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Geometry of 3-Dimensional Abstract Vector and Affine
Spaces

» Abstract vector space
> Arrows, lines and planes through the origin
» Can measure relative lengths of parallel vectors
» No consistent way to compare the length of two vectors
pointing in different directions
»> No way to measure the angle between two vectors
» Abstract affine space
» Points, lines, planes
» Can measure distance between two points relative to the
distance between two other points only if all lie on a line
» No consistent way to compare the distance between two pairs
of points that lie on two non-parallel lines
» No way to the measure the angle between two intersecting lines

> Measurement of lengths, distances, angles require something
more



Euclidean Geometry in R”

» Classical 2 and 3 dimensional Euclidean geometry starts with
axioms (definitions and assumptions) and deduces theorems
from them rigorous logic

P> Cartesian geometry starts with R™ and deduces the same
theorems from algebraic calculations using the vector space
properties and the dot product on R”, m = 2,3

» In either approach no pictures are needed to prove the
theorems

» Pictures, however, provide a useful guide



Dot Product on R™

» Recall definition of dot product: If v= (v},..., V") and
W= (Wi,...,Wn), then

veow= vl 4 VW = v,

where
vi= [t

» The length of a vector v is |v|, where
|v[2 =v-v
» The angle between vectors v; and v, is 6, where
Vi Vo = |V1HV2| cos 6

Observe that this uniquely determines an angle 0 < 0 <7



Key Properties of the Dot Product

> Bilinearity

n+w) w=v-w+wv- w

(rv) - w=rlv-w)

> Symmetry

» Positive definiteness
v-v>0

and



Cauchy-Schwarz Inequality

> If |v=|w| =1, then -1 <v-w<1

» Proof
0<(v—w)-(v—w) (positive definiteness)
=v-(v—w)—w-(v—w) (bilinearity)
=Vv-v—Vv-w—w-v+w-w (bilinearity)
=P+ WP —v-w—w-v (definition of norm)
=|v2+|w?—-2v-w (commutativity)
=2(1-v-w) (assumption)

= v-w<l
» Since | — v| = 1, the above inequality also implies that
(—v) w<l = —-1<v-w

» If v-w=1, then (v— w) - (v— w) =0 and therefore v=w



General Form of Cauchy-Schwarz Inequality

» Forany v, we 'V,
vew < |v||w]
and equality holds if and only if one of them is a nonnegative
scalar multiple of the other

» Proof:
» If either v or wis 0, then equality holds
» If both are nonzero, then

- v 1 ™ .
(|V|) . <v|) - WV' 4 (bilinearity)
1
= WM2 definition of norm)
14

=1
Therefore,

<V> : <W) <1< v-w<|vw (bilinearity)

v/ \lwl



Equality Case of Cauchy-Schwarz

» If v, w# 0, then v- w= |v||w| <= w points in same
direction as v

» Proof:

. (!w . (%) —1 (bilinearity)

r_" (Equality case)
v v
v eat
= w=-—v (scalar multiplication)



Triangle Inequality

Vo — Vv
v
v
0
> Jva —vi| < v + v
» Proof:

[vo — v1]2 =(vu—wv1) (v2—wy) (definition of norm)
=vi-vi+wv-va—2vs- vy (properties of dot product)
= viP+ vl -2v-w (definition of norm)
< |12+ [va|* + 2| v ]| v (Cauchy-Schwarz)
= (lvi| + va)? (algebra)



Equality Case of Triangle inequality

V2=V

Vi

» If vi,v» #0, then |vo — vi| = |vi| 4+ |v2| <= the vectors
point in opposite directions

» Proof:

va —wi? = (Ina] + |val)?
v + (v = 2v1 - vo = [w]? + [vaf? + 2|vi | w2
—vi - v2 = |vi]|vo]
(—v1) - v2 = | = vi[|v2]
—v1 points in same direction as v»

v1 points in opposite direction to v,



Pythagorean Theorem

> If vi - vo =0, then
lva — vi? = [v1]? + |vo|?
» Proof:

va—wvi]? = (v2 —wv1) - (v2 — v1)
=V2-Vv2—Vi-Vo—Vo-VviF Vv

i + v



Proofs Used Only Properties of the Dot Product

» Formula for the dot product never used

» Geometric arguments never used
» Proof used only the following:
» Properties of dot product
> Algebra
» Therefore, the Cauchy-Schwarz inequality, triangle inequality,
and Pythagorean Theorem hold for any function that has the
same properties as the dot product



