MATH-UA 377 Differential Geometry Linear Functions and Maps Affine Maps

Deane Yang

Courant Institute of Mathematical Sciences New York University

February 1, 2022

START RECORDING

Linear Functions and Maps

- ▶ Let V and W be vector spaces
- ▶ A function $f: \mathbb{V} \to \mathbb{R}$ is linear, if for any vectors $v, v_1, v_2 \in \mathbb{V}$ and scalar $r \in \mathbb{R}$,

$$f(v_1 + v_2) = f(v_1) + f(v_2)$$

 $f(rv) = rf(v)$

▶ A map $L : \mathbb{V} \to \mathbb{W}$ is linear, if for any vectors $v, v_1, v_2 \in \mathbb{V}$ and scalar $r \in \mathbb{R}$,

$$L(v_1 + v_2) = L(v_1) + L(v_2)$$

 $L(rv) = rL(v)$

Linear Functions and Maps on $\widehat{\mathbb{R}}^m$

▶ Any linear function on $\widehat{\mathbb{R}}^m$ is of the form

$$\ell(\langle v^1,\ldots,v^m\rangle)=a_1v^1+\cdots+a_mv^m=\begin{bmatrix}a_1&\cdots&a_m\end{bmatrix}\begin{bmatrix}v^1\\\cdots\\v^m\end{bmatrix}$$

and therefore, if vectors are column matrices, the linear functions are row matrices

Any linear map

$$M:\widehat{\mathbb{R}}^m\to\widehat{\mathbb{R}}^n$$

is given by an n-by-m matrix,

$$Mv = \begin{bmatrix} M_1^1 & \cdots & M_m^1 \\ \vdots & & \vdots \\ M_1^n & \cdots & M_m^n \end{bmatrix} \begin{bmatrix} v^1 \\ \vdots \\ v^m \end{bmatrix}$$

Differentiation is Linear

Suppose P is the space of polynomials in a single variable x. The differentiation map

$$D: P \to P$$
$$p(x) \mapsto p'(x)$$

is a linear map

► The value of the derivative at the origin,

$$D_0: P \to \mathbb{R}$$
$$p(x) \mapsto p'(0)$$

is a linear function

Linear Map with Respect to Basis

- Suppose
 - $ightharpoonup L: \mathbb{V} \to \mathbb{W}$ is a linear map
 - $ightharpoonup E = (e_1, \dots, e_m)$ is a basis of \mathbb{V}
 - $ightharpoonup F = (f_1, \dots, f_n)$ is a basis of \mathbb{W}
- For each e_k , there is a unique vector $b_k = \langle b_k^1, \dots, b_k^n \rangle$ such that

$$L(e_k) = b_k^1 f_1 + \cdots + b_k^n f_n$$

This defines a matrix

$$B = \begin{bmatrix} b_1^1 & \cdots & b_m^1 \\ \vdots & & \vdots \\ b_1^n & \cdots & b_m^n \end{bmatrix}$$

Linear Map as Matrix

► Given any $v = a^1 e_1 + \cdots + a^m v_m$, suppose

$$L(v) = f_1c^1 + \cdots + f_nc^n = FC$$

► Then

$$FC = L(v)$$

$$= L(a^{1}e_{1} + \cdots + a^{m}e_{m})$$

$$= a^{1}L(e_{1}) + \cdots + a^{m}L(e_{m})$$

$$= a^{1}(b_{1}^{1}f_{1} + \cdots + b_{1}^{n}f_{n}) + \cdots + a^{m}(b_{m}^{1}f_{1} + \cdots + b_{m}^{n}f_{n})$$

$$= [f_{1} \cdots f_{n}] \begin{bmatrix} b_{1}^{1} \cdots b_{m}^{1} \\ \vdots \\ b_{1}^{n} \cdots b_{m}^{n} \end{bmatrix} \begin{bmatrix} a^{1} \\ \vdots \\ a^{m} \end{bmatrix}$$

$$= FBA$$

ightharpoonup Therefore, C = BA and

$$L(v) = L(EA) = F(BA)$$

Space of Linear Maps is a Vector Space

▶ Given vector spaces V and W,

$$\mathsf{Hom}(\mathbb{V},\mathbb{W}) = \{\mathsf{linear\ maps}\ L : \mathbb{V} \to \mathbb{W}\}\$$

is a vector space

▶ Given a vector space V,

$$\mathsf{gl}(\mathbb{V}) = \mathsf{Hom}(\mathbb{V}, \mathbb{V}) = \{\mathsf{linear\ maps}\ \mathit{L} : \mathbb{V} \to \mathbb{V}\}$$

is a vector space but

$$\mathsf{GL}(\mathbb{V}) = \mathsf{Aut}(\mathbb{V}) = \{\mathsf{invertible\ linear\ maps\ } L : \mathbb{V} \to \mathbb{V}\}$$

is not

 $ightharpoonup \operatorname{GL}(\mathbb{V})$ is a group, where group multiplication is composition of maps

