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Euclidean Vector Space

» A Euclidean vector space consists of
» A vector space V

> A positive definite symmetric bilinear function
VxV—>R
(vi, ) = vy - w»
» Usually called inner product, but we say dot product
» No explicit formula for the dot product is provided or needed

» An abstract vector space itself does not come automatically
with an inner product

» There are infinitely many possible inner products on a vector
space



Important Special Values of Dot Product

> v-w = 0 iff they are orthogonal, normal, perpendicular

» v-w=|v||w]| iff there is a scalar r > 0 such that
either v=rwor w= rv
» v-w= —|v||w] iff there is a scalar r < 0 such that

either v=rwor w=rv



Dot Product With Respect to Basis

» Suppose V™ is an abstract vector space with a dot product
» Suppose E = (e1,...,en) is a basis of V"
» The dot product of any two vectors

v=ale;+-- -+ a"e, = Ea

w=blej +---+ b"e, = Eb

v-w=(atey +---+a"ep) - (brer +--- bMep)
= alblel(-el) 4+ 4 a'"bl(em - e1)

- fatbMer - em+---a"b ey - €m
Gi1 -+ Gim bt

Gml e Gmm b™
= a'Gb,

where GU = Gj,' =6 €



Dot Product With Respect to Basis

» If E=(e1,...,em) is a basis of V, then a dot product on V is
uniquely determined by the symmetric matrix

Gii - Gim
G=FEE=| : :
Gml e Gmm

where Gjj = ¢ - ¢;
» Observe that both indices of G are subscripts

» G is a positive definite symmetric 2-tensor written with
respect to the basis £



Symmetric Bilinear Functions on R?

» On E?,if
2 0] [p
QU(a', %), (b, b)) = 2a'b' +32°b* = [a8 27| [O 3] [bz]
then
Q(a,a) =2(a')?> +3(a*)> >0, and Q(a,a) =0 = a=0
> If
1 2\ /pl g2vy _ 1l 1 0] [b
Q(<aua>’<b7b>)_ab _[al 32} |:0 0:| |:b2:|
then
Q(a,a) = (a1)? > 0, but Q((0,1),(0,1)) =0
> If

el ). 8 ) = a8+ 28 = [ 2|7 ][

then
Q((1,-1),(1,-1)) = -2 <0



Positive Definite Symmetric Bilinear Functions on R?

» A symmetric bilinear function
Gi1 G bt
1 .2y /pl g2 1 .2 11 G12
Y Y b 7b =
a2 02 = [ e g2 [
is positive definite iff the following hold:

G11 >0
G22 >0
det G = G11Gop — (G12)2 >0



Important Special Case of Dot Product

» Suppose V is a Euclidean vector space

» Suppose L C V is a linear subspace

» The dot product on V can be restricted to L

» The dot product restricted on L is positive definite



Orthonormal Set

> A set S of vectors is orthonormal with respect to a dot
product, if for any two vectors v, w € S,

1 ifv=w
vV-w=
0 =ifv#£w

P> The vectors in an orthonormal set are linearly independent

» Suppose
alv1—|—-~~—|—akvk:0,

where vi,...,vc€ Sand a*,...,a" e R
» |t follows that for each 1 < j < k,
0=v;-(a'vi + -+ a"w)
= a(y;-vi) + -+ a (g )
=a

» [t follows that the number of elements in S is at most the
dimension of the vector space



Orthonormal Basis

» If V is Euclidean vector space, then a basis (ey, ..., en) is
orthonormal if
1 ifi=j
€ & = e
0 ifi#j
» Equivalently the matrix G is equal to the identity matrix
10 --- 0
01 --- 0
00 --- 1
» If (e1,...,em) is orthonormal and v = vte; + - -- 4+ v"ep, then
Vi =V-€

» Fundamental example: Standard basis of AR’”, for each
1<i<m,
e = <0,,1,>

with a 1 in the i-th slot and Os elsewhere



Constructing an Orthonormal Basis

» If a Euclidean vector space V has dimension m, then it has a
at least one (not necessarily orthonormal) basis
F=(f,...,fm).

_ f
Set e = 7]
Set hl = fz — (fz . el)el

hy is nonzero and orthogonal to e;

vvYyvyy

Proceed by induction: Assume that ey, ..., e are
orthonormal, where 1 < k< m

Set hk+1 = fk+1 — (fk+1 . el)el — e — (fk+1 . ek)ek
hi+1 is nonzero and orthogonal to ey, ..., ek

hig1
[hyal

€l,...,€ekr1 are orthonormal

Set ex11 =

vvyyypy



Orthogonal Maps

» If V™ and W" are Euclidean vector spaces, a map
F: V™ - W"
is called orthogonal, if for any v1,v» € V,
(Fv1)) - (A(v2)) = vi- v

» Equivalently, Fis orthogonal if it preserves the magnitude of a
vector and the angle between two vectors



An Orthogonal Map is Linear

» If amap F: V™ — W" is orthogonal, then for any
orthonormal basis (e1, ..., en), the ordered set

(ﬂ7...,fm) = (F(el)v'”?F(em))
is an orthonormal set, because
Fei) - F(ej) = ei- ;= 0jj

» Consequence: m < n

» Fis linear, because for any v= ale; + -+ amey,,

fi- F(v) = F(e) - F(a'er + - + a"em)

=¢- (alel +---a"em)

= F(v) = a'f+---a"f,
= alF(el) +---+3a"Flem)



Orthogonal matrices

» An orthogonal map F: V™ — V™ is called an orthogonal
transformation
» If E=(e1,...,em) is an orthornomal basis, then so is

F=(f,...,fm) = (F(le1),...,Flem))
» There is an invertible square matrix M such that
F=EM
> Observe that if My € R™ is the k-th column of M,
fi-fi=(Mjer+ -+ Ml em) - (Mjer + -+ + Mep,)
= M;Mj + -+ MM

= M;- M;,
» It follows that L is an orthogonal transformation if and only if
the columns My, ..., M., form an orthonormal basis of R™

» This is equivalent to MTM = |
Any such matrix is called an orthogonal matrix
» Let O(m) be the set of all orthogonal matrices

v



Orthogonal Transformations of R
> A linear transformation T: R2 — R? given by

T(GD =L L]

is orthogonal if

P+F=1
P +d=1
ac+bd=0

» This holds if and only if there is an angle 8 such that

M= cosf —sinf —cosf sinf
" |sinf cosf sinf  cosf

» The matrix on the left is rotation counterclockwise by angle 6

> The matrix on the right is rotation counterclockwise by angle
0 followed by a reflection about the y-axis



3-Dimensional Orthogonal Transformations

If T:V3 = V3isan orthogonal transformation, then

» There is a line £ through the origin (i.e., a 1-dimensional linear
subspace) such that T(¢) = ¢ and for any ve ¢, T(v) = v

» If T(v) = vfor any v € ¢, then T is a rotation around ¢



