (a1)2 ≥ 0, but Q(〈0, 1〉, 〈0, 1〉) = 0
▶ If

Q(〈a1, a2〉, 〈b1, b2〉) = a1b2 + a2b1 =
[
a1 a2] [0 1

1 0

] [
b1

b2

]
then

Q(〈1,−1〉, 〈1,−1〉) = −2 < 0
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Positive Definite Symmetric Bilinear Functions on R̂2

▶ A symmetric bilinear function

Q(〈a1, a2〉, 〈b1, b2〉) =
[
a1 a2] [G11 G12

G21 G22

] [
b1

b2

]
is positive definite iff the following hold:

G11 > 0
G22 > 0

detG = G11G22 − (G12)
2 > 0
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Important Special Case of Dot Product

▶ Suppose V is a Euclidean vector space
▶ Suppose L ⊂ V is a linear subspace
▶ The dot product on V can be restricted to L
▶ The dot product restricted on L is positive definite
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Orthonormal Set
▶ A set S of vectors is orthonormal with respect to a dot

product, if for any two vectors v,w ∈ S,

v · w =

{
1 if v = w
0 = if v 6= w

▶ The vectors in an orthonormal set are linearly independent
▶ Suppose

a1v1 + · · ·+ akvk = 0,
where v1, . . . , vk ∈ S and a1, . . . , ak ∈ R

▶ It follows that for each 1 ≤ j ≤ k,

0 = vj · (a1v1 + · · ·+ akvk)

= a1(vj · v1) + · · ·+ ak(vj · vk)

= aj

▶ It follows that the number of elements in S is at most the
dimension of the vector space
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Orthonormal Basis
▶ If V is Euclidean vector space, then a basis (e1, . . . , em) is

orthonormal if

ei · ej =

{
1 if i = j
0 if i 6= j

▶ Equivalently the matrix G is equal to the identity matrix

G =


1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1


▶ If (e1, . . . , em) is orthonormal and v = v1e1 + · · ·+ vmem, then

vi = v · ei

▶ Fundamental example: Standard basis of R̂m, for each
1 ≤ i ≤ m,

ei = 〈0, . . . , 1, . . . 〉
with a 1 in the i-th slot and 0s elsewhere
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Constructing an Orthonormal Basis

▶ If a Euclidean vector space V has dimension m, then it has a
at least one (not necessarily orthonormal) basis
F = (f1, . . . , fm).

▶ Set e1 = f1
|f1|

▶ Set h1 = f2 − (f2 · e1)e1
▶ h1 is nonzero and orthogonal to e1
▶ Set e2 = h1

|h1|
▶ Proceed by induction: Assume that e1, . . . , ek are

orthonormal, where 1 ≤ k < m
▶ Set hk+1 = fk+1 − (fk+1 · e1)e1 − · · · − (fk+1 · ek)ek
▶ hk+1 is nonzero and orthogonal to e1, . . . , ek
▶ Set ek+1 = hk+1

|hk+1|
▶ e1, . . . , ek+1 are orthonormal
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Orthogonal Maps

▶ If Vm and Wn are Euclidean vector spaces, a map

F : Vm → Wn

is called orthogonal, if for any v1, v2 ∈ V,

(F(v1)) · (F(v2)) = v1 · v2

▶ Equivalently, F is orthogonal if it preserves the magnitude of a
vector and the angle between two vectors
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An Orthogonal Map is Linear
▶ If a map F : Vm → Wn is orthogonal, then for any

orthonormal basis (e1, . . . , em), the ordered set

(f1, . . . , fm) = (F(e1), . . . ,F(em))

is an orthonormal set, because

F(ei) · F(ej) = ei · ej = δij

▶ Consequence: m ≤ n
▶ F is linear, because for any v = a1e1 + · · ·+ amem,

fi · F(v) = F(ei) · F(a1e1 + · · ·+ amem)

= ei · (a1e1 + · · · amem)

= ai

=⇒ F(v) = a1f1 + · · · amfm
= a1F(e1) + · · ·+ amF(em)
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Orthogonal matrices
▶ An orthogonal map F : Vm → Vm is called an orthogonal

transformation
▶ If E = (e1, . . . , em) is an orthornomal basis, then so is

F = (f1, . . . , fm) = (F(e1), . . . ,F(em))

▶ There is an invertible square matrix M such that
F = EM

▶ Observe that if Mk ∈ R̂m is the k-th column of M,
fi · fj = (M1

i e1 + · · ·+ Mm
i em) · (M1

j e1 + · · ·+ Mm
j em)

= M1
i M1

j + · · ·+ Mm
i Mm

j

= Mi · Mj,

▶ It follows that L is an orthogonal transformation if and only if
the columns M1, . . . ,Mm form an orthonormal basis of R̂m

▶ This is equivalent to MTM = I
▶ Any such matrix is called an orthogonal matrix
▶ Let O(m) be the set of all orthogonal matrices
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Orthogonal Transformations of R̂2

▶ A linear transformation T : R̂2 → R̂2 given by

T
([

x
y

])
=

[
a b
c d

] [
x
y

]
is orthogonal if

a2 + c2 = 1
b2 + d2 = 1
ac + bd = 0

▶ This holds if and only if there is an angle θ such that

M =

[
cos θ − sin θ
sin θ cos θ

]
or

[
− cos θ sin θ
sin θ cos θ

]
▶ The matrix on the left is rotation counterclockwise by angle θ

▶ The matrix on the right is rotation counterclockwise by angle
θ followed by a reflection about the y-axis
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3-Dimensional Orthogonal Transformations

If T : V3 → V3 is an orthogonal transformation, then
▶ There is a line ℓ through the origin (i.e., a 1-dimensional linear

subspace) such that T(ℓ) = ℓ and for any v ∈ ℓ, T(v) = ±v
▶ If T(v) = v for any v ∈ ℓ, then T is a rotation around ℓ