Basis and Dimension of $\mathsf{Hom}(\mathbb{V},\mathbb{W})$

- lacksquare Let dim $\mathbb{V}=m$ and $E=(e_1,\ldots,e_m)$ be a basis of \mathbb{V}
- ▶ Let dim $\mathbb{W} = n$ and $F = (f_1, ..., f_n)$ be a basis of \mathbb{W}
- ▶ For each $1 \le j \le m$ and $1 \le p \le n$, define the linear map

$$L_{jp}: \mathbb{V} \mapsto \mathbb{W}$$
$$a^{1}e_{1} + \cdots + a^{m}e_{m} \mapsto a^{j}f_{p}$$

The set, in any order,

$$\{L_{11},\cdots,L_{mn}\}$$

is a basis

Therefore,

$$\dim \operatorname{\mathsf{Hom}}(\mathbb{V},\mathbb{W}) = mn$$

Dual Vector Space

- An important special case is the space of linear functions
- ▶ Given a vector space \mathbb{V} , define its dual to be the vector space of linear functions on \mathbb{V} ,

$$\mathbb{V}^* = \{\ell : \mathbb{V} \to \mathbb{R} : \ell \text{ is linear} \}$$

- We call an element of \mathbb{V}^* a **covector** or **dual vector** or **1-tensor**
- ▶ If $\ell \in \mathbb{V}^*$ is nonzero, then

$$\ell^{-1}(0) = \{ v \in \mathbb{V} : \ell(v) = 0 \}$$

is a codimension 1 linear subspace of $\mathbb V$

▶ The level sets of ℓ are parallel to $\ell^{-1}(0)$

Dual Basis

- ▶ Let $E = (e_1, ..., e_m)$ be a basis of \mathbb{V}
- ▶ For each $1 \le i \le m$, define the linear function

$$\ell^i: \mathbb{V} \to \mathbb{R}$$
 $a^1e_1 + \cdots + a^me_m \mapsto a^i$

- ▶ Then $E^* = (\ell^1, \dots, \ell^m)$ is a basis of \mathbb{V}^*
- \triangleright E^* is called the dual basis to E
- \blacktriangleright We will write E^* as a column vector of covectors

$$E^* = \begin{bmatrix} \ell^1 \\ \vdots \\ \ell^m \end{bmatrix}$$

▶ If $\ell = a_1 \ell^1 + \cdots + a_m \ell^m$, we can write

$$\ell = \begin{bmatrix} a_1 & \cdots & a_m \end{bmatrix} \begin{bmatrix} \ell^1 \\ \vdots \\ \ell^m \end{bmatrix}$$

Affine Map

▶ If \mathbb{A} and \mathbb{B} are affine space, a map

$$M: \mathbb{A} \to \mathbb{B}$$

is **affine** if there exists a linear map

$$dM: \mathbb{V} \to \mathbb{W}$$

such that for any $p\in\mathbb{A}$ and $v\in\mathbb{V}$,

$$M(p+v)=M(p)+dM(v)$$

▶ Equivalently, for any $p, q \in V$,

$$M(q) - M(p) = dM(q - p)$$

Directional Derivatives of an Affine Map

▶ If M is an affine map, then its directional derivative at p in a direction v is

$$\frac{d}{dt}\Big|_{t=0} (M(p+tv) - M(p)) = \frac{d}{dt}\Big|_{t=0} dM(tv)$$

$$= \frac{d}{dt}\Big|_{t=0} t dM(v)$$

$$= dM(v)$$

▶ dM is therefore the differential or Jacobian of M at any point p

Affine Map

▶ Given a point $p \in \mathbb{A}$, define the map $I_p : \mathbb{V} \to \mathbb{A}$ by

$$I_p(v) = p + v$$

▶ The inverse to I_p is $I_p^{-1}: \mathbb{A} \to \mathbb{V}$, where

$$I_p^{-1}(q) = q - p$$

ightharpoonup If $\mathbb B$ is an affine space with tangent space $\mathbb W$ and

 $M: \mathbb{A} \to \mathbb{B}$ is an affine map,

then

$$dM_p = I_{M(p)}^{-1} \circ M \circ I_p$$

▶ Given an affine map $M: \mathbb{A} \to \mathbb{B}$, we have the following commuting diagram

$$\begin{array}{ccc}
\mathbb{A} & \xrightarrow{M} & \mathbb{B} \\
I_p \uparrow & I_{M(p)} \uparrow \\
\mathbb{V} & \xrightarrow{dM_p} & \mathbb{W}
\end{array}$$