Positive definite symmetric bilinear function
» Consider a function @ : VxV — R
» Q@ is bilinear if the following hold:
Q(vi + v2,w) = Q(vi, w) + Q(va,w), ¥V vi, o, we V
Qlv, w1 + wa) = Q(v,m1) + Q(v, wa, Yv,wq,wp € V
Qav,w) = aQ(v,w), Yv,we V, aeR
Q(v,aw) = aQ(v,w), Yv,we V, ac R
» @ is symmetric, if
Q(vi, v2) = Q(v2,v1), YV vi,nr €V
> @ is positive definite, if for any vV,
Q(v,v) >0
and
Qv,v) =0 <= v=0

> If V=R"and Q(v,w) = v-w, then Q is positive definite,
symmetric, and bilinear



Cauchy-Schwarz inequality
> If Q(v,v) = Q(w,w) =1, then

Qlv,w) <1

with equality holding if and only if v=w
» Proof:

0< Qv—w,v—w)
= Q(v,v) — Q(v, w) — Q(w, v) + Q(w, w)
=2-2Q(v,w)
=2(1 - Q(v,w))
= Q(v,w) <1

» Equality case follows by replacing inequalities by equalities
» Corollary:

-/ Q(v, v) Q(w, w) < Q(v, w) </ Q(v, v)Q(w, w)



Inequalities satisfied by a positive definite symmetric
bilinear function

» Suppose Q:V xV — R is a positive definite symmetric
bilinear function

» Cauchy-Schwarz inequality

Qv, w) < /Q(v, v)Q(w, w)

If equality holds, then there exists a nonnegative scalar r such
that either v=rwor w= rv

» Triangle inequality

Vv wvtw) < Vv, V) + v Qw, w)

> If equality holds, then there exists a nonnegative scalar r such
that either v=rwor w= rv



Pythagorean Theorem

> If Q(v, w) =0, we say that v is orthogonal to w

» If vis orthogonal to w, then

Q(v,v) + Q(w,w) = Q(v+ w, v+ w)



Example: Spce of Continuous Functions on [0, 1]

» Let (([0,1]) be the space of continuous functions with
domain [0, 1]
» (([0,1]) is a vector space, because

» fand g are continous functions = f+ g is continuous
» fis a continuous function and r€ R = rfis continuous

» Given two functions f, g € V, define

x=1
Qg = | A9e(x

> @ is a positive definite symmetric bilinear function



Integral Inequalities for Continuous Functions on [0, 1]

» Let fand g be continuous function with domain [0, 1]

» Cauchy-Schwarz inequality:

/;: (x)g(x) dx < </X:1(f(x))2 dx> 1/2 (/X:l(g(x))2 dX) 1/2

Equality holds if and only if g = cfor f= cg
» Triangle inequality:

(/ 0 + 80 o) -

—0
< ([ r o) ", ([ a2 a) -



Inner Product Space

» An inner product space consists of a vector space V and a
positive definite symmetric bilinear function @: VxV — R

> @ is a function of two vectors and is called an inner product



Examples of Inner Product Spaces
> V =R? and
QUL V), (W, w?)) = Vit + Vw2
> V =R? and
QUL V), (wh, w?)) = 2wt 4 3P w2

> V= (([0,1]) and

x=1
QUfe) = | Aol o

> Example of a symmetric bilinear form that is not positive
definite: V = R? and

QU V), (wh, w?)) = viut — Vw2



Euclidean Vector Space

» A Euclidean vector space is a finite dimensional inner product
space

» For convenience, we will write the inner product as a dot
product: Given v,w €V,

vew= Q(v,w)
» Define the length of a vector v to be |v| > 0, where
V2=v-v

» The Cauchy-Schwarz inequality holds and therefore, if v and
w are nonzero vectors in V,
1< X"y
Vil
» We can therefore define the angle between v and w to be

6 = arccos w
|v||w]



Euclidean space

» Euclidean space is an affine space whose tangent space is a
Euclidean vector space

» If E is a Euclidean space with tangent space E, then we define
the distance between two points p, g € E to be

d(p.q) =lg—pl=+/(g—p)-(a—p)

» Triangle inequality: If p,q,r € E, then

d(p,r) < d(p,q) + d(q,r)

with equality holding if and only if p, g, r are collinear and g
lies between p and r



Differential geometry

» Classical Euclidean geometry
» Euclidean space is the ambient space
» Euclidean 2-space is the plane
» Euclidean 3-space is our universe
» Lines, planes, triangles, rectangles, parallelograms
» Polygons, polytopes
» Circles, ellipses, quadratic curves, quadric surfaces
» Key tool: Geometric axioms
» Classical differential geometry
» Curves and surfaces in ambient Euclidean space
» Submanifolds in Euclidean m-space
» Key tool: Differential and integral calculus
> Modern differential geometry
» Geometric space is ambient space itself
» Universe is curved
» Introduced and studied by Riemann
» Basis for Einstein's theory of general relativity



